首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
We evaluated whether ecosystem engineers can accomplish two conservation goals simultaneously: (1) indirectly maintain populations of an endangered animal through habitat modification and (2) increase riparian plant diversity. We tested for effects of a prominent ecosystem engineer, the beaver Castor canadensis, on populations of St. Francis' satyr butterfly Neonympha mitchellii francisci and plant species richness and composition. We performed our test by surveying riparian vegetation communities in all stages of beaver‐influenced wetland succession. We found that beavers created wetland habitats that supported plant species not found elsewhere in riparian zones and increased plant species diversity across the landscape by creating a novel combination of patch types. Our results confirmed what others have found about engineering effects on plant diversity, but these results further demonstrated a case where ecosystem engineers indirectly maintain populations of rare animals by modifying the composition and diversity of plant communities within wetlands. Our research demonstrates how an ecosystem engineer can influence habitat availability and composition of plant communities important for an endangered insect, and maintain overall plant species diversity by increasing habitat heterogeneity.  相似文献   

2.
Accumulative disturbances can erode a coral reef's resilience, often leading to replacement of scleractinian corals by macroalgae or other non-coral organisms. These degraded reef systems have been mostly described based on changes in the composition of the reef benthos, and there is little understanding of how such changes are influenced by, and in turn influence, other components of the reef ecosystem. This study investigated the spatial variation in benthic communities on fringing reefs around the inner Seychelles islands. Specifically, relationships between benthic composition and the underlying substrata, as well as the associated fish assemblages were assessed. High variability in benthic composition was found among reefs, with a gradient from high coral cover (up to 58%) and high structural complexity to high macroalgae cover (up to 95%) and low structural complexity at the extremes. This gradient was associated with declining species richness of fishes, reduced diversity of fish functional groups, and lower abundance of corallivorous fishes. There were no reciprocal increases in herbivorous fish abundances, and relationships with other fish functional groups and total fish abundance were weak. Reefs grouping at the extremes of complex coral habitats or low-complexity macroalgal habitats displayed markedly different fish communities, with only two species of benthic invertebrate feeding fishes in greater abundance in the macroalgal habitat. These results have negative implications for the continuation of many coral reef ecosystem processes and services if more reefs shift to extreme degraded conditions dominated by macroalgae.  相似文献   

3.
The ruderal strategy is widely shared among non-native plants, providing a general explanation for the commonly observed positive effects of disturbance on invasions. How native ruderals respond to disturbance and how their abundance compares to that of non-native ruderals remains, however, poorly understood. Similarly, little is known about the role that disturbance type plays in the coexistence between native and non-native ruderals. We proposed that natural disturbance favors native over non-native ruderals, whereas novel anthropogenic disturbance favors non-natives over natives. To assess our general hypothesis, we conducted extensive field samplings in which we measured relative abundance, richness, and diversity of native and non-native ruderals in sites with natural and anthropogenic disturbance in central Argentina, a system where the ruderal strategy is common to a large number of native and non-native species. We found that natives dominated ruderal communities growing in recently burned grasslands, whereas non-natives dominated in roadsides. Additionally, the richness and diversity of native ruderal species were much greater than those of non-natives in sites with fire and in sites with grazing, but species richness and diversity did not differ between groups in roadsides. Because vegetation evolved with fire in our system and, in contrast, the construction and maintenance of roads is recent in it, these results support our hypothesis. Our work indicates that the ruderal strategy does not seem to suffice to explain why disturbance facilitates invasions. According to our data, species origin interacts with disturbance type to determine dominance in communities with coexisting native and non-native ruderals.  相似文献   

