首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Abstract: The Pi peak in a 31P NMR spectrum of the brain can be deconvoluted into six separate Lorentzian peaks with the same linewidth as that of the phosphocreatine peak in the spectrum. In an earlier communication we showed that the six Pi peaks in normal brain represent two extracellular and four intracellular compartments. In that report we have identified the first of the extracellular peaks by marking plasma with infused Pi, thereby substantially increasing the amplitude of the single peak at pH 7.35. 2-Deoxyglucose-6-phosphate (2-DG-6-P) was placed in the brain interstitial space by microdialysis. The resulting 2-DG-6-P peak was deconvoluted into three separate peaks. The chemical shift of the principle 2-DG-6-P peak gave a calculated pH of 7.24 ± 0.02 for interstitial fluid pH, a value that agreed well with the pH of the second extracellular Pi peak at pH 7.25 ± 0.01. We identified the intracellular compartments by selectively stressing cellular energy metabolism in three of the four intracellular spaces. A seizure-producing chemical, flurothyl, was used to activate the neuron, thereby causing a demand for energy that could not be completely met by oxidative phosphorylation alone. The resulting loss of high-energy phosphate reserves caused a significant increase in intracellular Pi only in those cells associated with the Pi peak at pH 6.95 ± 0.01. This suggests that this compartment represents the neuron. Ammonia is detoxified in the astrocyte (glutamine synthetase) by incorporating it into glutamine, a process that requires large amounts of glucose and ATP. The intraarterial infusion of ammonium acetate into the brain stressed astrocyte energy metabolism resulting in an increase in the Pi of the cells at pH of 7.05 ± 0.01 and 7.15 ± 0.02. This finding, coupled with our observation that these same cells take up infused Pi probably via the astrocyte end-foot processes, lead us to conclude that these two compartments represent two different types of astrocytes, probably protoplasmic and fibrous, respectively. As a result of this study, we now believe the brain contains four extracellular and four intracellular compartments.  相似文献   

2.
Abstract: In vivo 31P magnetic resonance spectra of 16 isolated dog brains were studied by using a 9.4-T wide-bore superconducting magnet. The observed Pi peak had an irregular shape, which implied that it represented more than one single homogeneous pool of Pi. To evaluate our ability to discriminate between single and multiple peaks and determine peak areas, we designed studies of simulated 31Pi spectra with the signal-to-noise (S/N) ratios ranging from ∞ to 4.4 with reference to the simulated Pi peak. For the analysis we used computer programs with a linear prediction algorithm (NMR-Fit) and a Marquardt–Levenberg nonlinear curve-fit algorithm (Peak-Fit). When the simulated data had very high S/N levels, both methods located the peak centers precisely; however, the Marquardt-Levenberg algorithm (M-L algorithm) was the more reliable at low S/N levels. The linear prediction method was poor at determining peak areas; at comparable S/N levels, the M-L algorithm determined all peak areas relatively accurately. Application of the M-L algorithm to the individual experimental in vivo dog brain data resolved the Pi peak into seven or more separate components. A composite spectrum obtained by averaging all spectral data from six of the brains with normal O2 utilization was fitted using the M-L algorithm. The results suggested that there were eight significant peaks with the following chemical shifts: 4.07, 4.29, 4.45, 4.62, 4.75, 4.84, 4.99, and 5.17 parts per million (ppm). Although linear prediction demonstrated the presence of only three peaks, all corresponded to values obtained using the M-L algorithm. The peak indicating a compartment at 5.17 ppm (pH 7.34) was assigned to venous pH on the basis of direct simultaneous electrode-based measurements. On the basis of earlier electrode studies of brain compartmental pH, the peaks at 4.99 ppm (pH 7.16) and 4.84 ppm (pH 7.04) were thought to represent interstitial fluid and the astrocyte cytoplasm, respectively.  相似文献   

