首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 193 毫秒
1.
To understand the synonymous codon usage pattern in mitochondrial genome of Antheraea assamensis, we analyzed the 13 mitochondrial protein‐coding genes of this species using a bioinformatic approach as no work was reported yet. The nucleotide composition analysis suggested that the percentages of A, T, G,and C were 33.73, 46.39, 9.7 and 10.17, respectively and the overall GC content was 19.86, that is, lower than 50% and the genes were AT rich. The mean effective number of codons of mitochondrial protein‐coding genes was 36.30 and it indicated low codon usage bias (CUB). Relative synonymous codon usage analysis suggested overrepresented and underrepresented codons in each gene and the pattern of codon usage was different among genes. Neutrality plot analysis revealed a narrow range of distribution for GC content at the third codon position and some points were diagonally distributed, suggesting both mutation pressure and natural selection influenced the CUB.  相似文献   

2.
以普通野生稻(Oryza rufipogon Griff.)线粒体基因组为对象,分析其蛋白质编码基因的密码子使用特征及与亚洲栽培稻(O. sativa L.)的差异,探讨其密码子偏性形成的影响因素和进化过程。结果显示:普通野生稻线粒体基因组编码序列第1、第2和第3位碱基的GC含量依次为49.18%、42.67%和40.86%;有效密码子数(Nc)分布于45.32~61.00之间,其密码子偏性较弱; Nc值仅与GC_3呈显著相关,密码子第3位的碱基组成对密码子偏性影响较大;第1向量轴上显示9.91%的差异,其与GC3s、Nc、密码子偏好指数(CBI)和最优密码子使用频率(Fop)的相关性均达到显著水平;而GC_3和GC12的相关性未达到显著水平。因此,普通野生稻线粒体基因组密码子的使用偏性主要受自然选择压力影响而形成。本研究确定了21个普通野生稻线粒体基因组的最优密码子,大多以A或T结尾,与叶绿体密码子具有趋同进化,但是与核基因组具有不同的偏好性。同义密码子相对使用度(RSCU)、PR2偏倚分析和中性绘图分析显示,普通野生稻线粒体基因功能和其密码子使用密切相关,且线粒体密码子使用在普通野生稻、粳稻(O. sativa L. subsp. japonica Kato)和籼稻(O. sativa L. subsp.indica Kato)内具有同质性。  相似文献   

3.
以普通野生稻(Oryza rufipogon Griff.)线粒体基因组为对象,分析其蛋白质编码基因的密码子使用特征及与亚洲栽培稻(O.sativa L.)的差异,探讨其密码子偏性形成的影响因素和进化过程。结果显示:普通野生稻线粒体基因组编码序列第1、第2和第3位碱基的GC含量依次为49.18%、42.67%和40.86%;有效密码子数(Nc)分布于45.32~61.00之间,其密码子偏性较弱;Nc值仅与GC3呈显著相关,密码子第3位的碱基组成对密码子偏性影响较大;第1向量轴上显示9.91%的差异,其与GC3s、Nc、密码子偏好指数(CBI)和最优密码子使用频率(Fop)的相关性均达到显著水平;而GC3和GC12的相关性未达到显著水平。因此,普通野生稻线粒体基因组密码子的使用偏性主要受自然选择压力影响而形成。本研究确定了21个普通野生稻线粒体基因组的最优密码子,大多以A或T结尾,与叶绿体密码子具有趋同进化,但是与核基因组具有不同的偏好性。同义密码子相对使用度(RSCU)、PR2偏倚分析和中性绘图分析显示,普通野生稻线粒体基因功能和其密码子使用密切相关,且线粒体密码子使用在普通野生稻、粳稻(O.sativa L.subsp.japonica Kato)和籼稻(O.sativa L.subsp.indica Kato)内具有同质性。  相似文献   