4.
We carried out a two-part investigation that revealed habitat differences in marine invertebrate invasions. First, we compared invasion levels of hard vs soft substrata in Elkhorn Slough, an estuary in Central California, by comparing abundance and richness of native vs exotic species in quantitative samples from each habitat type. Our results revealed that the hard substrata were much more heavily invaded than the soft substrata. Nearly all the hard substrata in Elkhorn Slough, as in most estuaries along the Pacific coast of North America, are artificial (jetties, rip-rap, docks). Some exotic species may by chance be better adapted to this novel habitat type than are natives. Two major vectors responsible for marine introductions, oyster culturing and ship-hull fouling, are also more likely to transport species associated with hard vs soft substrata. Secondly, we compared estuarine and open coast invasion rates. We examined species richness in Elkhorn Slough and adjacent rocky intertidal habitats along the Central California coast. The absolute number of exotic species in the estuary was an order of magnitude higher than along the open coast (58 vs 8 species), as was the percentage of the invertebrate fauna that was exotic (11% vs 1%). Estuaries on this coast are geologically young, heavily altered by humans, and subject to numerous transport vectors bringing invasive propagules: all these factors may explain why they are strikingly more invaded than the open coast. The finding that the more species rich habitat – the open coast – is less invaded is in contrast to many terrestrial examples, where native and exotic species richness appear to be positively correlated at a broad geographic scale.  相似文献   

5.
We examined coral reef communities at 11 sites within Mafia Island Marine Park using a point count method for substrate and visually censused belt transects for fish populations. Multivariate ordinations showed that the benthic habitat differed among reefs. The patterns were mainly attributed to variations in depth, hydrodynamics and benthic composition. In total, the substratum was dominated by dead coral (49%) and algae (25%), with a live coral cover of only 14%. Three hundred and ninety-four fish species belonging to 56 families were recorded. According to MDS-ordinations and RELATE procedures, fish assemblage composition varied among sites in concordance with the habitats provided. Sites with highest proportion of dead coral exhibited highest degree of dispersion in the multivariate ordinations of fish assemblages. Stepwise multiple regression was used to determine the proportion of variance among sites which could be explained by depth, exposure, rugosity, substrate diversity, branching substrate, live coral cover, dead coral cover and different types of algae. The results showed that habitat variables explained up to 92% of the variation in species numbers and in total, and taxon-specific, abundance. Live coral cover was the foremost predictor of both numerical and species abundance, as well as of corallivores, invertivores, planktivores and of the families Pomacentridae, Chaetodontidae and Pomacanthidae. Our results suggest that habitat characteristics play a dominant role in determining fish assemblage composition on coral reefs.  相似文献   

6.
Invasive bivalves often act as ecosystem engineers, generally causing physical alterations in the ecosystems in which they establish themselves. However, the effects of these physical alterations over benthic macroinvertebrate communities’ structure are less clear. The objective of this study was to characterize the ecological effects of the invasive bivalves Corbicula fluminea and Limnoperna fortunei on the structure of benthic macroinvertebrate communities in neo-tropical reservoirs. Three hypotheses were tested: (1) invasive bivalves act as facilitator species to other benthic macroinvertebrates, resulting in communities with higher number of species, abundance and diversity; (2) invasive bivalves change the taxonomic composition of benthic macroinvertebrate communities; (3) invasive bivalves increase the complexity of benthic macroinvertebrate communities. For that it was used data from 160 sampling sites from four reservoirs. We sampled sites once in each area, during the dry season from 2009 to 2012. The first hypothesis was rejected, as the presence of invasive bivalves significantly decreased the host benthic communities’ number of species and abundance. The second hypothesis was corroborated, as the composition of other benthic macroinvertebrates was shown to be significantly different between sites with and without invasive bivalves. We observed a shift from communities dominated by common soft substrate taxa, such as Chironomidae and Oligochaeta, to communities dominated by the invasive Gastropoda Melanoides tuberculata. The biomass data corroborated that, showing significantly higher biomass of M. tuberculata in sites with invasive bivalves, but significantly lower biomass of native species. Benthic macroinvertebrate communities presenting invasive bivalves showed significantly higher eco-exergy and specific eco-exergy, which corroborate the third hypothesis. These results suggest that while the presence of invasive bivalves limits the abundance of soft bottom taxa such as Chironomidae and Oligochaeta, it enhances benthic communities’ complexity and provide new energetic pathways to benthic communities in reservoirs. This study also suggests a scenario of invasion meltdown, as M. tuberculata was facilitated by the invasive bivalves.  相似文献   

