首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
The pineal gland of the Mongolian gerbil consists of a superficial gland, stalk and deep pineal. The deep pineal differentiates postnatally. Histochemical studies of the superficial pineal gland indicate that it may be involved in the secretion of protein. Presumptive secretory material visualized by aldehyde fuchsin (AF) and chrome hematoxylin was observed along the course of blood vessels and among the pinealocytes. The distribution and texture of the AF-positive material was distinctive. It did not correspond to the pattern and texture of material stained with PAS, Sudan Black or acid orcein. Staining with AF was markedly reduced after incubation with trypsin, indicating that the AF-positive material is at least partially protein. The amount of stainable material increased with age. The AF-positive material was observed in what appeared to be interstitial or glial cells and processes, and in the processes of perivascular cells. Cells and fibrous processes with high non-specific esterase activity ("high-esterase cells") were observed among the pinealocytes and along the course of blood vessels. The distribution of the "high-esterase cells" and the morphology and texture of their esterase-containing processes were remarkably similar to the morphology and distribution of the material that stained with AF. It may be that the "high-esterase cells" contain AF-positive material. The "high-esterase cells" hydrolyzed both alpha-naphthyl acetate and alpha-naphthyl butyrate. The pinealocytes hydrolyzed only alpha-naphthyl acetate. The "high-esterase cells" appear to form a distinct class of cells within the superficial pineal gland. They are tentatively identified as a type of glial cell.  相似文献   

2.
Several neuropeptides are present in the mammalian pineal gland. Most of these peptides, eg neuropeptide Y, vasoactive intestinal peptide, and peptide histidine isoleucine, are located in nerve fibres innervating the gland. In some mammalian species, neuropeptides are also found in cells scattered in the pineal parenchyma. In the rat, bipolar cells immunoreactive for somatostatin are present, just as cells containing mRNA encoding somatostatin can be detected in the gland by in situ hybridisation. In the pineal gland of the European hamster, many cells are immunoreactive for enkephalin. Ultrastructural cytochemical analysis of these cells reveals a pinealocyte morphology. Processes from the opioidergic pinealocytes terminate in the parenchyma between the non-immunoreactive pinealocytes. Some of the processes contain small clear and large dense core vesicles and end in club shaped swellings which make synapse-like contacts with other pinealocytes. The ultrastructural morphology suggests that the opioidergic cells exert a paracrine regulation on other pinealocytes.  相似文献   

3.
The deep pineal gland of golden hamsters was morphometrically analyzed and quantitatively compared with the superficial pineal under a 14:10 lighting regime and following blinding. The deep pineal comprised 6-10% of the total pineal parenchymal tissue. Pinealocytes of the deep gland were smaller than the cells of the superficial pineal and showed a greater percent volume of Golgi bodies, rough endoplasmic reticulum, and dense-cored vesicles. Twenty-four-hour rhythms in nucleoli and Golgi bodies were found in deep pinealocytes. These rhythms were out of phase with comparable rhythms in the superficial pineal gland, suggesting that distinct subpopulations of pinealocytes are present within the respective parts. Blinding resulted in decreased nuclear and nucleolar volume, while the amount of smooth endoplasmic reticulum, Golgi bodies, dense bodies, and dense-cored vesicles increased significantly. Marginal increases were seen in mitochondria and lipid droplets. The greater abundance of those organelles involved in synthesis and secretion suggests enhanced cellular activity after blinding. Many of the morphological responses are similar to alterations in the pinealocytes of the superficial pineal following optic enucleation.  相似文献   

4.
The present study demonstrates the occurrence of PACAP-immunoreactive (PACAP-IR) nerve fibers in different compartments of the pig pineal gland, including glandular capsule (where they form a very dense network) and subependymal tissue close to the pineal recess (moderate to dense meshwork of varicose fibers). Furthermore, several varicose fibers penetrate from the capsule into the connective tissue septa and then into the parenchyma, where they form unequally distributed, fine network and, in some cases, basket-like structures around pinealocytes. Some of the PACAP-IR nerve fibers, observed both in the habenular and posterior epithalamic areas, extend to the pineal gland. PACAP-IR cells could be demonstrated neither in the pineal gland, nor in epithalamic areas.  相似文献   