3.
Abstract : A unique method for simultaneously measuring interstitial (pHe) as well as intracellular (pHi) pH in the brains of lightly anesthetized rats is described. A 4-mm microdialysis probe was inserted acutely into the right frontal lobe in the center of the area sampled by a surface coil tuned for the collection of 31P-NMR spectra. 2-Deoxyglucose 6-phosphate (2-DG-6-P) was microdialyzed into the rat until a single NMR peak was detected in the phosphomonoester region of the 31P spectrum. pHe and pHi values were calculated from the chemical shift of 2-DG-6-P and inorganic phosphate, respectively, relative to the phosphocreatine peak. The average in vivo pHe was 7.24 ± 0.01, whereas the average pHi was 7.05 ± 0.01 (n = 7). The average pHe value and the average CSF bicarbonate value (23.5 ± 0.1 mEq/L) were used to calculate an interstitial Pco2 of 55 mm Hg. Rats were then subjected to a 15-min period of either hypercapnia, by addition of CO2 (2.5, 5, or 10%) to the ventilator gases, or hypocapnia (Pco2 < 30 mm Hg), by increasing the ventilation rate and volume. pHe responded inversely to arterial Pco2 and was well described (r2 = 0.91) by the Henderson-Hassel-balch equation, assuming a pKa for the bicarbonate buffer system of 6.1 and a solubility coefficient for CO2 of 0.031. This confirms the view that the bicarbonate buffer system is dominant in the interstitial space. pHi responded inversely and linearly to arterial Pco2. The intracellular effect was muted as compared with pHe (slope = -0.0025, r2 = 0.60). pHe and pHi values were also monitored during the first 12 min of ischemia produced by cardiac arrest. pHe decreases more rapidly than pHi during the first 5 min of ischemia. After 12 min of ischemia, pHe and pHi values were not significantly different (6.44 ± 0.02 and 6.44 ± 0.03, respectively). The limitations, advantages, and future uses of the combined microdialysis/31P-NMR method for measurement of pHe and pHi are discussed.  相似文献   

4.
The rates of change in intracellular pH during repeated exercise sessions with rest periods was determined by 31 phosphorus-nuclear magnetic resonance spectroscopy (31P-MRS). Five long-distance runners and six healthy male subjects as controls performed a 2-min femoral flexion at 20 kg · m · min–1 in a 2.1 T superconducting magnet with a 67-cm bore and repeated this exercise four times with 2-min rest periods intervening. In all cases during exercise the inorganic phosphate (Pi) peak split into two, the earlier increased rapidly (high-pH Pi) and the later (low-pH Pi) increased more slowly. The Pi peaks were separated by a fitting procedure using the least square mean method. The high-pH Pi area during exercise decreased as the number of repeated exercise periods increased, while the low-pH Pi area gradually increased. Although the total Pi area decreased exponentially during the recovery period, the high-pH Pi area decreased first and then the low-pH Pi area reduced gradually. The pH values were estimated from the chemical shift between the phosphocreatine peak and each split peak in the Pi. The high-pH in pooled data ranged from 6.6 to 7.0 during exercise and recovery, while the low pH decreased to 6.2 during exercise. As the number of exercise periods increased, each pH value gradually became less acidic, although there was a tendency to more acidity in the control subjects than in the long-distance runners. In conclusion, it was possible to obtain by non-invasive, continuous31P-MRS, a split pattern of Pi peaks during exercise and there were at least tow different intracellular pH values during exercise, suggesting that each Pi peak might be attributed to the types of muscle fibre recruited.  相似文献   

5.
Pyruvate kinase from Propionibacterium shermanii was shown to be activated by glucose-6-phosphate (G-6-P) at non-saturating phosphoenol pyruvate (PEP) concentrations but other glycolytic and hexose monophosphate pathway intermediates and AMP were without effect. Half-maximal activation was obtained at 1 mM G-6-P. The presence of G-6-P decreased both the PEP0.5V and ADP0.5V values and the slope of the Hill plots for both substrates. The enzyme was strongly inhibited by ATP and inorganic phosphate (Pi) at all PEP concentrations. At non-saturating (0.5 mM) PEP, half-maximal inhibition was obtained at 1.8 mM ATP or 1.4 mM Pi. The inhibition by both Pi and ATP was largely overcome by 4 mM G-6-P. The specific activity of pyruvate kinase was considerably higher in lactate-, glucose- and glycerol-grown cultures than that of the enzyme catalysing the reverse reaction, pyruvate, phosphate dikinase. It is suggested that the activity of pyruvate kinase in vivo is determined by the balance between activators and inhibitors such that it is inhibited during gluconeogenesis while, during glycolysis, the inhibition is relieved by G-6-P.Abbreviations PEP phosphoenolpyruvate - G-6-P glucose-6-phosphate - Pi inorganic phosphate  相似文献   