4.
落叶松-杨栅锈菌基因组密码子使用偏好分析   总被引:1,自引:0,他引:1  
周显臻  曹支敏  于丹 《菌物学报》2020,39(2):289-297
为了解落叶松‐杨栅锈菌密码子使用模式,并探究影响其密码子偏好形成的因素,本研究利用CondonW对落叶松‐杨栅锈菌标准菌株98AG31基因组中14 650个基因进行分析,计算基因的有效密码子数,及64个密码子的相对使用度等偏好性参数。结果表明,落叶松‐杨栅锈菌全基因组水平的密码子偏好程度较低,只有少数基因呈现出高偏好性。落叶松‐杨栅锈菌的高频密码子多以A或T结尾,而最优密码子则倾向以G或C结尾。PR2-plot分析及ENC-plot曲线与中性绘图分析显示,落叶松‐杨栅锈菌基因密码子使用模式受到选择压力和突变压力等多重因素的影响,相较于选择压力,落叶松‐杨栅锈菌基因密码子的偏好更多地受到突变压力的影响。相关性分析表明,密码子碱基组成会对密码子偏好性产生影响,其他因素如序列长度等均不会影响密码子偏好性。  相似文献   

5.
A detailed comparison was made of codon usage of chloroplast genes with their host (nuclear) genes in the four angiosperm speciesOryza sativa, Zea mays, Triticum aestivum andArabidopsis thaliana. The average GC content of the entire genes, and at the three codon positions individually, was higher in nuclear than in chloroplast genes, suggesting different genomic organization and mutation pressures in nuclear and chloroplast genes. The results of Nc-plots and neutrality plots suggested that nucleotide compositional constraint had a large contribution to codon usage bias of nuclear genes inO. sativa, Z. mays, andT. aestivum, whereas natural selection was likely to be playing a large role in codon usage bias in chloroplast genomes. Correspondence analysis and chi-test showed that regardless of the genomic environment (species) of the host, the codon usage pattern of chloroplast genes differed from nuclear genes of their host species by their AU-richness. All the chloroplast genomes have predominantly A- and/or U-ending codons, whereas nuclear genomes have G-, C- or U-ending codons as their optimal codons. These findings suggest that the chloroplast genome might display particular characteristics of codon usage that are different from its host nuclear genome. However, one feature common to both chloroplast and nuclear genomes in this study was that pyrimidines were found more frequently than purines at the synonymous codon position of optimal codons.  相似文献   

6.
Our environment is stressed with a load of heavy and toxic metals. Microbes, abundant in our environment, are found to adapt well to this metal-stressed condition. A comparative study among five Cupriavidus/Ralstonia genomes can offer a better perception of their evolutionary mechanisms to adapt to these conditions. We have studied codon usage among 1051 genes common to all these organisms and identified 15 optimal codons frequently used in highly expressed genes present within 1051 genes. We found the core genes of Cupriavidus metallidurans CH34 have a different optimal codon choice for arginine, glycine and alanine in comparison with the other four bacteria. We also found that the synonymous codon usage bias within these 1051 core genes is highly correlated with their gene expression. This supports that translational selection drives synonymous codon usage in the core genes of these genomes. Synonymous codon usage is highly conserved in the core genes of these five genomes. The only exception among them is C. metallidurans CH34. This genomewide shift in synonymous codon choice in C. metallidurans CH34 may have taken place due to the insertion of new genes in its genomes facilitating them to survive in heavy metal containing environment and the co-evolution of the other genes in its genome to achieve a balance in gene expression. Structural studies indicated the presence of a longer N-terminal region containing a copper-binding domain in the cupC proteins of C. metallidurans CH3 that helps it to attain higher binding efficacy with copper in comparison with its orthologs.  相似文献   

7.
Codon bias is the non-random use of synonymous codons, a phenomenon that has been observed in species as diverse as bacteria, plants and mammals. The preferential use of particular synonymous codons may reflect neutral mechanisms (e.g. mutational bias, G|C-biased gene conversion, genetic drift) and/or selection for mRNA stability, translational efficiency and accuracy. The extent to which these different factors influence codon usage is unknown, so we dissected the contribution of mutational bias and selection towards codon bias in genes from 15 eudicots, 4 monocots and 2 mosses. We analysed the frequency of mononucleotides, dinucleotides and trinucleotides and investigated whether the compositional genomic background could account for the observed codon usage profiles. Neutral forces such as mutational pressure and G|C-biased gene conversion appeared to underlie most of the observed codon bias, although there was also evidence for the selection of optimal translational efficiency and mRNA folding. Our data confirmed the compositional differences between monocots and dicots, with the former featuring in general a lower background compositional bias but a higher overall codon bias.  相似文献   