5.
Summary Synaptic ribbons, functionally enigmatic structures of mammalian pinealocytes, were studied during the postnatal development of the pineal gland in the golden hamster (Mesocricetus auratus). On day 4 post partum, synaptic ribbons appear in cells that have already started to differentiate into pinealocytes. Between days 4 and 9, an increase in the number of synaptic ribbons occurs, concomitant with the continuing differentiation of the pineal tissue. Between days 9 and 16, when differentiation of this tissue is almost completed, the number of synaptic ribbons decreases and approaches that characteristic of the adult pineal gland. During development, the synaptic ribbons increase in length, and dense core vesicles are frequently found in the vicinity of these structures. It is assumed that a functional relationship exists between dense core vesicles and the synaptic ribbons, which are considered to be engaged in a certain form of secretory activity of the mammalian pineal gland.Supported by the Deutsche Forschungsgemeinschaft  相似文献   

6.
蒙古黄鼠松果腺主要由低电子密度的松果腺细胞和少量的胶质细胞、含色素细胞、神经突起及血管等组成。松果腺细胞内含有大量的线粒体、溶酶体、微丝、高尔基器、游离核糖体及中等量的光面和粗面内质网。纤毛、中心粒、突触带和致密芯小泡很少。松果腺细胞之间及胶质细胞之间存在电突触。最新被观察到的是大约有5%松果腺细胞内的线粒体产生“融合”现象,形成类似电突触的结构。神经突起可形成轴—轴突触,轴—树突触,并与松果腺细胞形成突触。  相似文献   

7.
蒙古黄鼠(Citellus dauricus)松果腺的超微结构观察   总被引:3,自引:0,他引:3  
The distal part of pineal gland of the Mongolian ground squirrel was ultrastructurally studied. The gland was composed of low electron-dense parenchymal cells, among which glial cells, pigment cells, blood vessels and neural elements were occasionally interspersed. The pinealocytes contained numerous mitochondria, lysosomes, microtubules, microfilaments, Golgi apparatus and free ribosomes, as well as less prominent profiles of rough- and smooth-surfaced endoplasmic reticula and some cilia, centrioles, synaptic ribbons and few subsurface cisterns. Some pinealocytes were vacuolated. The content of the vacuoles released into the extracellular space by exocytosis could be observed. The gap junctions between pinealocytes were also observed. Of particular interest was that many mitochondria "fused together" and formed gap junction-like structure in about five percent pinealocytes. The pigment cell has a amorphous nucleus which contains many aggregated chromatin, its cell membrane has a few microvilli projecting into a central lumen, these features may indicated that this kind of cell differs either from the pinealocyte or astrocyte. There are axo-axonic synapses or axo-dendritic synapses between neuron processes or between neuron processes and pinealocytes.  相似文献   

8.
K S Lu  H S Lin 《Histochemistry》1979,61(2):177-187
The pineal gland of adult golden hamsters (Mesocricetus auratus) was studied by various cytochemical methods at the electron microscopic level: (1) the modified chromaffin reaction specific for 5-hydroxytryptamine (5-HT), (2) argentaffin reaction, (3) zinc-iodide-osmium (ZIO) mixture reaction and (4) acid phosphatase reaction. In the pinealocytes, the dense-cored vesicles (80-160 nm in diameter) show both chromaffinity and argentaffinity, while the population of dense bodies (150-400 nm in diameter) is reactive to ammoniacal silver solution and ZIO mixture but not to the modified chromaffin reaction. After incubation for demonstration of acid phosphatase activity, reaction products are localized in some, but not all, of the dense bodies, in some of the small vesicles in the Golgi region and in one or two inner Golgi saccules. In nerve fibers in the pineal gland, small granulated vesicles are also reactive to the modified chromaffin reaction and ZIO mixture. Based upon these cytochemical results the following conclusions have been reached: (1) dense cored vesicles in the pinealocytes and small granulated vesicles in the nerve fibers of the hamster pineal gland contain 5-HT, and (2) the population of dense bodies in the pinealocytes is heterogeneous, some are lysosomes and the other are possibly the granules responsible for the secretion of pineal peptides.  相似文献   

