首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
The effects of inorganic phosphate (Pi), the main intracellular membrane permeable anion capable of altering mitochondrial pH gradients (ΔpH), were measured on mitochondrial H2O2 release. As expected, Pi decreased ΔpH and increased the electric membrane potential (ΔΨ). Mitochondrial H2O2 release was stimulated by Pi and also by its structural analogue arsenate. However, acetate, another membrane-permeable anion, did not stimulate mitochondrial H2O2 release. The stimulatory effect promoted by Pi was prevented by CCCP, which decreases transport of Pi across the inner mitochondrial membrane, indicating that Pi must be in the mitochondrial matrix to stimulate H2O2 release. In conclusion, we found that Pi and arsenate stimulate mitochondrial reactive oxygen release, an effect that may contribute towards oxidative stress under conditions such as ischemia/reperfusion, in which high-energy phosphate bonds are hydrolyzed.  相似文献   

2.
ATPase activity and ATP-induced energization of photosynthetic membranes from Rhodopseudomonas capsulata are stimulated by phosphate; the maximum stimulatory effect occurs at a concentration between 1 and 2 mM.The sensitivity of the ATPase to oligomycin increases in the presence of phosphate since all the Pi-stimulated activity is inhibited by this antibiotic. Aurovertin, which has no effect on ATPase in the absence of phosphate, inhibits completely the activity elicited by this anion.The addition of Pi induces a substantial increase in the V of ATPase activity without changing the affinity of the enzyme for ATP or ADP.Arsenate, at the same concentrations, produces effects very similar to those of phosphate. The stimulation by arsenate of the transfer of energy from ATP to the membrane suggests a non-hydrolytic role of this anion as a modifier of the ATPase activity.  相似文献   

3.
The large inner membrane electrochemical driving force and restricted volume of the matrix confer unique constraints on mitochondrial ion transport. Cation uptake along with anion and water movement induces swelling if not compensated by other processes. For mitochondrial Ca2+ uptake, these include activation of countertransporters (Na+/Ca2+ exchanger and Na+/H+ exchanger) coupled to the proton gradient, ultimately maintained by the proton pumps of the respiratory chain, and Ca2+ binding to matrix buffers. Inorganic phosphate (Pi) is known to affect both the Ca2+ uptake rate and the buffering reaction, but the role of anion transport in determining mitochondrial Ca2+ dynamics is poorly understood. Here we simultaneously monitor extra- and intra-mitochondrial Ca2+ and mitochondrial membrane potential (ΔΨm) to examine the effects of anion transport on mitochondrial Ca2+ flux and buffering in Pi-depleted guinea pig cardiac mitochondria. Mitochondrial Ca2+ uptake proceeded slowly in the absence of Pi but matrix free Ca2+ ([Ca2+]mito) still rose to ∼50 μm. Pi (0.001–1 mm) accelerated Ca2+ uptake but decreased [Ca2+]mito by almost 50% while restoring ΔΨm. Pi-dependent effects on Ca2+ were blocked by inhibiting the phosphate carrier. Mitochondrial Ca2+ uptake rate was also increased by vanadate (Vi), acetate, ATP, or a non-hydrolyzable ATP analog (AMP-PNP), with differential effects on matrix Ca2+ buffering and ΔΨm recovery. Interestingly, ATP or AMP-PNP prevented the effects of Pi on Ca2+ uptake. The results show that anion transport imposes an upper limit on mitochondrial Ca2+ uptake and modifies the [Ca2+]mito response in a complex manner.  相似文献   

4.
The translocation of Pi, malate, -oxoglutarate, and citrate across the inner membrane of rat-liver mitochondria has been studied. Investigation on the effect of pH on anionic substrate translocation across the mitochondrial membrane shows that their distribution across the inner membrane can be governed by transmembrane pH difference. However, evidence is presented that the translocation of Pi, but not that of malate, -oxoglutarate, or citrate can bedirectly coupled to an OH counterflux (H2PO 4 –OH exchange-diffusion). and malate-tricarboxylate exchange-diffusion reactions is directly demonstrated. The study of the effect of uncouplers on the efflux from mitochondria of substrate anions, in the absence of counteranion, and on the anion exchange-diffusions shows that uncouplers act in at least two ways: they promote the efflux of Pi from mitochondria and inhibitdirectly the exchange-diffusion reactions. The kinetics of this inhibition are described. These results are discussed in the light of previous work on the effect of uncouplers on the distribution of substrate anions across the inner membrane of isolated mitochondria. Coupling mechanisms in substrate anion translocation and aspects of the energetics of anion translocation are discussed.  相似文献   