8.
Salim HM  Ring KL  Cavalcanti AR 《Protist》2008,159(2):283-298
We used the recently sequenced genomes of the ciliates Tetrahymena thermophila and Paramecium tetraurelia to analyze the codon usage patterns in both organisms; we have analyzed codon usage bias, Gln codon usage, GC content and the nucleotide contexts of initiation and termination codons in Tetrahymena and Paramecium. We also studied how these trends change along the length of the genes and in a subset of highly expressed genes. Our results corroborate some of the trends previously described in Tetrahymena, but also negate some specific observations. In both genomes we found a strong bias toward codons with low GC content; however, in highly expressed genes this bias is smaller and codons ending in GC tend to be more frequent. We also found that codon bias increases along gene segments and in highly expressed genes and that the context surrounding initiation and termination codons are always AT rich. Our results also suggest differences in the efficiency of translation of the reassigned stop codons between the two species and between the reassigned codons. Finally, we discuss some of the possible causes for such translational efficiency differences.  相似文献   

9.
目前,有关同义密码子使用偏性对蛋白质折叠的影响研究中,样本蛋白均来源于不同的物种。考虑到同义密码子使用偏性的物种差异性,选取枯草杆菌的核蛋白为研究对象。首先,将每条核蛋白按二级结构截取为α螺旋片段、β折叠片段和无规卷曲(α-β混合)片段,并计算其蛋白质折叠速率。然后,整理每个片段相应的核酸序列信息,计算其同义密码子使用度。在此基础上,分析枯草芽孢杆菌核蛋白的同义密码子使用偏性与蛋白质折叠速率的相关性。发现对于不同二级结构的肽链片段,都有部分密码子的使用偏性与其对应的肽链折叠速率显著相关。进一步分析发现,与肽链片段折叠速率显著相关的密码子绝大部分为枯草杆菌全序列或核蛋白序列的每一组同义密码子中使用度最高的密码子。结果表明,在蛋白质的折叠过程中,枯草芽孢杆菌的同义密码子使用偏性起着重要作用。  相似文献   

10.
11.
A strong negative correlation between the rate of amino-acid substitution and codon usage bias in Drosophila has been attributed to interference between positive selection at nonsynonymous sites and weak selection on codon usage. To further explore this possibility we have investigated polymorphism and divergence at three kinds of sites: synonymous, nonsynonymous and intronic in relation to codon bias in D. melanogaster and D. simulans. We confirmed that protein evolution is one of the main explicative parameters for interlocus codon bias variation (r(2) approximately 40%). However, intron or synonymous diversities, which could have been expected to be good indicators of local interference [here defined as the additional increase of drift due to selection on tightly linked sites, also called 'genetic draft' by Gillespie (2000)] did not covary significantly with codon bias or with protein evolution. Concurrently, levels of polymorphism were reduced in regions of low recombination rates whereas codon bias was not. Finally, while nonsynonymous diversities were very well correlated between species, neither synonymous nor intron diversities observed in D. melanogaster were correlated with those observed in D. simulans. All together, our results suggest that the selective constraint on the protein is a stable component of gene evolution while local interference is not. The pattern of variation in genetic draft along the genome therefore seems to be instable through evolutionary times and should therefore be considered as a minor determinant of codon bias variance. We argue that selective constraints for optimal codon usage are likely to be correlated with selective constraints on the protein, both between codons within a gene, as previously suggested, and also between genes within a genome.  相似文献   

