首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tumour protein p53‐inducible nuclear protein 1 (TP53INP1) is a tumour suppressor associated with malignant tumour metastasis. Vasculogenic mimicry (VM) is a new tumour vascular supply pattern that significantly influences tumour metastasis and contributes to a poor prognosis. However, the molecular mechanism of the relationship between TP53INP1 and breast cancer VM formation is unknown. Here, we explored the underlying mechanism by which TP53INP1 regulates VM formation in vitro and in vivo. High TP53INP1 expression was not only negatively correlated with a poor prognosis but also had a negative relationship with VE‐cadherin, HIF‐1α and Snail expression. TP53INP1 overexpression inhibited breast cancer invasion, migration, epithelial‐mesenchymal transition (EMT) and VM formation; conversely, TP53INP1 down‐regulation promoted these processes in vitro by functional experiments and Western blot analysis. We established a hypoxia model induced by CoCl2 and assessed the effects of TP53INP1 on hypoxia‐induced EMT and VM formation. In addition, we confirmed that a reactive oxygen species (ROS)‐mediated signalling pathway participated in TP53INP1‐mediated VM formation. Together, our results show that TP53INP1 inhibits hypoxia‐induced EMT and VM formation via the ROS/GSK‐3β/Snail pathway in breast cancer, which offers new insights into breast cancer clinical therapy.  相似文献   

2.
To characterize the contributions of Dickkopf‐1 (DKK1) towards the induction of vasculogenic mimicry (VM) in non‐small cell lung cancer (NSCLC), we evaluated cohorts of primary tumours, performed in vitro functional studies and generated xenograft mouse models. Vasculogenic mimicry was observed in 28 of 205 NSCLC tumours, while DKK1 was detected in 133 cases. Notably, DKK1 was positively associated with VM. Statistical analysis showed that VM and DKK1 were both related to aggressive clinical course and thus were indicators of a poor prognosis. Moreover, expression of epithelial‐mesenchymal transition (EMT)‐related proteins (vimentin, Slug, and Twist), cancer stem‐like cell (CSC)‐related proteins (nestin and CD44), VM‐related proteins (MMP2, MMP9, and vascular endothelial‐cadherin), and β‐catenin‐nu were all elevated in VM‐positive and DKK1‐positive tumours, whereas the epithelial marker (E‐cadherin) was reduced in the VM‐positive and DKK1‐positive groups. Non‐small cell lung cancer cell lines with overexpressed or silenced DKK1 highlighted its role in the restoration of mesenchymal phenotypes and development of CSC characteristics. Moreover, DKK1 significantly promotes NSCLC tumour cells to migrate, invade and proliferate. In vivo animal studies demonstrated that DKK1 enhances the growth of transplanted human tumours cells, as well as increased VM formation, mesenthymal phenotypes and CSC properties. Our results suggest that DKK1 can promote VM formation via induction of the expression of EMT and CSC‐related proteins. As such, we feel that DKK1 may represent a novel target of NSCLC therapy.  相似文献   

3.
The zinc finger E‐box‐binding homeobox 1 (ZEB1) induced the epithelial–mesenchymal transition (EMT) and altered ZEB1 expression could lead to aggressive and cancer stem cell (CSC) phenotypes in various cancers. Tissue specimens from 96 prostate cancer patients were collected for immunohistochemistry and CD34/periodic acid–Schiff double staining. Prostate cancer cells were subjected to ZEB1 knockdown or overexpression and assessment of the effects on vasculogenic mimicry formation in vitro and in vivo. The underlying molecular events of ZEB1‐induced vasculogenic mimicry formation in prostate cancer were then explored. The data showed that the presence of VM and high ZEB1 expression was associated with higher Gleason score, TNM stage, and lymph node and distant metastases as well as with the expression of vimentin and CD133 in prostate cancer tissues. Furthermore, ZEB1 was required for VM formation and altered expression of EMT‐related and CSC‐associated proteins in prostate cancer cells in vitro and in vivo. ZEB1 also facilitated tumour cell migration, invasion and clonogenicity. In addition, the effects of ZEB1 in prostate cancer cells were mediated by Src signalling; that is PP2, a specific inhibitor of the Src signalling, dose dependently reduced the p‐Src527 level but not p‐Src416 level, while ZEB1 knockdown also down‐regulated the level of p‐Src527 in PC3 and DU‐145 cells. PP2 treatment also significantly reduced the expression of VE‐cadherin, vimentin and CD133 in these prostate cancer cells. Src signalling mediated the effects of ZEB1 on VM formation and gene expression.  相似文献   