5.
The effects of hydrophobic and hydrophilic bile acids as inducers of Ca2+-dependent permeability of the inner membrane were studied on isolated liver mitochondria. It is shown that in the absence of the inorganic phosphate (Pi)–a modulator of the mitochondrial pore–hydrophobic bile acids (lithocholic, deoxycholic, chenodeoxycholic) at concentrations of 20–50 μM, as well as a hydrophilic cholic acid at a concentration of 800 μM, induce swelling of liver mitochondria loaded with Ca2+. This effect is completely eliminated by a specific inhibitor of mitochondrial pore cyclosporin A (CsA). The effect of the bile acids as inducers of Ca2+-dependent CsA-sensitive mitochondrial pore is not associated with the modulation of the Pi effects. In contrast to other tested bile acids, a hydrophilic ursodeoxycholic acid (UDCA) at a concentration of 400 μM is able to induce Ca2+-dependent CsA-sensitive pore opening in liver mitochondria only in the presence of Pi or in the absence of potassium chloride in the incubation medium. In the presence of potassium chloride but in the absence of Pi, UDCA effects associated with the induction of the inner membrane permeability (swelling of mitochondria, drop in Δψ, and Ca2+ release from the matrix) are also observed in the presence of CsA. This Ca2+-dependent permeability of the inner membrane, in contrast to the “classical” CsA-sensitive pore, is characterized by a lower intensity of the mitochondrial swelling, a total drop in Δψ, and Ca2+ release from the matrix and is blocked by Pi. We suggest that the induction of the CsA-insensitive permeability in the inner mitochondrial membrane by UDCA is associated with activation of electrophoretic influx of K+ into the matrix and Ca2+ release from the matrix in exchange to H+. The effect of Pi as a blocker of such permeability is discussed.  相似文献   

6.
It has been found that amytal competitively inhibits succinate (+ rotenone) oxidation by intact uncoupled mitochondria. Similar results were obtained in metabolic state 3, the Ki value being 0.45 mM. Amytal did not effect succinate oxidation by broken mitochondria and submitochondrial particles (at a concentration which inhibited succinate oxidation by intact mitochondria). Amytal inhibited the swelling of mitochondria suspended in ammonium succinate or ammonium malate but was without effect on the swelling of mitochondria in ammonium phosphate and potassium phosphate in the presence of valinomycin+carbonylcyanide p-trifluoromethoxyphenylhydrazone.Using [14C] succinate and [14C] citrate it has been shown that amytal inhibited the succinate/succinate, succinate/Pi, succinate/malate, and citrate/citrate and citrate/malate exchanges. Amytal inhibited Pi transport across mitochondrial membrane only if preincubated with mitochondria. Other barbiturates: phenobarbital, dial, veronal were found to inhibit [14C]succinate/anion (Pi, succinate, malonate, malate) exchange reactions in a manner similar to amytal. It is concluded that barbiturates non-specifically inhibit the dicarboxylate carrier system, tricarboxylate carrier and Pi translocator. It is postulated that the inhibition of succinate oxidation by barbiturates is caused mainly by the inhibition of succinate and Pi translocation across the mitochondrial membrane.  相似文献   

7.
The pH dependence of the chemical shift of the inorganic phosphate (Pi) inside mitochondria observable by 31P nmr has been examined and used for the measurement of the internal pH. The pH gradient and the Pi concentration gradient were in the simple relation expected for the neutral exchange process of H2PO4? and OH?. This Pi distribution across the mitochondrial membrane was not influenced by the cross-membrane electrical potential. Both the Pi, distribution and the pH titration curve of the internal Pi indicate that the activity of the internal Pi can be well represented by the concentration of Pi measured by 31P nmr peak intensity. The present results give a sound base for applying 31P nmr to study bioenergetics and cell metabolism.  相似文献   