9.
Immunohistochemistry for neuron-specific enolase (NSE) revealed that NSE is localized in both a limited number of pinealocytes and intrinsic afferent neurons in the pineal organ of the domestic fowl. Furthermore, a computer-assisted three-dimensional imaging technique allowed to clarify the reverse distributional pattern of both elements: NSE-positive pinealocytes displayed a dense distribution especially in the vesicular portion of the gland, whereas NSE-immunoreactive nerve cells were mainly found in the pineal stalk. The number of NSE-positive intrinsic neurons in the pineal organ of chickens decreased rapidly after hatching, with a concentration of these elements in the basal portion (stalk) of the pineal organ. On the other hand, immunoreactive pinealocytes increased remarkably in the end-vesicle of the organ with age, followed by a gradual expansion toward the proximal portion. Thus, the spectacular increase in NSE-positive pinealocytes and the progressive reduction of reactive neurons occurred in parallel during the course of post-hatching development. NSE-immunoreactive pinealocytes displayed morphological characteristics of bipolar elements, endowed with an apical protrusion into the pineal lumen and a short basal process at younger stages, whereas multipolar types of NSE-positive pinealocytes were predominantly found in the adult domestic fowl. These results indicate that in the pineal organ of the domestic fowl (1) the ontogenetic expansion of NSE-immunoreactive pinealocytes is paralleled by a regressive afferent innervation, (2) the NSE-positive pinealocytes transform from a bipolar (columnar) type to a multipolar type during post-hatching development, and (3) these ontogenetic changes in the NSE-immunoreactivity and morphology of pinealocytes may reflect the development of a neurosecretory-like capacity of the organ.  相似文献   

10.
Summary The pineal gland of adult golden hamsters (Mesocricetus auratus) was studied by various cytochemical methods at the electron microscopic level: (1) the modified chromaffin reaction specific for 5-hydroxytryptamine (5-HT), (2) argentaffin reaction, (3) zinc-iodide-osmium (ZIO) mixture reaction and (4) acid phosphatase reaction. In the pinealocytes, the dense-cored vesicles (80–160 nm in diameter) show both chromaffinity and argentaffinity, while the population of dense bodies (150–400 nm in diameter) is reactive to ammoniacal silver solution and ZIO mixture but not to the modified chromaffin reaction. After incubation for demonstration of acid phosphatase activity, reaction products are localized in some, but not all, of the dense bodies, in some of the small vesicles in the Golgi region and in one or two inner Golgi saccules. In nerve fibers in the pineal gland, small granulated vesicles are also reactive to the modified chromaffin reaction and ZIO mixture. Based upon these cytochemical results the following conclusions have been reached: (1) dense cored vesicles in the pinealocytes and small granulated vesicles in the nerve fibers of the hamster pineal gland contain 5-HT, and (2) the population of dense bodies in the pinealocytes is heterogenous, some are lysosomes and the others are possibly the granules responsible for the secretion of pineal peptides.Supported in part by a grant from the National Science Council, Republic of ChinaDedicated to Professor Doctor Huoyao Wei on the occasion of his 70th birthday  相似文献   

11.
Summary The mammalian pineal gland contains pinealocytes, interstitial glial cells, perivascular macrophages, neurons and neuron-like cells. The neuronal identity of neurons and neuron-like cells was an enigma. α-Internexin and peripherin are specific neuronal intermediate filament proteins and are expressed differentially in the CNS and PNS. We investigated the development of immunoreactivity and expression patterns of mRNAs for α-internexin and peripherin in the mouse pineal gland to determine the neuronal identity of these cells. Both α-internexin- and peripherin-immunoreactive cells were readily visualized only after birth. Both proteins were at the highest level on the postnatal day 7 (P7), rapidly declined at P14, and obtained their adult level at P21. Both protein and mRNA of α-internexin are expressed in some cells and nerve processes, but not all, of adult mouse pineal gland. Less number of peripherin immunoreactive or RNA-expressing cells and nerve processes were identified. Accumulations of α-internexin and peripherin proteins were also found in the cells from the aged pineal gland (P360). We concluded that some cells in the developing mouse pineal gland may differentiated into neurons and neuron-like cells expressing both α-internexin and/or peripherin only postnatally, and these cells possess dual properties of CNS and PNS neurons in nature. We suggested that they may act as interneurons between the pinealocyte and the distal neurons innervating the pinealocytes, or form a local circuitry with pinealocytes to play a role of paracrine regulatory function on the pinealocytes.  相似文献   