4.
Resistance to trastuzumab remains a major obstacle in HER2‐overexpressing breast cancer treatment. miR‐200c is important for many functions in cancer stem cells (CSCs), including tumour recurrence, metastasis and resistance. We hypothesized that miR‐200c contributes to trastuzumab resistance and stemness maintenance in HER2‐overexpressing breast cancer. In this study, we used HER2‐positive SKBR3, HER2‐negative MCF‐7, and their CD44+CD24? phenotype mammospheres SKBR3‐S and MCF‐7‐S to verify. Our results demonstrated that miR‐200c was weakly expressed in breast cancer cell lines and cell line stem cells. Overexpression of miR‐200c resulted in a significant reduction in the number of tumour spheres formed and the population of CD44+CD24? phenotype mammospheres in SKBR3‐S. Combining miR‐200c with trastuzumab can significantly reduce proliferation and increase apoptosis of SKBR3 and SKBR3‐S. Overexpression of miR‐200c also eliminated its downstream target genes. These genes were highly expressed and positively related in breast cancer patients. Overexpression of miR‐200c also improved the malignant progression of SKBR3‐S and SKBR3 in vivo. miR‐200c plays an important role in the maintenance of the CSC‐like phenotype and increases drug sensitivity to trastuzumab in HER2+ cells and stem cells.  相似文献   

5.
Lin JH  Tsai CH  Chu JS  Chen JY  Takada K  Shew JY 《Journal of virology》2007,81(11):5705-5713
The role of Epstein-Barr virus (EBV) in the pathogenesis of breast cancer has been of long-standing interest to the field. Breast epithelial cells can be infected by EBV through direct contact with EBV-bearing lymphoblastoid cells, and EBV infection has recently been shown to confer breast cancer cells an increased resistance to chemotherapeutic drugs. In this study, we established EBV-infected breast cancer MCF7 and BT474 cells and demonstrated that EBV infection promotes tumorigenic activity of breast cancer cells. Firstly, we showed that the EBV-infected MCF7-A and BT474-A cells exhibited increased anchorage-independent growth in soft agar. The increased colony formation capacity in soft agar was associated with increased expression and activation of HER2/HER3 signaling cascades, as evidenced by the findings that the treatment of HER2 antibody trastuzumab (Herceptin), phosphatidylinositol 3-kinase inhibitor, or MEK inhibitor completely abolished the tumorigenic capacity. In the EBV-infected breast cancer cells, the expression of EBV latency genes including EBNA1, EBER1, and BARF0 was detected. We next showed that BARF0 alone was sufficient to efficiently up-regulate HER2/HER3 expression and promoted tumorigenic activity in MCF7 and BT474 cells by the use of both overexpression and small interfering RNA knock-down. Collectively, we demonstrated that EBV-encoded BARF0 promotes the tumorigenic activity of breast cancer cells through activation of HER2/HER3 signaling cascades.  相似文献   

6.
7.
Vasculogenic mimicry (VM) refers to the unique capability of aggressive tumour cells to mimic the pattern of embryonic vasculogenic networks. Epithelial–mesenchymal transition (EMT) regulator slug have been implicated in the tumour invasion and metastasis of human hepatocellular carcinoma (HCC). However, the relationship between slug and VM formation is not clear. In the study, we demonstrated that slug expression was associated with EMT and cancer stem cell (CSCs) phenotype in HCC patients. Importantly, slug showed statistically correlation with VM formation. We consistently demonstrated that an overexpression of slug in HCC cells significantly increased CSCs subpopulation that was obvious by the increased clone forming efficiency in soft agar and by flowcytometry analysis. Meantime, the VM formation and VM mediator overexpression were also induced by slug induction. Finally, slug overexpression lead to the maintenance of CSCs phenotype and VM formation was demonstrated in vivo. Therefore, the results of this study indicate that slug induced the increase and maintenance of CSCs subpopulation and contributed to VM formation eventually. The related molecular pathways may be used as novel therapeutic targets for the inhibition of HCC angiogenesis and metastasis.  相似文献   