7.
The influence of habitat structure on reef-fish communities at Bar Reef Marine Sanctuary, Sri Lanka, was investigated. The relationship between habitat characteristics and the distribution and abundance of 135 species of fishes was examined on two reef types: coral and sandstone reefs. Results suggested that the reef-fish communities were strongly influenced by various aspects of reef structure. However, relationships between habitat variables and fish communities structure, varied between the two reef types. Fish species diversity was correlated with a number of habitat variables on the sandstone reefs, although structural complexity seemed to play the dominant role. There were no correlations between habitat structure and fish diversity on the coral reefs. Total abundance was not related to any one habitat parameter on either reef type. However, abundances of some species, families and trophic groups were correlated with habitat features. These specific correlations were commonly related to food or shelter availability. For example, coral feeders were correlated with live coral cover, and pomacentrid species, which used branching corals for protection, showed a significant relationship with the density of Acropora colonies. This shows that a summary statistic such as total abundance may hide important information. Effects of habitat structure on the distribution patterns of the fish communities was further investigated using multi-dimensional scaling ordination (MDS) and the RELATE-procedure. With the MDS ordinations for both habitat and fish-community composition it was possible to show that the multivariate pattern between the two ecological components was clearly correlated.  相似文献   

8.
Several species of ecosystem engineers inhabiting coastal environments have been reported structuring different kinds of communities. The magnitude of this influence often depends on the habitat complexity introduced by the engineers. It is commonly accepted that an increase in habitat complexity will result in an increase in diversity and/or abundance in the associated fauna. The rocky salt marshes along the coast of Patagonia are dominated by cordgrasses, mussels, and barnacles forming a mosaic of engineered habitats with different complexity. This system allows us to address the following questions: how different is a macroinvertebrate assemblage when dominated by different ecosystem engineers? And, is there a positive relationship between increasing habitat complexity and the species richness, diversity and total density of the assemblages? To address these questions, we compared the three ecological scenarios with decreasing habitat complexity: cordgrass–mussel, mussel, and barnacle-engineered habitats. We found a total of 22 taxa mostly crustaceans and polychaetes common to all scenarios. The three engineered habitats showed different macroinvertebrate assemblages, mainly due to differences in individual abundances of some taxa. The cryptogenic amphipod Orchestia gammarella was found strictly associated with the cordgrass–mussel habitat. Species richness and diversity were positively related with habitat complexity while total density showed the opposite trend. Our study suggests that species vary their relative distribution and abundances in response to different habitat complexity. Nevertheless, the direction (i.e., neutral, positive or negative) and intensity of the community’s response seem to depend on the physiological requirements of the different species and their efficiency to readjust their local spatial distribution in the short term.  相似文献   

9.
In the northern Gulf of Mexico (GOM), reefs built by eastern oysters, Crassostrea virginica, provide critical habitat within shallow estuaries, and recent efforts have focused on restoring reefs to benefit nekton and benthic macroinvertebrates. We compared nekton and benthic macroinvertebrate assemblages at historic, newly created (<5 years) and old (>6 years) shell and rock substrate reefs. Using crab traps, gill‐nets, otter trawls, cast nets, and benthic macroinvertebrate collectors, 20 shallow reefs (<5 m) in the northern GOM were sampled throughout the summer of 2011. We compared nekton and benthic assemblage abundance, diversity and composition across reef types. Except for benthic macroinvertebrate abundance, which was significantly higher on old rock reefs as compared to historic reefs, all reefs were similar to historic reefs, suggesting created reefs provide similar support of nekton and benthic assemblages as historic reefs. To determine refuge value of oyster structure for benthic macroinvertebrates compared to bare bottom, we tested preferences of juvenile crabs across depth and refuge complexity in the presence and absence of adult blue crabs (Callinectes sapidus). Juveniles were more likely to use deep water with predators present only when provided oyster structure. Provision of structural material to support and sustain development of benthic and mobile reef communities may be the most important factor in determining reef value to these assemblages, with biophysical characteristics related to reef location influencing assemblage patterns in areas with structure; if so, appropriately locating created reefs is critical.  相似文献   