12.
Summary Mammalian pinealocytes have been shown to contain synaptic-like microvesicles with putative secretory functions. As a first step to elucidate the possibility that pinealocyte microvesicles store messenger molecules, such as neuroactive amino acids, we have studied the distributional pattern of glutamate immunoreactivity in the pineal gland of the Mongolian gerbil (Meriones unguiculatus) at both light- and electron-microscopic levels. In semithin sections of plastic-embedded pineals, strong glutamate immunoreactivity could be detected in pinealocytes throughout the pineal gland. The density of glutamate immunolabeling in pinealocytes varied among individual cells and was mostly paralled by the density of immunostaining for synaptophysin, a major integral membrane protein of synaptic and synaptic-like vesicles. Postembedding immunogold staining of ultrathin pineal sections revealed that gold particles were enriched over pinealocytes. In particular, a high degree of immunoreactivity was associated with accumulations of microvesicles that filled dilated process terminals of pinealocytes. A positive correlation between the number of gold particles and the packing density of microvesicles was found in three out of four process terminals analyzed. However, the level of glutamate immunoreactivity in pinealocyte process endings was lower than in presumed glutamatergic nerve terminals of the cerebellum and posterior pituitary. The present results provide some evidence for a microvesicular compartmentation of glutamate in pinealocytes. Our findings thus lend support to the hypothesis that glutamate serves as an intrapineal signal molecule of physiological relevance to the neuroendocrine functions of the gland.  相似文献   

13.
Induction of c-fos protein (FOS) after the onset of darkness was studied immunocytochemically in the rat and hamster pineal gland. The animals were kept on a 12:12 h light-dark cycle. Before the dark period no FOS staining was seen in either rat or hamster pineal cells. Five hours after the onset of darkness 342 +/- 18 pinealocytes/0.2 mm2 (mean +/- SD) displayed FOS-like immunoreactivity in the hamster pineal gland; in the rat pineal gland only 5 +/- 2 pinealocytes/0.2 mm2 showed a faint staining. Two hours later the density of FOS positive cells was decreased to 60 +/- 11/0.2 mm2 in the hamster but increased to 519 +/- 103/0.2 mm2 in the rat pineal gland. Three hours before the beginning of the light period no FOS positive cells were detected in either animal. Both the rat and hamster pineal gland showed a transient and temporally defined expression of c-fos protein in the middle of the dark period. This may be related to a more active functional state of pinealocytes, which is reflected in a peak of melatonin synthesis during the darkness.  相似文献   

14.
By use of antibodies raised against leu-enkephalin and met-enkephalin immunoreactive, opioidergic bi- and multipolar cells were demonstrated in the pineal gland of the European hamster. Ultrastructural analysis of these opioidergic cells revealed them to be pinealocytes. Processes emerged from the cell bodies and terminated in club-shaped swellings containing many small clear and some larger granular vesicles. Some of the terminals made synapse-like contacts with non-immunoreactive pinealocytes. The presence of the opioidergic pinealocytes strongly indicates that the pineal gland of the European hamster, in addition to its pinealopetal nervous regulation, is regulated by intrapineal peptidergic pinealocytes via a synaptic mechanism. A possible paracrine role of the opioidergic cells must also be considered.  相似文献   

15.
Summary The innervation of the pineal gland, the cell junctions in this organ and junctions between ependymal cells in the pineal recess were investigated in 27 human fetuses (crown-rump length 30–190 mm).Free nerve boutons containing clear and a few dense core vesicles were present in the pineal parenchyma and in the perivascular spaces. The boutons did not make synaptic contacts with the pinealocytes. No evidence for the presence of noradrenaline in the vesicles of nerve boutons was found.Gap junctions, intermediate-like junctions and desmosomes were frequently seen between the pinealocytes. Ruthenium red was used in three fetuses as an extracellular marker.The continuous endothelial cells surrounding the capillary lumen were connected by tight junctions. This indicates the presence of a blood-brain barrier.Tight junctions were present between the ependymal cells in the pineal recess. These junctions constitute an extracellular barrier between the pineal and the cerebrospinal fluid. Acknowledgements: The author wishes to thank Inger Ægidius and Jb Machen for their technical, Ruth Fatum for her linguistic and Karsten Bundgaard for his photographical assistance  相似文献   

16.
Several types of unit activity were detected in the rat pineal gland during a 48-hour water and food deprivation. The unit activity rate in stress was higher by 4-6 times than in intact rats (due to an increase in the "fast" cells number and switching of some cells from regular to a burst type of activity). Electrical stimulation of olfactory epithelium decreased the unit activity rate in the most active pinealocytes. The daytime increase in the pineal electrical activity reflects an intensification of secretion of the protein/peptide substances and, probably, serotonin but not the melatonin. Blocking exocytosis with colchicin revealed a close relation of the pinealocytes secretion with their electrical activity. Existence of central (olfactory in particular) mechanisms limiting the pineal activation, was shown.  相似文献   