8.
9.
Human epidermal growth factor receptor 2 (HER2/neu, also known as ErbB2) overexpression is correlated with the poor prognosis and chemoresistance in cancer. Breast cancer resistance protein (BCRP and ABCG2) is a drug efflux pump responsible for multidrug resistance (MDR) in a variety of cancer cells. HER2 and BCRP are associated with poor treatment response in breast cancer patients, although the relationship between HER2 and BCRP expression is not clear. Here, we showed that transfection of HER2 into MCF7 breast cancer cells (MCF7/HER2) resulted in an up-regulation of BCRP via the phosphatidylinositol 3-kinase (PI3K)/Akt and nuclear factor-kappa B (NF-κB) signaling. Treatment of MCF/HER2 cells with the PI3K inhibitor LY294002, the IκB phosphorylation inhibitor Bay11-7082, and the dominant negative mutant of IκBα inhibited HER2-induced BCRP promoter activity. Furthermore, we found that HER2 overexpression led to an increased resistance of MCF7 cells to multiple antitumor drugs such as paclitaxel (Taxol), cisplatin (DDP), etoposide (VP-16), adriamycin (ADM), mitoxantrone (MX), and 5-fluorouracil (5-FU). Moreover, silencing the expression of BCRP or selectively inhibiting the activity of Akt or NF-κB sensitized the MCF7/HER2 cells to these chemotherapy agents at least in part. Taken together, up-regulation of BCRP through PI3K/AKT/NF-κB signaling pathway played an important role in HER2-mediated chemoresistance of MCF7 cells, and AKT, NF-κB, and BCRP pathways might serve as potential targets for therapeutic intervention.  相似文献   

10.
Abstract. Objectives: More than 50 years ago, we learned that breast cancer cells (and those of many other types of tumour) endogenously synthesize 95% of fatty acids (FAs) de novo, despite having adequate nutritional lipid supply. Today, we know that breast cancer cells benefit from this phenomenon in terms of enhanced cell proliferation, survival, chemoresistance and metastasis. However, the exact role of the major lipogenic enzyme fatty acid synthase (FASN) as cause, correlate or facilitator of breast cancer remains unidentified. Materials and methods: To evaluate a causal effect of FASN‐catalysed endogenous FA biosynthesis in the natural history of breast cancer disease, HBL100 cells (an SV40‐transformed in vitro model for near‐normal gene expression in the breast epithelium), and MCF10A cells (a non‐transformed, near diploid, spontaneously immortalized human mammary epithelial cell line) were acutely forced to overexpress the human FASN gene. Results: Following transient transfection with plasmid pCMV6‐XL4 carrying full‐length human FASN cDNA (gi: NM 004104), HBL100 cells enhanced their endogenous lipid synthesis while acquiring canonical oncogenic properties such as increased size and number of colonies in semisolid (i.e. soft‐agar) anchorage‐independent cultures. Anchorage‐dependent cell proliferation assays in low serum (0.1% foetal bovine serum), MTT‐based assessment of cell metabolic status and cell death ELISA‐based detection of apoptosis‐induced DNA‐histone fragmentation, together revealed that sole activation of endogenous FA biosynthesis was sufficient to significantly enhance breast epithelial cell proliferation and survival. When analysing molecular mechanisms by which acute activation of de novo FA biosynthesis triggered a transformed phenotype, HBL100 cells, transiently transfected with pCMV6‐XL4/FASN, were found to exhibit a dramatic increase in the number of phosphor‐tyrosine (Tyr)‐containing proteins, as detected by 4G10 antiphosphor‐Tyr monoclonal antibody. Phosphor‐Tyr‐specific antibodies recognizing the phosphorylation status of either the 1173 Tyr residue of epidermal growth factor receptor (HER1) or the 1248 Tyr residue of HER2, further revealed that FASN‐induced Tyr‐phosphorylation at ~180 kDa region mainly represented that of these key members of the HER (erbB) network, which remained switched‐off in mock‐transfected HBL100 cells. ELISA and immunoblotting procedures demonstrated that FASN overactivation significantly increased (> 200%) expression levels of epidermal growth factor receptor and HER2 proteins in HBL100 cells. Proteome Profiler? antibody arrays capable of simultaneously detecting relative levels of phosphorylation of 42 phospho‐receptor Tyr‐kinases (RTKs) confirmed that acute activation of endogenous FA biosynthesis specifically promoted hyper‐Tyr‐phosphorylation of HER1 and HER2 in MCF10A cells. This FASN‐triggered HER1/HER2‐breast cancer‐like phenotype was specifically inhibitable either by FASN inhibitor C75 or by Tyr‐kinase inhibitors (TKIs) gefitinib (Iressa?) and lapatinib (Tykerb?) but not by chemotherapeutic agents such as cisplatin. Transient overexpression of FASN dramatically increased HBL100 breast epithelial cells’ sensitivity to cytotoxic effects of C75, gefitinib and lapatinib (~8, 10 and > 15 times, respectively), while significantly decreasing (~3 times) cisplatin efficacy. Conclusions: Although we cannot definitely establish FASN as a novel oncogene in breast cancer, this study reveals for the first time that exacerbated endogenous FA biosynthesis in non‐cancerous epithelial cells is sufficient to induce a cancer‐like phenotype functionally dependent on the HER1/HER2 duo. These findings may perhaps radically amend our current perspective of endogenously synthesized fat, as on its own, it appears to actively increase signal‐to‐noise ratio in the HER1/HER2‐driven progression of human breast epithelial cells towards malignancy.  相似文献   