12.
该研究以2株野生沙枣(Elaeagnus angustifolia Linn.)嫩枝经温室水培后的嫩叶为材料,采用CTAB法分别提取总DNA,并利用第二代测序技术进行总DNA从头测序,组装后得到2株沙枣叶绿体基因组全序列,并详细分析了其蛋白质编码基因密码子使用的偏好性及其原因,为沙枣叶绿体基因工程和分子系统进化等研究奠定基础。结果显示:(1)组装得到沙枣叶绿体基因组序列全长150 546 bp,由长度为81 113 bp的长单拷贝(LSC)区域和25 494 bp的短单拷贝(SSC)区域,以及1对分隔开它们的长18 445 bp的反向重复序列(IRS)组成;注释共得到132个基因,包括86个蛋白编码基因、38个tRNA基因和8个rRNA基因。(2)沙枣叶绿体基因组蛋白编码基因密码子的第三位碱基GC含量(GC_3)为28.47%,明显低于整个叶绿体基因组GC含量(37%),也低于第一位(GC_1)和第二位(GC_2)碱基的GC含量,说明密码子对AT碱基结尾有偏好性;其中, UCU、CCU、UGU、GCU、CUU、GAU、UCA和UAA为最优密码子。(3)同义密码子相对使用频率(RSCU)分析发现,影响密码子使用模式的因素并不单一,密码子的偏好性受到突变、选择及其他因素的共同影响,并且自然选择表达引起的序列差异比突变对密码子偏好性的影响要显著;中性绘图分析、有效密码子数(ENC-plot)分析和奇偶偏好性(PR2-plot)分析表明,沙枣叶绿体基因组使用密码子的偏性受选择的影响更大。(4)通过最大似然法、最大简约法和贝叶斯方法对胡颓子科6个物种和1个枣的叶绿体基因序列构建系统发育树,与它们使用密码子偏性聚类的结果一致,表明叶绿体基因组使用密码子偏性与物种的亲缘关系相关。  相似文献   

13.
双孢蘑菇Agaricus bisporus是世界上最广泛栽培的食用菌之一。本研究通过分析双孢蘑菇基因组密码子使用偏性,探讨密码子偏性的影响因素及其对基因表达的影响。以双孢蘑菇基因组和转录组数据为依据,分析了双孢蘑菇基因组基因、高表达基因(high expression gene,HEG)和低表达基因(low expression gene,LEG)的密码子使用性。发现双孢蘑菇基因组编码基因平均GC含量为49.08%,T3s值(35.59%)最高,平均ENC值偏高,多数基因表达潜力较低。共鉴定出14个最优密码子,均以C或T结尾,并且遵循密码子中嘌呤和嘧啶使用的均衡性原则。高表达基因具有更强的密码子偏性,进化过程中受到基因突变和自然选择等多种因素影响。基因表达与G/C碱基含量和CAI值呈极显著正相关。高表达基因编码了多种与真菌生长发育相关的蛋白和酶类。研究结果明确了双孢蘑菇基因密码子的使用偏性,为双孢蘑菇转基因育种和品质改良提供了参考。  相似文献   

14.
Rao Y  Wu G  Wang Z  Chai X  Nie Q  Zhang X 《DNA research》2011,18(6):499-512
Synonymous codons are used with different frequencies both among species and among genes within the same genome and are controlled by neutral processes (such as mutation and drift) as well as by selection. Up to now, a systematic examination of the codon usage for the chicken genome has not been performed. Here, we carried out a whole genome analysis of the chicken genome by the use of the relative synonymous codon usage (RSCU) method and identified 11 putative optimal codons, all of them ending with uracil (U), which is significantly departing from the pattern observed in other eukaryotes. Optimal codons in the chicken genome are most likely the ones corresponding to highly expressed transfer RNA (tRNAs) or tRNA gene copy numbers in the cell. Codon bias, measured as the frequency of optimal codons (Fop), is negatively correlated with the G + C content, recombination rate, but positively correlated with gene expression, protein length, gene length and intron length. The positive correlation between codon bias and protein, gene and intron length is quite different from other multi-cellular organism, as this trend has been only found in unicellular organisms. Our data displayed that regional G + C content explains a large proportion of the variance of codon bias in chicken. Stepwise selection model analyses indicate that G + C content of coding sequence is the most important factor for codon bias. It appears that variation in the G + C content of CDSs accounts for over 60% of the variation of codon bias. This study suggests that both mutation bias and selection contribute to codon bias. However, mutation bias is the driving force of the codon usage in the Gallus gallus genome. Our data also provide evidence that the negative correlation between codon bias and recombination rates in G. gallus is determined mostly by recombination-dependent mutational patterns.  相似文献   