6.
S. Ogawa  C. Shen  C.L. Castillo 《BBA》1980,590(2):159-169
31P-NMR has been used to study the increase of ΔpH in mitochondria by externally added ATP. Freshly prepared mitochondria was treated with N-ethylmaleimide to inhibit the exchange between internal and external Pi. Upon addition of ATP, phosphocreatine (30 mM) and creatine kinase to a NMR sample of mitochondria suspension (approx. 120 mg protein/ml) at 0°C, an increase of ΔpH by approx. 0.5 pH unit was observed. However the increased ΔpH could not be maintained, but slowly decayed along with the increase of external ADP/ATP ratio. Further addition of valinomycin to the suspension induced a larger ΔpH (approx. 1) which was maintained by the increased rate of internal ATP hydrolysis as seen in the growth of the internal Pi peak intensity in NMR spectra and the concomitant decrease of the external phosphocreatine peak. The external Pi and ATP peaks stayed virtually constant. When carboxyatractyloside was added to inhibit the ATP/ADP translocase, the internal Pi increase was stopped and the ΔpH decayed. These observations in conjunction with those made earlier in respiring mitochondria clearly show the reversible nature of the ATPase function in which the internal ATP hydrolysis is associated with outward pumping of protons.  相似文献   

7.
Treatment with the catalytic subunit of cyclic AMP-dependent protein kinase induced the following modifications in the kinetic properties of purified phosphofructokinase 2. The affinity for Fru-6-P, the Vmax and the stimulatory effect of Pi were decreased; the inhibitory actions of P-enol-pyruvate and citrate were increased; the pH activity curve, measured in the presence of 5 mM Fru-6-P and 5 mM Pi was modified in the respect that the peak of activity normally measured at pH 6.6 was abolished whereas no effect of the treatment was observed at pH 8. Similar changes in the properties of phosphofructokinase 2 were also observed in a crude preparation obtained from hepatocytes incubated with glucagon.  相似文献   

8.
Yao  Qing  Li  Xiaolin  Feng  Gu  Christie  Peter 《Plant and Soil》2001,230(2):279-285
Red clover (Trifolium pratense L.) and Glomus versiforme (Karsten) Berch growing in rhizoboxes were employed in two glasshouse experiments to study the mobilization of sparingly soluble phosphates by arbuscular mycorrhizal fungal (AMF) mycelium. In one experiment, four inorganic sources of phosphate, CaHPO4.2H2O (Ca2-P), Ca8H2(PO4)6.5H2O (Ca8-P), Ca10(PO4)6.F2 (Ca10-P) and AlPO4.nH2O (Al-P), were chemically synthesized, labelled with 32P in an atomic pile and applied to the hyphal compartments of the rhizoboxes. Shoot yield, 32P and total P uptake were measured in clover growing in the root compartments. A similar experiment was conducted simultaneously using the same phosphate sources unlabelled and clover mycorrhizal infection and soil pH were determined. Although AMF inoculation increased the P uptake and biomass of clover shoots, the contribution of AMF to shoot P uptake and biomass varied with phosphate source, and was greatest with Ca2-P and least with Ca10-P. 32P measurements indicated that external hyphae could mobilize Ca2-P, Ca8-P and Al-P, but not Ca10-P. This indicates that AMF not only mobilize the same types of phosphates that plants mobilize under stress conditions of low P, but give increased contact with phosphates in the soil compared with non-mycorrhizal root systems.  相似文献   

9.
The pH dependence of the chemical shift of the inorganic phosphate (Pi) inside mitochondria observable by 31P nmr has been examined and used for the measurement of the internal pH. The pH gradient and the Pi concentration gradient were in the simple relation expected for the neutral exchange process of H2PO4? and OH?. This Pi distribution across the mitochondrial membrane was not influenced by the cross-membrane electrical potential. Both the Pi, distribution and the pH titration curve of the internal Pi indicate that the activity of the internal Pi can be well represented by the concentration of Pi measured by 31P nmr peak intensity. The present results give a sound base for applying 31P nmr to study bioenergetics and cell metabolism.  相似文献   