11.
Urocortin (Ucn1), a member of corticotrophin‐releasing hormone (CRH) family, has been reported to be upregulated in inflammatory diseases and function as an autocrine or paracrine inflammatory mediator. Growing evidence shows that Ucn1 increases the endothelial permeability in inflammatory conditions; however, the detailed mechanisms are not clear. In the present study, we investigated the mechanisms of increased endothelial permeability by Ucn1 in human umbilical vein endothelial cells (HUVECs) exposed to lipopolysaccharide (LPS). Pretreatment of HUVECs with Ucn1 increased the endothelial cell permeability, which was augmented by LPS synergistically. Significant downregulation of VE‐cadherin expression was also observed. Moreover, Ucn1 increased phosphorylation of protein kinase D (PKD) and heat shock protein 27 (HSP27) in a time‐ and CRHR2‐dependent manner. Inhibition of PKD and HSP27 drastically attenuated Ucn1‐induced downregulation of VE‐cadherin expression. Further investigations demonstrated that Ucn1 phosphorylated β‐catenin at Ser552 to disrupt the cadherin–catenin complex and hence promote the disassociation of β‐catenin and VE‐cadherin. Disassociation of β‐catenin and VE‐cadherin resulted in decreased VE‐cadherin expression while on the contrary β‐catenin was increased, which may due to the inactivation of GSK‐3β. Increased β‐catenin translocated into the nucleus and subsequently bound to TCF/LEF site, contributing to the elevated expression of vascular endothelial growth factor (VEGF). The above effects of Ucn1 were completely reversed by CRHR2 receptor blocker, antisauvagine‐30. Taken together, our data suggest that Ucn1 increase LPS‐induced endothelial permeability by disrupting the VE‐cadherin–β‐catenin complex via activation of CRHR2 and PKD‐HSP27 signaling pathway. J. Cell. Physiol. 228: 1295–1303, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

12.
13.
14.
Normal breast epithelial cells require insulin and EGF for growth in serum-free media. We previously demonstrated that over expression of breast cancer oncogenes transforms MCF10A cells to an insulin-independent phenotype. Additionally, most breast cancer cell lines are insulin-independent for growth. In this study, we investigated the mechanism by which oncogene over expression transforms MCF10A cells to an insulin-independent phenotype. Analysis of the effects of various concentrations of insulin and/or IGF-I on proliferation of MCF10A cells demonstrated that some of the effects of insulin were independent from those of IGF-I, suggesting that oncogene over expression drives a true insulin-independent proliferative phenotype. To test this hypothesis, we examined metabolic functions of insulin signaling in insulin-dependent and insulin-independent cells. HER2 over expression in MCF10A cells resulted in glucose uptake in the absence of insulin at a rate equal to insulin-induced glucose uptake in non-transduced cells. We found that a diverse set of oncogenes induced the same result. To gain insight into how HER2 oncogene signaling affected increased insulin-independent glucose uptake we compared HER2-regulated gene expression signatures in MCF10A and HER2 over expressing MCF10A cells by differential analysis of time series gene expression data from cells treated with a HER2 inhibitor. This analysis identified genes specifically regulated by the HER2 oncogene, including VAMP8 and PHGDH, which have known functions in glucose uptake and processing of glycolytic intermediates, respectively. Moreover, these genes specifically implicated in HER2 oncogene-driven transformation are commonly altered in human breast cancer cells. These results highlight the diversity of oncogene effects on cell regulatory pathways and the importance of oncogene-driven metabolic transformation in breast cancer.  相似文献   