15.
紫花苜蓿叶绿体基因组密码子偏好性分析   总被引:1,自引:0,他引:1  
喻凤  韩明 《广西植物》2021,41(12):2069-2076
为分析紫花苜蓿叶绿体基因组密码子偏好性的使用模式,该文以紫花苜蓿叶绿体基因组中筛选到的49条蛋白质编码序列为研究对象,利用CodonW、CUSP、CHIPS、SPSS等软件对其密码子的使用模式和偏好性进行研究。结果表明:(1)紫花苜蓿叶绿体基因的第3位密码子的平均GC含量为26.44%,有效密码子数(ENC)在40.6~51.41之间,多数密码子的偏好性较弱。(2)相对同义密码子使用度(RSCU)分析发现,RSCU>1 的密码子数目有30个,以A、U结尾的有29个,说明了紫花苜蓿叶绿体基因组A或U出现的频率较高。(3)中性分析发现,GC3与 GC12的相关性不显著,表明密码子偏性主要受自然选择的影响; ENC-plot 分析发现一部分基因落在曲线的下方及周围,表明突变也影响了部分密码子偏性的形成。此外,有17个密码子被鉴定为紫花苜蓿叶绿体基因组的最优密码子。紫花苜蓿叶绿体基因组的密码子偏好性可能受自然选择和突变的共同作用。该研究将为紫花苜蓿叶绿体基因工程的开展和目标性状的遗传改良奠定基础。  相似文献   

16.
SK Behura  DW Severson 《PloS one》2012,7(8):e43111

Background

Codon bias is a phenomenon of non-uniform usage of codons whereas codon context generally refers to sequential pair of codons in a gene. Although genome sequencing of multiple species of dipteran and hymenopteran insects have been completed only a few of these species have been analyzed for codon usage bias.

Methods and Principal Findings

Here, we use bioinformatics approaches to analyze codon usage bias and codon context patterns in a genome-wide manner among 15 dipteran and 7 hymenopteran insect species. Results show that GAA is the most frequent codon in the dipteran species whereas GAG is the most frequent codon in the hymenopteran species. Data reveals that codons ending with C or G are frequently used in the dipteran genomes whereas codons ending with A or T are frequently used in the hymenopteran genomes. Synonymous codon usage orders (SCUO) vary within genomes in a pattern that seems to be distinct for each species. Based on comparison of 30 one-to-one orthologous genes among 17 species, the fruit fly Drosophila willistoni shows the least codon usage bias whereas the honey bee (Apis mellifera) shows the highest bias. Analysis of codon context patterns of these insects shows that specific codons are frequently used as the 3′- and 5′-context of start and stop codons, respectively.

Conclusions

Codon bias pattern is distinct between dipteran and hymenopteran insects. While codon bias is favored by high GC content of dipteran genomes, high AT content of genes favors biased usage of synonymous codons in the hymenopteran insects. Also, codon context patterns vary among these species largely according to their phylogeny.  相似文献   