8.
Using flow cytometry and sandwich-immunoenzyme assay, we showed that nicotinic acetylcholine receptors with a subunit α7 (nAChRs α7) expressed in the outer mitochondrial membrane are involved in the control of mitochondria-dependent apoptosis. Pre-incubation of the mitochondria with an nAChRs α7 agonist, choline, decreased dissipation of the membrane potential of these organelles induced by the action of 0.5 mM hydrogen peroxide (H2O2) but did not influence the analogous effect of a high Ca2+ concentration (90 μM). Agonists of nAChRs α7 (choline, acetylcholine, and PNU 282987), or an inhibitor of voltage-dependent anion channels, DIDS, prevented the release of cytochrome c from the intermembrane mitochondrial space under the action of H2O2. In contrast, an antagonist of nAChRs α7, methyllycaconitine, promoted the release of cytochrome c and prevented the effects of agonists. The obtained data confirm the active involvement of nAChRs α7 and voltage-dependent anion channels in the process of formation of mitochondrial pores. In this case, agonists of mitochondrial nAChRs α7 subunits exert an antiapoptotic effect, while antagonists of mitochondrial nAChRs α7 subunits manifest a proapoptotic action.  相似文献   

9.
High‐affinity phosphate transporters mediate uptake of inorganic phosphate (Pi) from soil solution under low Pi conditions. The electrophysiological properties of any plant high‐affinity Pi transporter have not been described yet. Here, we report the detailed characterization of electrophysiological properties of the barley Pi transporter, HvPHT1;1 in Xenopus laevis oocytes. A very low Km value (1.9 µm ) for phosphate transport was observed in HvPHT1;1, which falls within the concentration range observed for barley roots. Inward currents at negative membrane potentials were identified as nH+:Pi (n > 1) co‐transport based on simultaneous Pi radiotracer uptake, oocyte voltage clamping and pH dependence. HvPHT1;1 showed preferential selectivity for Pi and arsenate, but no transport of the other oxyanions SO42? and NO3. In addition, HvPHT1;1 locates to the plasma membrane when expressed in onion (Allium cepa L.) epidermal cells, and is highly expressed in root segments with dense hairs. The electrophysiological properties, plasma membrane localization and cell‐specific expression pattern of HvPHT1;1 support its role in the uptake of Pi under low Pi conditions.  相似文献   

10.
Experimental evidence is given of mitochondrial creatine kinase ability to dissociate from or reassociate with mitochondrial membrane as compared to the behaviour of adenylate kinase. CK release occurs for Pi concentrations higher than 5 mM and is strongly pH-dependant. Solubilized CK is able to reassociate with mitochondrial inner membrane when either Pi concentration or pH are decreased. The possible physiological effects of events, such as ischemia, which modify the intracellular pH or Pi concentration are discussed, in view of the special role which has been attributed to mitochondrial CK in the transfer of energy in heart cells.  相似文献   

11.
The requirement of inorganic phosphate (Pi) for oxidative phosphorylation in eukaryotic cells is fulfilled through specific Pi transport systems. The mitochondrial proton/phosphate symporter (Pic) is a membrane-embedded protein which translocates Pi from the cytosol into the mitochondrial matrix. Pic is responsible for the very rapid transport of most of the Pi used in ATP synthesis. During the past five years there have been advances on several fronts. Genomic and cDNA clones for yeast, bovine, rat, and human Pic have been isolated and sequenced. Functional expression of yeast Pic in yeast strains deficient in Pi transport and expression inEscherichia coli of a chimera protein involving Pic and ATP synthase subunit have been accomplished. Pic, in contrast to other members of the family of transporters involved in energy metabolism, was demonstrated to have a presequence, which optimizes the import of the precursor protein into mitochondria. Six transmembrane segments appear to be a structural feature shared between Pic and other mitochondrial anion carriers, and recent-site directed mutagenesis studies implicate structure-functional relationships to bacteriorhodopsin. These recent advances on Pic will be assessed in light of a more global interpretation of transport mechanism across the inner mitochondrial membrane.  相似文献   