10.
Acid-soluble phosphate esters were determined in extracts of plant material after a 24 h exposure of the roots of intact alfalfa plants to nutrient media labelled with32Pi. Similar phosphate ester patterns were found in 2-, 3-, 8-, and 9-week-old plants with the exception of Gra-P which could be detected only in shoot extracts. However, phosphate ester levels differed in the shoots and roots. Whereas Fru-P2, Glc-6-P, Fru-6-P, and adenine nucleotides were more abundant in the shoots, Grn-P and P-choline levels were higher in the roots. Certain differences in the levels of P-esters were also recorded between plants susceptible and resistant to bacterial wilt.  相似文献   

11.
The vacuoles of logarithmic and stationary stage cells were compared by 31P-NMR with regard to pH, orthophosphate (Pi) content and average size of polyphosphate. The vacuoles of stationary cells had lower pH higher Pi content, and polyphosphates of longer average chain lenght, although total polyphosphate content was about the same as in logarithmic cells. The lower vacuolar pH in stationary cells was the major cause of a larger cytoplasmic-vacuolar pH gradient. Addition of NH4Cl, (NH4)2SO4, methylamine or amantadine at pH 8 to cells in either stage caused an icnrease in both cytoplasmic and vacuolar pH, with little or no change in the cytoplasmic-vacuolar pH gradient. However, the administration of ammonium salts to the cells at pH 8.0 resulted in rapid hydrolysis of the intravacuolar polyphosphate to tripolyphosphate and Pi, with attendant redistribution of Pi between the vacuolar and cytoplasmic compartments.  相似文献   

12.
In studying conditions for obtaining photosynthetically functional chloroplasts from mesophyll protoplasts of sunflower and wheat, a strong requirement for chelation was found. The concentration of chelator, either EDTA or pyrophosphate (PPi), required for maximum activation depended on the pH, the concentration of orthophosphate (Pi) in the assay, and the chelator used. Studies with EDTA indicate that including the chelator in the isolation, resuspension, and assay media, in the absence of divalent cations, was most effective. Increased concentration of EDTA from 1 to 10 mm broadened the pH response curve for photosynthesis, inasmuch as a higher concentration of chelator was required for activation of photosynthesis at lower pH.Either EDTA, PPi, or citrate could activate photosynthesis of sunflower chloroplasts isolated and assayed at pH 8.4. At pH 7.6, PPi and EDTA were equally effective at low Pi concentrations but PPi was particularly effective in shortening the induction period at high concentrations of Pi (2.5 mm) in the assay medium. Including 1 mm 3-phosphoglycerate in the assay medium with or without Pi could not replace the need for chelation. However, 3-phosphoglycerate + EDTA in the assay medium with 0.5 mm Pi, pH 7.6, gave a short induction period and rates of photosynthesis similar to those with 10 mm PPi. The results suggest that PPi can have a dual effect at the lower pH through chelation and inhibition of the phosphate transporter.Photosynthesis by sunflower chloroplasts isolated and assayed at pH 8.4 with 0.2 mm EDTA (+ 0.5 mm Pi in the assays) was severely inhibited by 2 mM CaCl2, MgCl2, or MnCl2. Wheat chloroplasts isolated and assayed at pH 8.4 without chelation, and assayed with 0.2 mm Pi, had low rates of photosynthesis (25 μmol O2 evolved mg?1 chlorophyll h?1) which were strongly inhibited by 2 to 4 mm MgCl2, MnCl2, or CaCl2. With inclusion of EDTA and Pi at optimum levels, isolated chloroplasts of sunflower and wheat have high rates of photosynthesis and PPi or divalent cations are not of benefit.  相似文献   

13.
The effect of fertilization upon the intracellular pH, pHi, in crab ovulated eggs was examined by 31P-NMR. The pHi values were obtained from the chemical shift differences between the phosphoarginine PA resonance and the inorganic phosphate Pi resonance. The detection of the Pi peak was accomplished by Hahn spin-echo experiments in order to cancel the broad signal arising from phosphoproteins which overlaps the Pi signal. The average pHi of the unfertilized unactivated eggs was 6.55 and a rise of 0.12 pH unit occurred after fertilization.  相似文献   

14.
The effect of the external pH on the intracellular pH in mungbean (Vigna mungo (L.) Hepper) root-tip cells was investigatedwith the 31P nuclear magnetic resonance (NMR) method. The 31PNMR spectra showed three peaks caused by cytoplasmic G-6-P,cytoplasmic Pi and vacuolar Pi. The cytoplasmic and vacuolarpHs could be determined by comparing the Pi chemical shiftswith the titration curve. When the external pH was changed overa range from pH 3 to 10, the cytoplasmic pH showed smaller changesthan the vacuolar pH, suggesting that the former is regulatedmore strictly than the latter. The H+-ATPase inhibitor, DCCD,caused the breakdown of the mechanism that regulates the intracellularpH. H+-ATPase appears to have an important part in the regulationof the intracellular pH. (Received January 4, 1984; Accepted August 27, 1984)  相似文献   