10.
Wang  S. B.  Hu  Q.  Sommerfeld  M.  & Chen  F. 《Journal of phycology》2003,39(S1):58-58
Coral reefs of US-held islands in the central Pacific Ocean are among the most pristine in the world and represent over 93% of the reef systems under United States jurisdiction. The remote location of many islands has limited past algal research, resulting in incomplete understanding of species diversity, quantity, and ecology. Starting in 2000, the Coral Reef Ecosystem Investigation (CREI) began rapid ecological assessments on many Pacific island reefs to monitor ecological changes in reef biota over time. During the past year, algal efforts have concentrated on the French Frigate Shoals (Northwestern Hawaiian Islands) where we have increased the number of algal species reported by 1000%. Additionally, species new to science, including Acrosymphyton brainardii and Scinaia huismanii, have been described. Quantitative field sampling using a photoquadrat method is revealing species of the green algae Halimeda and Microdicyton to be ecological dominants in many areas during late summer/early autumn. Preliminary analyses with Primer software show species composition and abundance of all benthic organisms to differ significantly between most field sites sampled. Additional benthic habitat mapping of Pacific island reefs by CREI researchers is breaking the long-held paradigm that macroalgal cover is minimal in healthy tropical reef systems. Videotape analyses of benthic communities often find over 50% algal cover from 1 to 20 meter depths in many locations. Common ratios of macroalgae, turf algae, and crustose coralline algae to corals, other benthic organisms and substrate types on US Pacific reefs are being calculated for the first time.  相似文献   

11.
Cascading effects of predator diversity and omnivory in a marine food web   总被引:4,自引:1,他引:3  
Over‐harvesting, habitat loss and exotic invasions have altered predator diversity and composition in a variety of communities which is predicted to affect other trophic levels and ecosystem functioning. We tested this hypothesis by manipulating predator identity and diversity in outdoor mesocosms that contained five species of macroalgae and a macroinvertebrate herbivore assemblage dominated by amphipods and isopods. We used five common predators including four carnivores (crabs, shrimp, blennies and killifish) and one omnivore (pinfish). Three carnivorous predators each induced a strong trophic cascade by reducing herbivore abundance and increasing algal biomass and diversity. Surprisingly, increasing predator diversity reversed these effects on macroalgae and altered algal composition, largely due to the inclusion and performance of omnivorous fish in diverse predator assemblages. Changes in predator diversity can cascade to lower trophic levels; the exact effects, however, will be difficult to predict due to the many complex interactions that occur in diverse food webs.  相似文献   

12.
The leopard shark (Triakis semifasciata) is one of the most common species of elasmobranch in California, and uses the shallow bays and estuaries of California extensively throughout its life history. To examine the role that tides and time of day play on the distribution and movements of leopard sharks in an estuarine environment, a total of 22 female leopard sharks (78–140 cm TL) were tagged with acoustic transmitters in Elkhorn Slough, California, USA. Eight sharks were manually tracked for 20–71.5 h, and 13 sharks were monitored for 4–280 days using an array of acoustic receivers. Overall, the distribution and movements of sharks were strongly influenced by the tides and to a lesser extent by period of day, although general patterns of movement differed depending on what region of Elkhorn Slough the sharks were using. In the main channel of Elkhorn Slough, sharks generally moved with the tide, maximizing the area over which they could forage on a more dispersed prey field. Conversely, leopard sharks within the Elkhorn Slough National Estuarine Research Reserve regularly swam against strong currents to remain in proximity to the intertidal mudflats. This high degree of fidelity to a specific region was probably due to an abundance of important prey in the area. These results indicate that movements, and thus the foraging ecology, of leopard sharks show a high degree of plasticity and are influenced by tidal stage, tidal current, availability of suitable habitat, and availability and distribution of important prey items.  相似文献   

13.
Globally, habitat degradation is altering the abundance and diversity of species in a variety of ecosystems. This study aimed to determine how habitat degradation, in terms of changing coral composition under climate change, affected abundance, species richness and aggressive behaviour of juveniles of three damselfishes (Pomacentrus moluccensis, P. amboinensis and Dischistodus perspicillatus, in order of decreasing reliance on coral). Patch reefs were constructed to simulate two types of reefs: present-day reefs that are vulnerable to climate-induced coral bleaching, and reefs with more bleaching-robust coral taxa, thereby simulating the likely future of coral reefs under a warming climate. Fish communities were allowed to establish naturally on the reefs during the summer recruitment period. Climate-robust reefs had lower total species richness of coral-reef fishes than climate-vulnerable reefs, but total fish abundance was not significantly different between reef types (pooled across all species and life-history stages). The nature of aggressive interactions, measured as the number of aggressive chases, varied according to coral composition; on climate-robust reefs, juveniles used the substratum less often to avoid aggression from competitors, and interspecific aggression became relatively more frequent than intraspecific aggression for juveniles of the coral-obligate P. moluccensis. This study highlights the importance of coral composition as a determinant of behaviour and diversity of coral-reef fishes.  相似文献   

