首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.

Background

The members of cupin superfamily exhibit large variations in their sequences, functions, organization of domains, quaternary associations and the nature of bound metal ion, despite having a conserved β-barrel structural scaffold. Here, an attempt has been made to understand structure-function relationships among the members of this diverse superfamily and identify the principles governing functional diversity. The cupin superfamily also contains proteins for which the structures are available through world-wide structural genomics initiatives but characterized as “hypothetical”. We have explored the feasibility of obtaining clues to functions of such proteins by means of comparative analysis with cupins of known structure and function.

Methodology/Principal Findings

A 3-D structure-based phylogenetic approach was undertaken. Interestingly, a dendrogram generated solely on the basis of structural dissimilarity measure at the level of domain folds was found to cluster functionally similar members. This clustering also reflects an independent evolution of the two domains in bicupins. Close examination of structural superposition of members across various functional clusters reveals structural variations in regions that not only form the active site pocket but are also involved in interaction with another domain in the same polypeptide or in the oligomer.

Conclusions/Significance

Structure-based phylogeny of cupins can influence identification of functions of proteins of yet unknown function with cupin fold. This approach can be extended to other proteins with a common fold that show high evolutionary divergence. This approach is expected to have an influence on the function annotation in structural genomics initiatives.  相似文献   

2.
Why do proteins evolve at different rates? Advances in systems biology and genomics have facilitated a move from studying individual proteins to characterizing global cellular factors. Systematic surveys indicate that protein evolution is not determined exclusively by selection on protein structure and function, but is also affected by the genomic position of the encoding genes, their expression patterns, their position in biological networks and possibly their robustness to mistranslation. Recent work has allowed insights into the relative importance of these factors. We discuss the status of a much-needed coherent view that integrates studies on protein evolution with biochemistry and functional and structural genomics.  相似文献   

3.
Genetic hypertension is associated with alterations in lipid metabolism, membrane lipid composition and membrane-protein function. 2-Hydroxyoleic acid (2OHOA) is a new antihypertensive molecule that regulates the structure of model membranes and their interaction with certain peripheral signalling proteins in vitro. While the effect of 2OHOA on elevated blood pressure is thought to arise through its influence on signalling proteins, its effects on membrane lipid composition remain to be assessed. 2OHOA administration altered the lipid membrane composition of hypertensive and normotensive rat plasma membranes, and increased the fluidity of reconstituted liver membranes from hypertensive rats. In spontaneously hypertensive rats (SHR), treatment with 2OHOA increased the cholesterol and sphingomyelin content while decreasing that of phosphatidylserine-phosphatidylinositol lipids. In addition, monounsaturated fatty acid levels increased as well as the propensity of reconstituted membranes to form HII-phases. These data suggest that 2OHOA regulates lipid metabolism that is altered in hypertensive animals, and that it affects the structural properties of liver plasma membranes in SHR. These changes in the structural properties of the plasma membrane may modulate the activity of signalling proteins that associate with the cell membrane such as the Gαq/11 protein and hence, signal transduction.  相似文献   

4.
 Cytochrome c 6 and plastocyanin are soluble metalloproteins that act as mobile carriers transferring electrons between the two membrane-embedded photosynthetic complexes cytochrome b 6f and photosystem I (PSI). First, an account of recent data on structural and functional features of these two membrane complexes is presented. Afterwards, attention is focused on the mobile heme and copper proteins – and, in particular, on the structural factors that allow recognition and confer molecular specificity and control the rates of electron transfer from and to the membrane complexes. The interesting question of why plastocyanin has been chosen over the ancient heme protein is discussed to place emphasis on the evolutionary aspects. In fact, cytochrome c 6 and plastocyanin are presented herein as an excellent case study of biological evolution, which is not only convergent (two different structures but the same physiological function), but also parallel (two proteins adapting themselves to vary accordingly to each other within the same organism). Received: 4 July 1996 / Accepted: 16 September 1996  相似文献   

5.
A new split β‐lactamase assay promises experimental testing of the interplay of protein stability and function. Proteins are sufficiently stable to act effectively within cells. However, mutations generally destabilize structure, with effects on free energy that are comparable to the free energy of folding. Assays of protein functionality and stability in vivo enable a quick study of factors that influence these properties in response to targeted mutations. These assays can help molecular engineering but can also be used to target important questions, including why most proteins are marginally stable, how mutations alter structural makeup, and how thermodynamics, function, and environment shape molecular change. Processes of self‐organization and natural selection are determinants of stability and function. Non‐equilibrium thermodynamics provides crucial concepts, e.g., cells as emergent energy‐dissipating entities that do work and build their own parts, and a framework to study the sculpting role of evolution at different scales.  相似文献   