15.
The effects of inorganic phosphate (Pi), the main intracellular membrane permeable anion capable of altering mitochondrial pH gradients (ΔpH), were measured on mitochondrial H2O2 release. As expected, Pi decreased ΔpH and increased the electric membrane potential (ΔΨ). Mitochondrial H2O2 release was stimulated by Pi and also by its structural analogue arsenate. However, acetate, another membrane-permeable anion, did not stimulate mitochondrial H2O2 release. The stimulatory effect promoted by Pi was prevented by CCCP, which decreases transport of Pi across the inner mitochondrial membrane, indicating that Pi must be in the mitochondrial matrix to stimulate H2O2 release. In conclusion, we found that Pi and arsenate stimulate mitochondrial reactive oxygen release, an effect that may contribute towards oxidative stress under conditions such as ischemia/reperfusion, in which high-energy phosphate bonds are hydrolyzed.  相似文献   

16.
In this study we have used a newly isolated Yarrowia lipolytica yeast strain with a unique capacity to grow over a wide pH range (3.5–10.5), which makes it an excellent model system for studying H+- and Na+-coupled phosphate transport systems. Even at extreme growth conditions (low concentrations of extracellular phosphate, alkaline pH values) Y. lipolytica preserved tightly-coupled mitochondria with the fully competent respiratory chain containing three points of energy conservation. This was demonstrated for the first time for cells grown at pH 9.5–10.0. In cells grown at pH 4.5, inorganic phosphate (Pi) was accumulated by two kinetically discrete H+/Pi-cotransport systems. The low-affinity system is most likely constitutively expressed and operates at high Pi concentrations. The high-affinity system, subjected to regulation by both extracellular Pi availability and intracellular polyphosphate stores, is mobilized during Pi-starvation. In cells grown at pH 9.5–10, Pi uptake is mediated by several kinetically discrete Na+-dependent systems that are specifically activated by Na+ ions and insensitive to the protonophore CCCP. One of these, a low-affinity transporter operative at high Pi concentrations is kinetically characterized here for the first time. The other two, high-affinity, high-capacity systems, are derepressible and functional during Pi-starvation and appear to be controlled by extracellular Pi. They represent the first examples of high-capacity, Na+-driven Pi transport systems in an organism belonging to neither the animal nor bacterial kingdoms. The contribution of the H+- and Na+-coupled Pi transport systems in Y. lipolytica cells grown at different pH values was quantified. In cells grown at pH values of 4.5 and 6.0, the H+-coupled Pi transport systems are predominant. The contribution of the Na+/Pi cotransport systems to the total cellular Pi uptake activity is progressively increased with increasing pH, reaching its maximum at pH 9 and higher. Received: 15 December 2000/Revised: 14 May 2001  相似文献   