14.
Within estuarine and coastal ecosystems globally, extensive habitat degradation and loss threaten critical ecosystem functions and necessitate widescale restoration efforts. There is abundant evidence that ecological processes and species interactions can vary with habitat characteristics, which has important implications for the design and implementation of restoration efforts aimed at enhancing specific ecosystem functions and services. We conducted an experiment examining how habitat characteristics (presence; edge vs. interior) influence the communities of resident fish and mobile invertebrates on restored oyster (Crassostrea virginica) reefs. Similar to previous studies, we found that restored reefs altered community composition and augmented total abundance and biomass relative to unstructured sand habitat. Community composition and biomass also differed between the edge and interior of individual reefs as a result of species-specific patterns over small spatial scales. These patterns were only weakly linked to oyster density, suggesting that other factors that vary between edge and interior (e.g. predator access or species interactions) are likely more important for community structure on oyster reefs. Fine-scale information on resident species' use of oyster reefs will help facilitate restoration by allowing decision makers to optimize the amount of edge versus interior habitat. To improve the prediction of faunal use and benefits from habitat restoration, we recommend investigations into the mechanisms shaping edge and interior preferences on oyster reefs.  相似文献   

15.
Coral reefs of US‐held islands in the central Pacific Ocean are among the most pristine in the world and represent over 93% of the reef systems under United States jurisdiction. The remote location of many islands has limited past algal research, resulting in incomplete understanding of species diversity, quantity, and ecology. Starting in 2000, the Coral Reef Ecosystem Investigation (CREI) began rapid ecological assessments on many Pacific island reefs to monitor ecological changes in reef biota over time. During the past year, algal efforts have concentrated on the French Frigate Shoals (Northwestern Hawaiian Islands) where we have increased the number of algal species reported by 1000%. Additionally, species new to science, including Acrosymphyton brainardii and Scinaia huismanii, have been described. Quantitative field sampling using a photoquadrat method is revealing species of the green algae Halimeda and Microdicyton to be ecological dominants in many areas during late summer/early autumn. Preliminary analyses with Primer software show species composition and abundance of all benthic organisms to differ significantly between most field sites sampled. Additional benthic habitat mapping of Pacific island reefs by CREI researchers is breaking the long‐held paradigm that macroalgal cover is minimal in healthy tropical reef systems. Videotape analyses of benthic communities often find over 50% algal cover from 1 to 20 meter depths in many locations. Common ratios of macroalgae, turf algae, and crustose coralline algae to corals, other benthic organisms and substrate types on US Pacific reefs are being calculated for the first time.  相似文献   

16.
蚂蚁通过构建蚁丘,提高了群落生境异质性,影响群落物种组成,甚至生态系统结构和功能。我们在川西北典型高寒草甸调查了平地(非蚁丘,即距离蚁丘4~5m的草地)和不同大小广布弓背蚁(Cam-ponotus herculeanus)蚁丘(小蚁丘、中蚁丘和大蚁丘3种,平均面积大小分别为309.45cm^2、948.45cm^2、2124.90cm^2)上的植物种类组成、物种多样性,以及每个物种的高度,盖度和多度,在此基础上分析了蚁丘植物群落演替进程中的优势种变迁及其机制。调查发现,与平地相比,天气晴朗条件下蚁丘的土壤温度在白天较高,而在夜晚较低,日变化的波动性较大;蚁丘中心的相对湿度低于边缘,更低于平地。群落结构分析表明,不同大小蚁丘之间植物物种丰富度和多样性差异不显著,但是优势种变化明显。随蚁丘增大,钩状嵩草(Kobresia uncinoides)的群落地位(重要值)逐渐上升,小、中、大蚁丘上的次优种分别为拉拉藤(Galium aparine)、羊茅(Festuca ovina)、垂穗披碱草(Elymus nutans)。蚁丘上禾草类优势度显著高于平地,而杂草类优势度则显著低于平地。平地上菊科(Compositae)和毛莨科(Ranunculaceae)植物占优势,蚁丘上莎草科(Cyperaceae)和禾本科(Gramineae)植物占优势。文中还讨论了蚁丘植物群落演替的可能机制,以及蚁丘对整个草甸群落组成和动态的潜在意义。  相似文献   