6.
What factors determine a protein's rate of evolution are actively debated. Especially unclear is the relative role of intrinsic factors of present-day proteins versus historical factors such as protein age. Here we study the interplay of structural properties and evolutionary age, as determinants of protein evolutionary rate. We use a large set of one-to-one orthologs between human and mouse proteins, with mapped PDB structures. We report that previously observed structural correlations also hold within each age group - including relationships between solvent accessibility, designabililty, and evolutionary rates. However, age also plays a crucial role: age modulates the relationship between solvent accessibility and rate. Additionally, younger proteins, despite being less designable, tend to evolve faster than older proteins. We show that previously reported relationships between age and rate cannot be explained by structural biases among age groups. Finally, we introduce a knowledge-based potential function to study the stability of proteins through large-scale computation. We find that older proteins are more stable for their native structure, and more robust to mutations, than younger ones. Our results underscore that several determinants, both intrinsic and historical, can interact to determine rates of protein evolution.  相似文献   

7.
8.
Here, we provide an analysis of molecular evolution of five of the most populated protein folds: immunoglobulin fold, oligonucleotide-binding fold, Rossman fold, alpha/beta plait, and TIM barrels. In order to distinguish between "historic", functional and structural reasons for amino acid conservations, we consider proteins that acquire the same fold and have no evident sequence homology. For each fold we identify positions that are conserved within each individual family and coincide when non-homologous proteins are structurally superimposed. As a baseline for statistical assessment we use the conservatism expected based on the solvent accessibility. The analysis is based on a new concept of "conservatism-of-conservatism". This approach allows us to identify the structural features that are stabilized in all proteins having a given fold, despite the fact that actual interactions that provide such stabilization may vary from protein to protein. Comparison with experimental data on thermodynamics, folding kinetics and function of the proteins reveals that such universally conserved clusters correspond to either: (i) super-sites (common location of active site in proteins having common tertiary structures but not function) or (ii) folding nuclei whose stability is an important determinant of folding rate, or both (in the case of Rossman fold). The analysis also helps to clarify the relation between folding and function that is apparent for some folds.  相似文献   

9.
Translation initiation: structures, mechanisms and evolution   总被引:1,自引:0,他引:1  
Translation, the process of mRNA-encoded protein synthesis, requires a complex apparatus, composed of the ribosome, tRNAs and additional protein factors, including aminoacyl tRNA synthetases. The ribosome provides the platform for proper assembly of mRNA, tRNAs and protein factors and carries the peptidyl-transferase activity. It consists of small and large subunits. The ribosomes are ribonucleoprotein particles with a ribosomal RNA core, to which multiple ribosomal proteins are bound. The sequence and structure of ribosomal RNAs, tRNAs, some of the ribosomal proteins and some of the additional protein factors are conserved in all kingdoms, underlying the common origin of the translation apparatus. Translation can be subdivided into several steps: initiation, elongation, termination and recycling. Of these, initiation is the most complex and the most divergent among the different kingdoms of life. A great amount of new structural, biochemical and genetic information on translation initiation has been accumulated in recent years, which led to the realization that initiation also shows a great degree of conservation throughout evolution. In this review, we summarize the available structural and functional data on translation initiation in the context of evolution, drawing parallels between eubacteria, archaea, and eukaryotes. We will start with an overview of the ribosome structure and of translation in general, placing emphasis on factors and processes with relevance to initiation. The major steps in initiation and the factors involved will be described, followed by discussion of the structure and function of the individual initiation factors throughout evolution. We will conclude with a summary of the available information on the kinetic and thermodynamic aspects of translation initiation.  相似文献   

10.
Genetic hypertension is associated with alterations in lipid metabolism, membrane lipid composition and membrane-protein function. 2-Hydroxyoleic acid (2OHOA) is a new antihypertensive molecule that regulates the structure of model membranes and their interaction with certain peripheral signalling proteins in vitro. While the effect of 2OHOA on elevated blood pressure is thought to arise through its influence on signalling proteins, its effects on membrane lipid composition remain to be assessed. 2OHOA administration altered the lipid membrane composition of hypertensive and normotensive rat plasma membranes, and increased the fluidity of reconstituted liver membranes from hypertensive rats. In spontaneously hypertensive rats (SHR), treatment with 2OHOA increased the cholesterol and sphingomyelin content while decreasing that of phosphatidylserine-phosphatidylinositol lipids. In addition, monounsaturated fatty acid levels increased as well as the propensity of reconstituted membranes to form HII-phases. These data suggest that 2OHOA regulates lipid metabolism that is altered in hypertensive animals, and that it affects the structural properties of liver plasma membranes in SHR. These changes in the structural properties of the plasma membrane may modulate the activity of signalling proteins that associate with the cell membrane such as the Galphaq/11 protein and hence, signal transduction.  相似文献   