17.
Zusammenfassung Die vorliegende Arbeit befaßt sich mit der Regulation der Pyruvatkinase (ATP: Pyruvat-Phosphotransferase, EC 2.7.1.40) in dem phototrophen Bakterium Rhodospirillum rubrum. Die spezifische Aktivität der Pyruvat-kinase in zellfreien Extrakten ist unabhängig von den Bedingungen der Zellanzucht. Nach elektrophoretischer Auftrennung der Extraktproteine wird stets nur eine enzymatisch aktive Bande erfaßt. Es wird ein Verfahren zur reproduzierbaren 100fachen Anreicherung des Enzyms bis zu einer spezifischen Aktivität von 30 bis 40 mole/min·mg Protein beschrieben. Das Molekulargewicht (Bestimmung durch Gelfiltration) der Pyruvatkinase beträgt 250 000. Die Enzymaktivität ist abhängig von zweiwertigen Metallionen (Mg2+), aber unabhängig von monovalenten Kationen wie K+ oder NH4 +. Glucose-6-phosphat (G-6-P), Ribose-5-phosphat (R-5-P), Fructose-6-phosphat (F-6-P) und — wesentlich schwächer wirksam — Fructose-1,6-bisphosphat sind Aktivatoren, Adenosintriphosphat (ATP) und anorganisches Phosphat (P a ) sind Inhibitoren des Enzyms. Der Anstieg der Reaktionsgeschwindigkeit mit steigender Phosphoenolpyruvat (PEP)-Konzentration folgt einer sigmoiden Sättigungsfunktion mit einem Hill-Koeffizienten n H von 2 (pH 6) bzw. 2,8 (pH 8). Die PEP-Konzentrationen, bei denen halbmaximale Reaktionsraten erzielt werden (S 0.5-Werte), sind 0,06 (pH 6) bzw. 0,14 (pH 8) mM. Die ADP-Sättigungskurve ist hyperbolisch mit einem K m von 0,1 mM. Die Aktivatoren G-6-P, R-5-P und F-6-P heben die Kooperativität der PEP-Sättigungskurve auf (d.h. n H=1) und erniedrigen den S 0.5-Wert für PEP von 0,12 auf 0,02 mM (pH 7,2). Als allosterischer Inhibitor (geringster experimentell ermittelter K i ist 0,05 mM) erhöht P a die Kooperativität der PEP-Sättigungskurve (n H=3 in Gegenwart von 1 mM P a verglichen mit n H=2,1 in Abwesenheit eines Effektors) und verschiebt den S 0.5-Wert für PEP in Richtung höherer Konzentrationen. Die Hemmung des Enzyms durch ATP ist demgegenüber kompetitiv in bezug auf PEP mit einem K i von 0,2 mM. Übereinstimmung der experimentell ermittelten PEP-Sättigungskurve mit der vom Symmetriemodell allosterischer Enzyme (Monod et al., 1965) geforderten theoretischen Sättigungsfunktion ergibt sich mit einer Anzahl der PEP-bindenden Untereinheiten von n=3 und einer allosterischen Konstante von L=200.
Allosteric control by inorganic phosphate and sugar phosphates of pyruvate kinase from Rhodospirillum rubrum
Summary This study is concerned with the regulation of pyruvate kinase (ATP: pyruvate phosphotransferase, EC 2.7.1.40) of the photosynthetic bacterium Rhodospirillum rubrum. Cellular activity levels of the enzyme are not influenced by the culture conditions. Electrophoretic separation of proteins in cell free extracts yields one activity band only. A procedure is described for reproducible 100-fold purification of the enzyme up to specific activities of 30–40 moles/min·mg protein. The molecular weight of the enzyme as estimated by gelfiltration is 250 000. Enzyme activity is dependent on the presence of a divalent metal ion (Mg2+), but independent of the presence of a monovalent kation like K+ or NH4 +. Glucose-6-phosphate (G-6-P), ribose-5-phosphate (R-5-P), fructose-6-phosphate (F-6-P), and to a lesser extent, fructose-1,6-bisphosphate are activators, adenosintriphosphate (ATP) and inorganic phosphate (P i ) are inhibitors of the enzyme. Increase of reaction velocity with increasing phosphoenolpyruvate (PEP) concentration follows a sigmoidal saturation curve with Hill coefficients n H of 2 (pH 6) or 2.8 (pH 8). PEP concentrations at which half maximal reaction rates are attained (S 0.5-values) are 0.06 (pH 6) or 0.14 (pH 8) mM, respectively. The ADP-saturation curve is hyperbolic with a K m of 0.1 mM. The activators G-6-P, R-5-P, and F-6-P eliminate the cooperativity of the PEP-saturation curve (i.e. n H=1) and decrease the S 0.5-value of PEP from 0.12 to 0.02 mM (pH 7.2). As an allosteric inhibitor (K i&0.05 mM), P i increases the cooperativity of the PEP-saturation curve (n H=3 in the presence of 1 mM P i compared to n H=2.1 in the absence of any effector) and shifts the S 0.5-value of PEP to higher concentrations. On the other hand, inhibition of the enzyme by ATP is competitive with respect to PEP (K i=0.2 mM). Excellent fit of the experimental kinetic data to the theoretical saturation function according to the symmetry model of allosteric enzymes (Monod et al., 1965) is obtained with n=3 as the number of interacting sites and L=200 as the allosteric constant.