12.
1,N6-Ethenoadenosine diphosphate (ϵ-ADP) inhibits reverse electron flow (succinate → NAD+ driven by ATP) by competing with ATP, in contrast to ADP which we have shown previously to be a noncompetitive inhibitor. From these and other data it is concluded that the noncompetitive inhibition noted with ADP results from a combination of competitive inhibition plus non- or uncompetitive inhibition, the former occuring at a relatively nonspecific catalytic site and the latter at an extracatalytic site apparently quite specific for ADP. ADP, which stimulates ATP ⇌ H2O and Pi ⇌ H2O exchanges appears to be necessary for inhibition by arsenate of these exchanges. It is suggested that the ATP-supported Pi ⇌ H2O exchange may be predominantly of the medium or intermediate type, depending on the concentrations of the Mg2+ complexes of ADP and Pi. Thus only exchanges involving medium ADP and Pi would be expected to show arsenate sensitivity.  相似文献   

13.
In this study we have used a newly isolated Yarrowia lipolytica yeast strain with a unique capacity to grow over a wide pH range (3.5–10.5), which makes it an excellent model system for studying H+- and Na+-coupled phosphate transport systems. Even at extreme growth conditions (low concentrations of extracellular phosphate, alkaline pH values) Y. lipolytica preserved tightly-coupled mitochondria with the fully competent respiratory chain containing three points of energy conservation. This was demonstrated for the first time for cells grown at pH 9.5–10.0. In cells grown at pH 4.5, inorganic phosphate (Pi) was accumulated by two kinetically discrete H+/Pi-cotransport systems. The low-affinity system is most likely constitutively expressed and operates at high Pi concentrations. The high-affinity system, subjected to regulation by both extracellular Pi availability and intracellular polyphosphate stores, is mobilized during Pi-starvation. In cells grown at pH 9.5–10, Pi uptake is mediated by several kinetically discrete Na+-dependent systems that are specifically activated by Na+ ions and insensitive to the protonophore CCCP. One of these, a low-affinity transporter operative at high Pi concentrations is kinetically characterized here for the first time. The other two, high-affinity, high-capacity systems, are derepressible and functional during Pi-starvation and appear to be controlled by extracellular Pi. They represent the first examples of high-capacity, Na+-driven Pi transport systems in an organism belonging to neither the animal nor bacterial kingdoms. The contribution of the H+- and Na+-coupled Pi transport systems in Y. lipolytica cells grown at different pH values was quantified. In cells grown at pH values of 4.5 and 6.0, the H+-coupled Pi transport systems are predominant. The contribution of the Na+/Pi cotransport systems to the total cellular Pi uptake activity is progressively increased with increasing pH, reaching its maximum at pH 9 and higher. Received: 15 December 2000/Revised: 14 May 2001  相似文献   

14.
Aggressive cancers exhibit an efficient conversion of high amounts of glucose to lactate accompanied by acid secretion, a phenomenon popularly known as the Warburg effect. The acidic microenvironment and the alkaline cytosol create a proton-gradient (acid gradient) across the plasma membrane that represents proton-motive energy. Increasing experimental data from physiological relevant models suggest that acid gradient stimulates tumor proliferation, and can also support its energy needs. However, direct biochemical evidence linking extracellular acid gradient to generation of intracellular ATP are missing. In this work, we demonstrate that cancer cells can synthesize significant amounts of phosphate-bonds from phosphate in response to acid gradient across plasma membrane. The noted phenomenon exists in absence of glycolysis and mitochondrial ATP synthesis, and is unique to cancer. Biochemical assays using viable cancer cells, and purified plasma membrane vesicles utilizing radioactive phosphate, confirmed phosphate-bond synthesis from free phosphate (Pi), and also localization of this activity to the plasma membrane. In addition to ATP, predominant formation of pyrophosphate (PPi) from Pi was also observed when plasma membrane vesicles from cancer cells were subjected to trans-membrane acid gradient. Cancer cytosols were found capable of converting PPi to ATP, and also stimulate ATP synthesis from Pi from the vesicles. Acid gradient created through glucose metabolism by cancer cells, as observed in tumors, also proved critical for phosphate-bond synthesis. In brief, these observations reveal a role of acidic tumor milieu as a potential energy source and may offer a novel therapeutic target.  相似文献   