17.
为分析栽培大豆和野生大豆线粒体基因组的密码子使用特征差异,该文以其线粒体基因组编码序列为研究对象,比较其密码子偏性形成的影响因素和演化过程。结果表明:(1)栽培大豆和野生大豆线粒体基因组编码区的GC含量分别为44.56%和44.58%,说明栽培大豆和野生大豆线粒体编码基因均富含A/T碱基。(2)栽培大豆和野生大豆线粒体基因组密码子第1位、第2位GC含量平均值与第3位GC含量的相关性均呈极显著水平,说明突变在其密码子偏性形成中的作用不可忽略; PR2-plot分析显示,在同义密码子第3位碱基的使用频率上,嘌呤低于嘧啶; Nc-plot分析中Nc比值位于-0.1~0.2区间的基因数占总基因数的95%以上;突变和选择等多重因素共同作用影响了大豆线粒体基因组编码序列密码子使用偏性的形成。(3)有20、21个密码子分别被确定为栽培大豆和野生大豆线粒体基因组编码序列的最优密码子,其中除丝氨酸TCC密码子外均以A或T结尾。综上结果认为,栽培大豆线粒体密码子偏性的形成受选择的影响要高于野生大豆,这可能是栽培大豆由野生大豆经长期人工栽培驯化的结果。  相似文献   

18.
Codon bias is generally thought to be determined by a balance between mutation, genetic drift, and natural selection on translational efficiency. However, natural selection on codon usage is considered to be a weak evolutionary force and selection on codon usage is expected to be strongest in species with large effective population sizes. In this paper, I study associations between codon usage, gene expression, and molecular evolution at synonymous and nonsynonymous sites in the long-lived, woody perennial plant Populus tremula (Salicaceae). Using expression data for 558 genes derived from expressed sequence tags (EST) libraries from 19 different tissues and developmental stages, I study how gene expression levels within single tissues as well as across tissues affect codon usage and rates sequence evolution at synonymous and nonsynonymous sites. I show that gene expression have direct effects on both codon usage and the level of selective constraint of proteins in P. tremula, although in different ways. Codon usage genes is primarily determined by how highly expressed a genes is, whereas rates of sequence evolution are primarily determined by how widely expressed genes are. In addition to the effects of gene expression, protein length appear to be an important factor influencing virtually all aspects of molecular evolution in P. tremula.  相似文献   

19.
The Selective Advantage of Synonymous Codon Usage Bias in Salmonella   总被引:1,自引:0,他引:1  
The genetic code in mRNA is redundant, with 61 sense codons translated into 20 different amino acids. Individual amino acids are encoded by up to six different codons but within codon families some are used more frequently than others. This phenomenon is referred to as synonymous codon usage bias. The genomes of free-living unicellular organisms such as bacteria have an extreme codon usage bias and the degree of bias differs between genes within the same genome. The strong positive correlation between codon usage bias and gene expression levels in many microorganisms is attributed to selection for translational efficiency. However, this putative selective advantage has never been measured in bacteria and theoretical estimates vary widely. By systematically exchanging optimal codons for synonymous codons in the tuf genes we quantified the selective advantage of biased codon usage in highly expressed genes to be in the range 0.2–4.2 x 10−4 per codon per generation. These data quantify for the first time the potential for selection on synonymous codon choice to drive genome-wide sequence evolution in bacteria, and in particular to optimize the sequences of highly expressed genes. This quantification may have predictive applications in the design of synthetic genes and for heterologous gene expression in biotechnology.  相似文献   

20.
Analysis of synonymous codon usage pattern in the genome of a thermophilic cyanobacterium, Thermosynechococcus elongatus BP-1 using multivariate statistical analysis revealed a single major explanatory axis accounting for codon usage variation in the organism. This axis is correlated with the GC content at third base of synonymous codons (GC3s) in correspondence analysis taking T. elongatus genes. A negative correlation was observed between effective number of codons i.e. Nc and GC3s. Results suggested a mutational bias as the major factor in shaping codon usage in this cyanobacterium. In comparison to the lowly expressed genes, highly expressed genes of this organism possess significantly higher proportion of pyrimidine-ending codons suggesting that besides, mutational bias, translational selection also influenced codon usage variation in T. elongatus. Correspondence analysis of relative synonymous codon usage (RSCU) with A, T, G, C at third positions (A3s, T3s, G3s, C3s, respectively) also supported this fact and expression levels of genes and gene length also influenced codon usage. A role of translational accuracy was identified in dictating the codon usage variation of this genome. Results indicated that although mutational bias is the major factor in shaping codon usage in T. elongatus, factors like translational selection, translational accuracy and gene expression level also influenced codon usage variation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号