Abkürzungen A Extinktion - EDTA Athylendiamintetraacetat - FDP Fructose-1,6-bisphosphat - F-6-P Fructose-6-phosphat - G-6-P Glucose-6-phosphat - GDH Glycerin-3-phosphat-Dehydrogenase - GDP Guanosindiphosphat - GSH Glutathion, reduziert - LDH Lactatdehydrogenase - MDH Malat-dehydrogenase - NADH reduziertes Nicotinamid-Adenin-Dinucleotid - P a anorganisches Phosphat - PEP Phosphoenolpyruvat - R-5-P Ribose-5-phosphat - TIM Triosephosphat-Isomerase  相似文献   

18.
In view of the importance of Pi in the control of cell metabolism, it was of interest to study the mechanism and regulation of Pi uptake by Acer pseudoplatanus cells grown as cell suspensions. At low external Pi concentrations up to 10 mm, sycamore cells incorporate phosphate against a concentration gradient, by a process which is energy dependent. Under these conditions the intracellular Pi concentration is maintained constant (2–3 mm). On the contrary at high external Pi concentrations, higher than that which counterpoises the cytoplasmic Pi concentration (approximately 10 mm), Pi enters the cell by slow diffusion and the intracellular Pi concentration increases continuously as the extracellular Pi concentration increases from 15 to 50 mm. When sycamore cells are transferred to a phosphate-deficient medium, growth slows down considerably and ceases after 4–5 days. During this time, intracellular Pi concentration falls from 3 to 0.1 mm and phosphate esters from 8 to 2 mm. Phosphate starvation stimulates the uptake indicating that phosphate uptake depends on the intracellular phosphate and/or cytoplasmic ester-P pool. Pi uptake by Pi-starved cells is strongly dependent on the pH of the medium.  相似文献   

19.
Transport of phosphate has been studied in subconfluent monolayers of LLC-PK1 cells. It was found that this transport system shows similar characteristics to those observed in the kidney. Uptake of phosphate is mediated by a Na+-dependent, substrate-saturable process with an apparent Km value for phosphate of 96 ± 15 μmol/1. Kinetic analysis of the effect of Na+ indicated that at (pH 7.4) two sodium ions are cotransported with one HPO42? ion (Hill coefficient 1.5) with an apparent Km value for sodium of 56 mmol/l. Pi uptake is inhibited by metabolic inhibitors (ouabain and FCCP). In the pH range of 6.6 of 7.4 Pi uptake rate does not change significantly, indicating that both the monovalent and the divalent form of phosphate are accepted by the transport system. It is suggested that phosphate is transported by LLC-PKi cells together with sodium (2 Na+ :1 HPO42?) in an electroneutral manner down a favourable sodium gradient.  相似文献   

20.
Uptake, assimilation and compartmentation of phosphate were studied in the opportunist green macroalgaUlva lactucaand the estuarine red algal epiphyteCatenella nipae. The Michaelis–Menten model was used to describe uptake rates of inorganic phosphate (Pi) at different concentrations. Maximum uptake rates (V max) of P-starved material exceededV maxof P-enriched material; this difference was greater forC. nipae. Uptake and allocation of phosphorus (P) to internal pools was measured using trichloroacetic acid (TCA) extracts and32P. Both species demonstrated similar assimilation paths: when P-enriched, most32P accumulated as free phosphate. When unenriched,32P was rapidly assimilated into the TCA-insoluble pool.C. nipaeconsistently assimilated more32P into this pool thanU. lactuca, indicatingC. nipaehas a greater P-storage capacity. In both species,32P release data showed two internal compartments with very different biological half-lives. The rapidly exchanging compartment had a short half-life of 2 to 12 min, while the slowly exchanging compartment had a much longer half-life of 12 days in P-starvedC. nipaeor 4 days in P-starvedU. lactuca. In both species, the slowly exchanging compartment accounted for more than 90% of total tissue.U. lactucaandC. nipaeresponded differently to high external Pi.U. lactucarapidly took up Pi, transferring this Piinto tissue phosphate and TCA-soluble P in a few hours (90% of total P).C. nipaetook up Piat lower rates and stored much of this P in less mobile TCA-insoluble forms. Long-term storage of refractory forms of P makesC. nipaea useful bioindicator of the prevailing conditions of Piavailability over at least the previous 7 days, whereas the P-status ofU.lactucamay reflect conditions over no more than the previous few hours or days.C. nipaeis a more useful bioindicator for P status of estuarine and marine waters thanU. lactuca.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号