11.
Cystatins, the cysteine protease inhibitors, and the cathelin-like domain (CLD) of the antimicrobial cathelicidins are classified into the same superfamily because of their overall structural similarity. However, their evolutionary relationship has remained obscure owing to low sequence similarity. Structural similarity of two proteins often provides evidence for divergent evolution; however, structural convergence can not be completely ruled out in this case. Conserved gene structure and related function provide new evidence in favor of a common ancestral origin for cystatins and CLDs. On the basis of two observations, the C-terminal location of the cathelicidin antimicrobial domain and evolutionary gain of one 3' intron, I propose a gradual evolution model to explain how the AMD evolved from the ancestral cystatin scaffold.  相似文献   

12.
13.
Many proteins have been identified as targets for S-nitrosylation, including structural and signaling proteins, and ion channels. S-nitrosylation plays an important role in regulating their activity and function. We used human serum albumin (HSA), a major endogenous NO traffic protein, and studied the effect of mediators on S-nitrosylation processes which control NO bioactivity. By using NOC-7, S-nitrosoglutathione, and activated RAW264.7 cells as NO-donors we found that high-affinity binding of endogenous ligands (Cu2+, bilirubin and fatty acid) can affect these processes. It is likely that the same effects take place in many clinical situations characterized by increased fatty acid concentrations in plasma such as type II diabetes and the metabolic syndrome. Thus, endogenous ligands, changing their plasma concentrations, could be a novel type of mediator of S-nitrosylation not only in the case of HSA but also for other target proteins.  相似文献   

14.
The evolution of disordered proteins or regions of proteins differs from that of ordered proteins because of the differences in their sequence composition, intramolecular contacts, and function. Recent assessments of disordered protein evolution at the sequence, structural, and functional levels support this hypothesis. Disordered proteins have a different pattern of accepted point mutations, exhibit higher rates of insertions and deletions, and generally, but not always, evolve more rapidly than ordered proteins. Even with these high rates of sequence evolution, a few examples have shown that disordered proteins maintain their flexibility under physiological conditions, and it is hypothesized that they maintain specific structural ensembles.  相似文献   

15.
Structure comparison is widely used to quantify protein relationships. Although there are several approaches to calculate structural similarity, specifying significance thresholds for similarity metrics is difficult due to the inherent likeness of common secondary structure elements. In this study, metal co‐factor location is used to assess the biological relevance of structural alignments. The distance between the centroids of bound co‐factors adds a chemical and function‐relevant constraint to the structural superimposition of two proteins. This additional dimension can be used to define cut‐off values for discriminating valid and spurious alignments in large alignment sets. The hypothesis underlying our approach is that metal coordination sites constrain structural evolution, thus revealing functional relationships between distantly related proteins. A comparison of three related nitrogenases shows the sequence and fold constraints imposed on the protein structures up to 18 Å away from the centers of their bound metal clusters. Proteins 2014; 82:648–656. © 2013 Wiley Periodicals, Inc.  相似文献   

16.
Mosher DF  Adams JC 《Matrix biology》2012,31(3):155-161
The thrombospondins are a family of secreted, oligomeric glycoproteins that interact with cell surfaces, multiple components of the extracellular matrix, growth factors and proteases. These interactions underlie complex roles in cell interactions and tissue homeostasis in animals. Thrombospondins have been grouped functionally with SPARCs, tenascins and CCN proteins as adhesion-modulating or matricellular components of the extracellular milieu. Although all these multi-domain proteins share various commonalities of domains, the grouping is not based on structural homologies. Instead, the terms emphasise the general observations that these proteins do not form large-scale ECM structures, yet act at cell surfaces and function in coordination with the structural ECM and associated extracellular proteins. The designation of adhesion-modulation thus depends on observed tissue and cell culture ECM distributions and on experimentally identified functional properties. To date, the evolutionary relationships of these proteins have not been critically compared: yet, knowledge of their evolutionary histories is clearly relevant to any consideration of functional similarities. In this article, we survey briefly the structural and functional knowledge of these protein families, consider the evolution of each family, and outline a perspective on their functional roles.  相似文献   