15.
Annexin 1 (ANXA1) is an endogenous anti-inflammatory protein implicated in cancer. ANXA1 was previously shown to be regulated by hsa-miR-196a. However, whether ANXA1 itself regulates microRNA (miR) expression is unknown. Therefore, we investigated the regulation of miR by ANXA1 in MCF7 breast cancer cells. MCF7-EV (Empty vector) and MCF7-V5 (ANXA1-V5 expressing cells) were subjected to a miR microarray. Microarray analysis revealed a number of miRNAs which were dysregulated in MCF7-V5 cells. 2 novel miRNAs (miR562 and miR26b*) were validated, cloned and functionally characterized. As ANXA1 constitutively activates NF-κB activity to modulate breast cancer metastasis, we found that miR26b* and miR562 directly targeted the canonical NF-κB pathway by targeting the 3′ UTR and inhibiting expression of Rel A (p65) and NF-κB1 (p105) respectively. MiR562 inhibited wound healing, which was reversed when ANXA1 was overexpressed. Overexpression of either miR562 or miR26b* in MCF-7 cells enhanced endothelial tube formation when cocultured with human umbilical cord endothelial cells while conversely, treatment of MCF7 cells with either anti-miR562 or anti-miR26b* inhibited endothelial tube formation after co-culture. Further analysis of miR562 revealed that miR562-transfected cell conditioned media enhances endothelial cell tube formation, indicating that miR562 increased angiogenic secreted factors from MCF-7 breast tumor cells. TNFα was increased upon overexpression of miR562, which was reversed when ANXA1 was co-transfected In conclusion, this data suggests that ANXA1-regulated miR26b* and miR562 may play a role in wound healing and tumor-induced endothelial cell tube formation by targeting NF-κB expression and point towards a potential therapeutic target for breast cancer.  相似文献   

16.
TRIM16 exhibits tumour suppressor functions by interacting with cytoplasmic vimentin and nuclear E2F1 proteins in neuroblastoma and squamous cell carcinoma cells, reducing cell migration and replication. Reduced TRIM16 expression in a range of human primary malignant tissues correlates with increased malignant potential. TRIM16 also induces apoptosis in breast and lung cancer cells, by unknown mechanisms. Here we show that overexpression of TRIM16 induces apoptosis in human breast cancer (MCF7) and neuroblastoma (BE(2)-C) cells, but not in non-malignant HEK293 cells. TRIM16 increased procaspase-2 protein levels in MCF7 and induced caspase-2 activity in both MCF7 and BE(2)-C cells. We show that TRIM16 and caspase-2 proteins directly interact in both MCF7 and BE(2)-C cells and co-localise in MCF7 cells. Most importantly, the induction of caspase-2 activity is required for TRIM16 to initiate apoptosis. Our data suggest a novel mechanism by which TRIM16 can promote apoptosis by directly modulating caspase-2 activity.  相似文献   

17.
Vasculogenic mimicry (VM) is a brand‐new tumour vascular paradigm independent of angiogenesis that describes the specific capacity of aggressive cancer cells to form vessel‐like networks that provide adequate blood supply for tumour growth. A variety of molecule mechanisms and signal pathways participate in VM induction. Additionally, cancer stem cell and epithelial‐mesenchymal transitions are also shown to be implicated in VM formation. As a unique perfusion way, VM is associated with tumour invasion, metastasis and poor cancer patient prognosis. Due to VM's important effects on tumour progression, more VM‐related strategies are being utilized for anticancer treatment. Here, with regard to the above aspects, we make a review of advanced research on VM in cancer.  相似文献   