17.
Shore fish community structure off the Jordanian Red Sea coast was determined on fringing coral reefs and in a seagrass-dominated bay at 6 m and 12 m depths. A total of 198 fish species belonging to 121 genera and 43 families was recorded. Labridae and Pomacentridae dominated the ichthyofauna in terms of species richness and Pomacentridae were most abundant. Neither diversity nor species richness was correlated to depth. The abundance of fishes was higher at the deep reef slope, due to schooling planktivorous fishes. At 12 m depth abundance of fishes at the seagrass-dominated site was higher than on the coral reefs. Multivariate analysis demonstrated a strong influence on the fish assemblages by depth and benthic habitat. Fish species richness was positively correlated with hard substrate cover and habitat diversity. Abundance of corallivores was positively linked with live hard coral cover. The assemblages of fishes were different on the shallow reef slope, deep reef slope and seagrass meadows. An analysis of the fish fauna showed that the Gulf of Aqaba harbours a higher species richness than previously reported. The comparison with fish communities on other reefs around the Arabian Peninsula and Indian Ocean supported the recognition of an Arabian subprovince within the Indian Ocean. The affinity of the Arabian Gulf ichthyofauna to the Red Sea is not clear. Received in revised form: 2 November 2001 Electronic Publication  相似文献   

18.
The effects of non-native species invasions on community diversity and biotic homogenization have been described for various taxa in urban environments, but not for land snails. Here we relate the diversity of native and non-native land-snail urban faunas to urban habitat types and macroclimate, and analyse homogenization effects of non-native species across cities and within the main urban habitat types. Land-snail species were recorded in seven 1-ha plots in 32 cities of ten countries of Central Europe and Benelux (224 plots in total). Each plot represented one urban habitat type characterized by different management and a specific disturbance regime. For each plot, we obtained January, July and mean annual temperature and annual precipitation. Snail species were classified into either native or non-native. The effects of habitat type and macroclimate on the number of native and non-native species were analysed using generalized estimating equations; the homogenization effect of non-native species based on the Jaccard similarity index and homogenization index. We recorded 67 native and 20 non-native species. Besides being more numerous, native species also had much higher beta diversity than non-natives. There were significant differences between the studied habitat types in the numbers of native and non-native species, both of which decreased from less to heavily urbanized habitats. Macroclimate was more important for the number of non-native than native species; however in both cases the effect of climate on diversity was overridden by the effect of urban habitat type. This is the first study on urban land snails documenting that non-native land-snail species significantly contribute to homogenization among whole cities, but both the homogenization and diversification effects occur when individual habitat types are compared among cities. This indicates that the spread of non-native snail species may cause biotic homogenization, but it depends on scale and habitat type.  相似文献   

19.
There is often an inverse relationship between the diversity of a plant community and the invasibility of that community by non-native plants. Native herbivores that colonize novel plants may contribute to diversity–invasibility relationships by limiting the relative success of non-native plants. Here, we show that, in large collections of non-native oak trees at sites across the USA, non-native oaks introduced to regions with greater oak species richness accumulated greater leaf damage than in regions with low oak richness. Underlying this trend was the ability of herbivores to exploit non-native plants that were close relatives to their native host. In diverse oak communities, non-native trees were on average more closely related to native trees and received greater leaf damage than those in depauperate oak communities. Because insect herbivores colonize non-native plants that are similar to their native hosts, in communities with greater native plant diversity, non-natives experience greater herbivory.  相似文献   

20.
Symbiont-bearing foraminifera are used to study the effects of habitat deterioration on benthic communities in coral reefs dominated by macroalgae. It is shown that, despite their preference for nutrient deprived conditions, some symbiont-bearing foraminifera occur on reefs heavily affected by nutrient stress and macro-algal dominance, thus highlighting the need for a better understanding of the autecology of species and assemblages in these conditions. Both diversity and habitat fractionation increases as terrestrial and nutrient influence decline. The assemblage structure in the most nearshore reefs are dominated by generalist species, while, additionally, more specialistic species occur at the more offshore reefs. Apart from larger scale gradients in ambient seawater quality, local scale variation in physical environmental conditions, such as habitat structure, are important for the assemblage structure as well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号