17.
The elongation factors of protein biosynthesis are well preserved through out evolution. They catalyze the elongation phase of protein biosynthesis, where on the ribosome amino acids are added one at a time to a growing peptide according to the genetic information transcribed into mRNA. Elongation factor Tu (EF-Tu) provides the binding of aminoacylated tRNA to the ribosome and protects the aminoester bond against hydrolysis until a correct match between the codon on mRNA and the anticodon on tRNA can be achieved. Elongation factor G (EF-G) supports the translocation of tRNAs and of mRNA on the ribosome so that a new codon can be exposed for decoding. Both these factors are GTP binding proteins, and as such exist in an active form with GTP and an inactive form with GDP bound to the nucleotide binding domain. Elongation factor Ts (EF-Ts) will catalyze the exchange of nucleotide on EF-Tu. This review describes structural work on EF-Tu performed in our laboratory over the last eight years. The structural results provide a rather complete picture of the major structural forms of EF-Tu, including the so called ternary complex of aa-tRNA:EF-Tu:GTP. The structural comparison of this ternary complex with the structure of EF-G:GDP displays an unexpected macromolecular mimicry, where three domains of EF-G mimick the shape of the tRNA in the ternary complex. This observation has initiated much speculation on the evolution of all factors involved in protein synthesis, as well as on the details of the ribosomal function in one part of elongation.  相似文献   

18.
The influence of human plasma proteins (fibrinogen, albumin and fibronectin) on the adherence of Staphylococcus epidermis to teflon, polyethylene, polycarbonate and bovine pericardium was studied in an in vitro quantitative assay by scintillation counting. Bacterial adhesion was generally reduced by the presence of protein during the adherence assay except in the case of bovine pericardium, in which adherence remained almost unaffected. The effect of these plasma proteins on bacterial surface properties resulted in strong increases of surface charge as measured by ion-exchange chromatography and with no effect on hydrophobicity, estimated as contact angles. Adherence was not found to be correlated with these two properties, suggesting that bacteria-surface interactions must not be simplified to the influence of interfacial forces.  相似文献   

19.
Nucleoporins with phenylalanine-glycine repeats (FG Nups) function at the nuclear pore complex (NPC) to facilitate nucleocytoplasmic transport. In Saccharomyces cerevisiae, each FG Nup contains a large natively unfolded domain that is punctuated by FG repeats. These FG repeats are surrounded by hydrophilic amino acids (AAs) common to disordered protein domains. Here we show that the FG domain of Nups from human, fly, worm, and other yeast species is also enriched in these disorder-associated AAs, indicating that structural disorder is a conserved feature of FG Nups and likely serves an important role in NPC function. Despite the conservation of AA composition, FG Nup sequences from different species show extensive divergence. A comparison of the AA substitution rates of proteins with syntenic orthologs in four Saccharomyces species revealed that FG Nups have evolved at twice the rate of average yeast proteins with most substitutions occurring in sequences between FG repeats. The rapid evolution of FG Nups is poorly explained by parameters known to influence AA substitution rate, such as protein expression level, interactivity, and essentiality; instead their rapid evolution may reflect an intrinsic permissiveness of natively unfolded structures to AA substitutions. The overall lack of AA sequence conservation in FG Nups is sharply contrasted by discrete stretches of conserved sequences. These conserved sequences highlight known karyopherin and nucleoporin binding sites as well as other uncharacterized sites that may have important structural and functional properties.  相似文献   

20.
A combinatorial sequence space (CSS) model was introduced to represent sequences as a set of overlapping k-tuples of some fixed length which correspond to points in the CSS. The aim was to analyze clusterization of protein sequences in the CSS and to test various hypotheses about the possible evolutionary basis of this clusterization. The authors developed an easy-to-use technique which can reveal and analyze such a clusterization in a multidimensional CSS. Application of the technique led to an unexpectedly high clusterization of points in the CSS corresponding to k-tuples from known proteins. The clusterization could not be inferred from nonuniform amino acid frequencies or be explained by the influence of homologous data. None of the tested possible evolutionary and structural factors could explain the clusterization observed either. It looked as if certain protein sequence variations occurred and were fixed in the early course of evolution. Subsequent evolution (predominantly neutral) allowed only a limited number of changes and permitted new variants which led to preservation of certain k-tuples during the course of evolution. This was consistent with the theory of exon shuffling and protein block structure evolution. Possible applications of sequence space features found were also discussed.Correspondence to: H.A. Lim  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号