18.
MAPK-interacting protein kinases 1 and 2 (MNK1 and MNK2) function downstream of p38 and ERK MAPK, but there are large gaps in our knowledge of how MNKs are regulated and function. As proteins activated in the HER2/Ras/Raf/ERK pathway, the MNKs are of potential interest in HER2-overexpressing cancers. We utilized a panel of breast cell lines (HCC1419, AU565, SKBR3, MCF7, and MCF10A), three of which overexpress HER2, to characterize the amounts and activation status of MNKs and other pathway enzymes (ERKs and RSKs) in these cells. We generated a phosphospecific antibody to Thr(P)-214 in the T-loop of MNKs and found that phosphorylations of both Thr-209 and Thr-214 in human MNK1 are required for activation. Increased phosphorylation and activity of the MNKs correlate with HER2 overexpression, and inhibition of the MNKs reduces colony formation in soft agar. Our work identifies the MNKs as potential therapeutic targets for breast cancer treatments.  相似文献   

19.
TNBC is an aggressive breast cancer subtype that does not express hormone receptors (estrogen and progesterone receptors, ER and PR) or amplified human epidermal growth factor receptor type 2 (HER2), and there currently exist no targeted therapies effective against it. Consequently, finding new molecular targets in triple negative breast cancer (TNBC) is critical to improving patient outcomes. Previously, we have detected the expression of metabotropic glutamate receptor-1 (gene: GRM1; protein: mGluR1) in TNBC and observed that targeting glutamatergic signaling inhibits TNBC growth both in vitro and in vivo. In this study, we explored how mGluR1 contributes to TNBC progression, using the isogenic MCF10 progression series, which models breast carcinogenesis from nontransformed epithelium to malignant basal-like breast cancer. We observed that mGluR1 is expressed in human breast cancer and that in MCF10A cells, which model nontransformed mammary epithelium, but not in MCF10AT1 cells, which model atypical ductal hyperplasia, mGluR1 overexpression results in increased proliferation, anchorage-independent growth, and invasiveness. In contrast, mGluR1 knockdown results in a decrease in these activities in malignant MCF10CA1d cells. Similarly, pharmacologic inhibition of glutamatergic signaling in MCF10CA1d cells results in a decrease in proliferation and anchorage-independent growth. Finally, transduction of MCF10AT1 cells, which express c-Ha-ras, using a lentiviral construct expressing GRM1 results in transformation to carcinoma in 90% of resultant xenografts. We conclude that mGluR1 cooperates with other factors in hyperplastic mammary epithelium to contribute to TNBC progression and therefore propose that glutamatergic signaling represents a promising new molecular target for TNBC therapy.  相似文献   

20.
为验证真核表达的携带绿色荧光的抗HER2单链抗体应用于临床诊断HER2阳性肿瘤细胞和病理组织的可靠性,构建融合基因Anti HER2 ScFv-GFP,重组入pFAST Bac HT A载体,在昆虫细胞Sf9中表达,以Ni2+-NTA亲和层析法纯化Anti HER2 ScFv-GFP融合蛋白,测定其浓度与纯度,将同浓度的纯化蛋白分别与3种乳腺癌细胞BT474、SKBR3和MCF7各混合12 h、24 h和48 h,分析其在不同时间段结合HER2阳性肿瘤细胞的稳定性。用纯化蛋白直接检测经抗原修复的乳腺癌病理组织,与免疫组织化学法检测结果对比。结果在昆虫细胞Sf9中可观察到明显绿色荧光,纯化的融合蛋白相对分子量约60 kDa,浓度为115.5μg/mL,纯度约97%,SKBR3和BT474鉴定为HER2阳性。结合12 h、24 h、48 h后其细胞表面均有明显绿色荧光,而HER2阴性MCF7被洗脱后无荧光,该抗体滴度为1:64,48 h内该荧光抗体仍具有稳定性。携带绿色荧光的融合抗体检测病理组织与IHC法的结果完全一致。表明成功表达的携带绿色荧光的抗HER2单链抗体可特异性检测HER2阳性乳腺癌细胞BT474和SKBR3,在HER2阳性肿瘤细胞和临床病理组织检测上具有应用前景。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号