17.
Light and electron microscopic studies were conducted on 10 humans who died of the different cardiac diseases; and 20 guinea pigs pineal glands. Pinealocytes or secretory cells of the pineal gland have morphological likeness with the APUD system cells. They have a well-developed endoplasmic reticulum, Golgi complex, mitochondrial component and in cytoplasm dense-core vesicles are discovered. However the pinealocytes have a neuron-like structure and they are not separate cells as apudocytes, but they are a principal component of the pineal parenchyma in which pinealocytes are in tight interactions with glia, blood vessels and nerve terminations. Analysis of morphological and functional similarity and difference between pinealocytes and apudocytes allows to consider pineal gland as an APUD organ. A circadian rhythmicity of some secretory vesicles in pinealocytes of the guinea pig has been established.  相似文献   

18.
The pineal functions are modulated by some neuropeptides including PHI and VIP. The presence of PHI-immunoreactive and VIP-immunoreactive nerve fibers in the pineal gland has been shown in several mammalian species. Both peptides influence the pineal serotonin N-acetyltransferase activity and melatonin synthesis. The aim of the present study was to examine the localization of PHI- and VIP-immunoreactive nerve fibers in the pig pineal gland. Four three-month old female pigs housed in natural light conditions, with free access to food and water, were used in the study. The pineals were fixed by perfusion with 4% paraformaldehyde in 0.1 M phosphate buffer. An immunohistochemical ABC streptavidin-biotin-complex method was used for the demonstration of PHI and VIP. PHI- and VIP-immunopositive nerve fibers were found in the pineal gland as well as in the habenular and posterior commissural areas. In the pineal gland, the density of PHI-immunoreactive nerve fibers was considerably higher than that of the fibers containing VIP. PHI- and VIP-immunopositive nerve fibers were more abundant in the cortical than in the medullary part of the gland. The nerve fibers formed bundles in the pineal capsule, from where they penetrated to the connective tissue septa and formed a dense meshwork surrounding blood vessels. In the parenchyma, PHI- and VIP-immunoreactive nerve terminals created baskets around clusters of pinealocytes. No PHI- or VIP-immunopositive cells were found in the pig pineal gland.  相似文献   

19.
Adult mammalian pinealocytes contain several synaptic membrane proteins that are probably involved in the regulation of targeting and exocytosis of synaptic-like microvesicles (SLMVs). Immunohistochemical techniques have now demonstrated the spatiotemporal expression pattern of some of these proteins during rat pineal ontogenesis. Various synaptic vesicle trafficking proteins are detectable in proliferating epithelial cells of the pineal anlage even at embryonic day 17.5 (E 17.5), with the exception of syntaxin I (weakly expressed from E 19.5) and dynamin I (whose levels increase markedly during the first postnatal week). Numerous cells exhibiting strong immunoreactivity for synaptobrevin II, SNAP-25, synaptophysin, and munc-18-1 are distributed throughout the increasingly compact gland at E 19.5 and E 20.5; however, their number declines toward the proximal deep part of the organ. Groups of postmitotic cells situated at the surface of the developing gland exhibit marked immunoreactivity for the aforementioned proteins and lie close to the laminin-immunoreactive outer limiting basement membrane or to its remnants in regions of basement membrane dissolution. We also show that synthesis of vimentin and S-antigen seems to begin earlier during pineal development than previously recognized. Thus, synaptic vesicle trafficking proteins are the earliest molecular markers of pinealocyte differentiation known to date, being expressed well before the onset of rhythmic hormone secretion in the pineal gland, where they may play a role in morphogenetic events. Components of the extracellular matrix such as laminin may be critically involved in the upregulation of synaptic membrane protein expression. The dynamin immunostaining pattern indicates that SLMVs of pinealocytes begin to undergo regulated cycles of exo/endocytosis during postnatal week 1.  相似文献   

20.
The ultrastructure of the pineal gland of the wild-captured eastern chipmunk (Tamias striatus) was examined. A homogenous population of pinealocytes was the characteristic cellular element of the chipmunk pineal gland. Often, pinealocytes showed a folliclelike arrangement. Mitochondria, Golgi apparatus, granular endoplasmic reticulum, lysosomes, centrioles, dense-core vesicles, clear vesicles, glycogen particles, and microtubules were consistent components of the pinealocyte cytoplasm. The extraordinary ultrastructural feature of the chipmunk pinealocyte was the presence of extremely large numbers of “synaptic” ribbons. The number of “synaptic” ribbons in this species exceeded by a factor of five to 30 times that found in any species previously reported. In addition to pinealocytes, the pineal parenchyma contained glial cells (oligodendrocytes and fibrous astrocytes). Capillaries of the pineal gland of the chipmunk consisted of a fenestrated endothelium. Adrenergic nerve terminals were relatively sparse.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号