15.
The uptake and degradation of atrazine (ATR) by rice seedlings (Oryza sativa L.) was investigated with and without arsenate and phosphate nutrient in the cultured solution over a period of 48 h. The hydrogen peroxide (H2O2) contents in plants under different treatments were measured to evaluate the oxidative stress of the plant cell and its influence on the plant uptake and degradation of ATR. Results indicated that the ATR levels and main degradation products, deethylatrazine (DEA) and deisopropylatrazine (DIA), in plants varied significantly in different treatments. Added arsenate in solution increased the level of DEA and the ratios of DEA to the total (ATR, DEA, and DIA) in roots, while it either increased or decreased the H2O2 content in roots. Added arsenate increased the ratios of degradation products to the total in shoots, which corresponded to the 110%–285% increase of the H2O2 content. In phosphate-deficient systems, the H2O2 contents in shoots increased significantly, especially when exposed to a low level of ATR while the ratios of DIA and DEA to the total in shoots increased. The oxidative stress in rice seedlings induced by arsenic coexisting with ATR and by phosphate deficiency affected the plant uptake and degradation of ATR.  相似文献   

16.
In the present study we have studied how [Ca2+] i is influenced by H2O2 in collagenase-dispersed mouse pancreatic acinar cells and the mechanism underlying this effect by using a digital microspectrofluorimetric system. In the presence of normal extracellular calcium concentration, perfusion of pancreatic acinar cells with 1 mm H2O2 caused a slow sustained [Ca2+] i increase, reaching a stable plateau after 10–15 min of perfusion. This increase induced by H2O2 was also observed in a nominally calcium-free medium, reflecting the release of calcium from intracellular store(s). Application of 1 mm H2O2 to acinar cells, in which nonmitochondrial agonist-releasable calcium pools had been previously depleted by a maximal concentration of CCK-8 (1 nm) or thapsigargin (0.5 μm) was still able to induce calcium release. Similar results were observed when thapsigargin was substituted for the mitochondrial uncoupler FCCP (0.5 μm). By contrast, simultaneous addition of thapsigargin and FCCP clearly abolished the H2O2-induced calcium increase. Interestingly, co-incubation of intact pancreatic acinar cells with CCK-8 plus thapsigargin and FCCP in the presence of H2O2 did not significantly affect the transient calcium spike induced by the depletion of nonmitochondrial and mitochondrial agonist-releasable calcium pools, but was followed by a sustained increase of [Ca2+] i . In addition, H2O2 was able to block calcium efflux evoked by CCK and thapsigargin. Finally, the transient increase in [Ca2+] i induced by H2O2 was abolished by an addition of 2 mm dithiothreitol (DTT), a sulfhydryl reducing agent. Our results show that H2O2 releases calcium from CCK-8- and thapsigargin-sensitive intracellular stores and from mitochondria. The action of H2O2 is likely mediated by oxidation of sulfhydryl groups of calcium-ATPases. Received: 15 May 2000/Revised: 4 October 2000  相似文献   

17.
The present study was designed to investigate ex vivo the protective mechanisms of heat-shock response against H2O2-induced oxidative stress in peripheral blood mononuclear cells (PBMCs) of rats. Twenty-four hours later, heat-shock treatment was executed in vivo; rat PBMCs were collected and treated with H2O2. The accumulation of reactive oxygen species and the mitochondrial membrane potential were evaluated by intracellular fluorescent dHE and JC-1 dye staining, respectively, and expression of HSP72 and cytochrome c was detected by Western blot analysis. Cellular apoptosis was assayed by TUNEL staining and double staining of Annexin V and PI. The results showed that H2O2-induced oxidative stress leads to intracellular superoxide accumulation and collapse of the mitochondrial membrane potential in rat PBMCs. Moreover, cellular apoptosis was detected after H2O2 treatment, and the release of mitochondrial cytochrome c from mitochondria to cytosol was significantly enhanced. Heat-shock pretreatment decreases the accumulation of intracellular superoxide in PBMCs during H2O2-induced oxidative stress. Moreover, heat-shock treatment prevents the collapse of the mitochondrial membrane potential and cytochrome c release from mitochondria during H2O2-induced oxidative stress. In conclusion, mitochondria are critical organelles of the protective effects of heat-shock treatment. Cellular apoptosis during H2O2-induced oxidative stress is decreased by heat-shock treatment through a decrease in superoxide induction and preservation of the mitochondrial membrane potential.  相似文献   

18.
Succinate-driven reverse electron transport (RET) is one of the main sources of mitochondrial reactive oxygen species (mtROS) in ischemia-reperfusion injury. RET is dependent on mitochondrial membrane potential (Δψm) and transmembrane pH difference (ΔpH), components of the proton motive force (pmf); a decrease in Δψm and/or ΔpH inhibits RET. In this study we aimed to determine which component of the pmf displays the more dominant effect on RET-provoked ROS generation in isolated guinea pig brain and heart mitochondria respiring on succinate or α-glycerophosphate (α-GP). Δψm was detected via safranin fluorescence and a TPP+ electrode, the rate of H2O2 formation was measured by Amplex UltraRed, the intramitochondrial pH (pHin) was assessed via BCECF fluorescence. Ionophores were used to dissect the effects of the two components of pmf. The K+/H+ exchanger, nigericin lowered pHin and ΔpH, followed by a compensatory increase in Δψm that led to an augmented H2O2 production. Valinomycin, a K+ ionophore, at low [K+] increased ΔpH and pHin, decreased Δψm, which resulted in a decline in H2O2 formation. It was concluded that Δψm is dominant over ?pH in modulating the succinate- and α-GP-evoked RET. The elevation of extramitochondrial pH was accompanied by an enhanced H2O2 release and a decreased ?pH. This phenomenon reveals that from the pH component not ?pH, but rather absolute value of pH has higher impact on the rate of mtROS formation. Minor decrease of Δψm might be applied as a therapeutic strategy to attenuate RET-driven ROS generation in ischemia-reperfusion injury.  相似文献   

19.
Complex I is the main O2 producer of the mitochondrial respiratory chain. O2 release is low with NAD-linked substrates and increases strongly during succinate oxidation, which increases the QH2/Q ratio and is rotenone sensitive. We show that the succinate dependent O2 production (measured as H2O2 release) is inhibited by propargylamine containing compounds (clorgyline, CGP 3466B, rasagiline and TVP-1012). The inhibition does not affect membrane potential and is unaffected by ΔpH modifications. Mitochondrial respiration is similarly unaffected. The propargylamines inhibition of O2 /H2O2 production is monitored also in the presence of the Parkinson's disease toxin dopaminochrome which stimulates O2 release. Propargylamine-containing compounds are the first pharmacological inhibitors described for O2 release at Complex I.  相似文献   

20.
The effect of Ca2+ applied in high concentrations (50 and 300 µM) was addressed on the generation of reactive oxygen species in isolated mitochondria from guinea-pig brain. The experiments were performed in the presence of ADP, a very effective inhibitor of mitochondrial permeability transition. Moderate increase in H2O2 release from mitochondria was induced by Ca2+ applied in 50 µM, but not in 300 µM concentration as measured with Amplex red fluorescent assay starting with a delay of 100-150 sec after exposure to Ca2+. Parallel measurements of membrane potential (ΔΨm) by safranine fluorescence showed a transient depolarization by Ca2+ followed by the recovery of ΔΨm to a value, which was more negative than that observed before addition of Ca2+ indicating a relative hyperpolarization. NAD(P)H fluorescence was also increased by Ca2+ given in 50 µM concentration. In mitochondria having high ΔΨm in the presence of oligomycin or ATP, the basal rate of release of H2O2 was significantly higher than that observed in a medium containing ADP and Ca2+ no longer increased but rather decreased the rate of H2O2 release. With 300 µM Ca2+ only a loss but no tendency of a recovery of ΔΨm was detected and H2O2 release was unchanged. It is suggested that in the presence of nucleotides the effect of Ca2+ on mitochondrial ROS release is related to changes in ΔΨm; in depolarized mitochondria, in the presence of ADP, moderate increase in H2O2 release is induced by calcium, but only in ≤ 100 µM concentration, when after a transient Ca2+-induced depolarization mitochondria became more polarized. In highly polarized mitochondria, in the presence of ATP or oligomycin, where no hyperpolarization follows the Ca2+-induced depolarization, Ca2+ fails to stimulate mitochondrial ROS generation. These effects of calcium (≤ 300 µM) are unrelated to mitochondrial permeability transition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号