首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
Summary The complete nucleotide sequences of the 1.5 kb regions of ColE2 and ColE3 plasmids containing the segments sufficient for autonomous replication have been determined. They are quite homologous (greater than 90%), indicating that these two plasmids share common mechanisms of initiation of replication and its regulation. An open reading frame with a coding capacity for a protein of about 300 amino acids is present in both ColE2 and ColE3 and it actually specifies the Rep (for replication) protein, which is the plasmid specific trans-acting factor required for autonomous replication. The amino acid sequences of the Rep proteins of ColE2 and ColE3 are quite homologous (greater than 90%). The cis-acting sites (origins) where replication initiates in the presence of the trans-acting factors consist of 32 bp for ColE2 and 33 bp for ColE3. They are the smallest of all the prokaryotic replication origins so far reported. They are nonhomologous only at two positions, one of which, a deletion of a single nucleotide in ColE2 (or an insertion in ColE3), determines the plasmid specificity in interaction of the origins with the Rep proteins. Both plasmids carry a region with an identical nucleotide sequence and the one in ColE2, the IncA region, has been shown to express incompatibility against both ColE2 and ColE3. These results indicate that these plasmids share a common IncA determinant. A possibility that a small antisense RNA is involved in copy number control and incompatibility (IncA function) was suggested.  相似文献   

2.
Summary We have localized the regions sufficient for autonomous replication on the genomes of the colicin E2 (ColE2) and colicin E3 (ColE3) plasmids and analyzed the replication functions carried by these regions. A 1.3 kb segment of each plasmid is sufficient for autonomous replication. Plasmids carrying this segment retain the replication properties of the original plasmid. The 1.3 kb segment consists of three functional portions. Firstly, a 0.9 kb region which specifies at least one trans-acting factor required for replication of each plasmid. Secondly, a 0.4 kb region located adjacent to one end of the 0.9 kb region, which is required for expression of the trans-acting factor(s) and probably contains the promoter. The region across the border of these two portions of ColE2 is involved in copy number control of the plasmid. The third portion is a 50 bp region adjacent to the other end of the 0.9 kb region, which contains a cis-acting site (origin) where replication initiates in the presence of the trans-acting factor(s). The action of the trans-acting factor(s) on the origin is plasmid specific. The 50 bp regions functioning as the origins of replication of ColE2 and ColE3 are the smallest among those in prokaryotic replicons so far identified and analyzed.  相似文献   

3.
The plasmid ColE2-P9 origin is a 32-bp region which is specifically recognized by the plasmid-specified Rep protein to initiate DNA replication. We analyzed the structural and functional organization of the ColE2 origin by using various derivatives carrying deletions and single-base-pair substitutions. The origin may be divided into three subregions: subregion I, which is important for stable binding of the Rep protein; subregion II, which is important for binding of the Rep protein and for initiation of DNA replication; and subregion III, which is important for DNA replication but apparently not for binding of the Rep protein. The Rep protein might recognize three specific DNA elements in subregions I and II. The relative transformation frequency of the autonomously replicating plasmids carrying deletions in subregion I is lower, and nevertheless the copy numbers of these plasmids in host bacteria are higher than those of the wild-type plasmid. Efficient and stable binding of the Rep protein to the origin might be important for the replication efficiency to be at the normal (low) level. Subregion II might be essential for interaction with the catalytic domain of the Rep protein for primer RNA synthesis. The 8-bp sequence across the border of subregions II and III, including the primer sequence, is conserved in the (putative) origins of many plasmids, the putative Rep proteins of which are related to the ColE2-P9 Rep protein. Subregion III might be required for a step that is necessary after Rep protein binding has taken place.  相似文献   

4.
Summary We have identified and localized two incompatibility determinants (IncA and IncB) within a 1.3 kb segment of ColE2 sufficient for autonomous replication. The IncA determinant is localized in a region shorter than 250 bp and expresses incompatibility against both ColE2 and ColE3. The region which determines sensitivity to the IncA determinant seems to overlap with the region specifying the IncA determinant. The expression of the trans-acting factor(s) specifically required for replication of ColE2 interferes with expression of the IncA determinant against ColE2 but not against ColE3. The IncA determinant might be at least partly responsible for the copy number control of the plasmid. The IncB determinant is localized in a 50 bp region (origin) which is sufficient for initiation of replication in the presence of the trans-acting factor(s). The IncB determinant is specific for ColE2 and seems to be due to titration of the trans-acting essential replication factor(s) by binding.  相似文献   

5.
The plasmid ColE2-P9 (ColE2) origin (32bp) is specifically recognized by the plasmid-specified Rep protein that initiates DNA replication. The ColE2 origin is divided into at least three functional subregions (I, II, and III), and three sites (a, b, and c) found in subregions I and II play important roles in Rep protein binding. We performed SELEX experiments of plasmid ColE2 to determine the optimal sequences for specific binding of the Rep protein. From these experiments, we obtained a common 16-bp sequence (5'-TGAGACCANATAAGCC-3'), which corresponds to about one half of the minimal ColE2 origin and contains sites a and b. Gel mobility shift assays using single-point mutant origins and the Rep protein further indicated that high affinity sequence-specific recognition by the Rep protein requires sites a, b, and c, but that mutations in site c were less disruptive to this recognition than those in sites a and b.  相似文献   

6.
The plasmid ColE2-P9 Rep protein specifically binds to the cognate replication origin to initiate DNA replication. The replicons of the plasmids ColE2-P9 and ColE3-CA38 are closely related, although the actions of the Rep proteins on the origins are specific to the plasmids. The previous chimera analysis identified two regions, regions A and B, in the Rep proteins and two sites, alpha and beta, in the origins as specificity determinants and showed that when each component of the region A-site alpha pair and the region B-site beta pair is derived from the same plasmid, plasmid DNA replication is efficient. It is also indicated that the replication specificity is mainly determined by region A and site alpha. By using an electrophoretic mobility shift assay, we demonstrated that region B and site beta play a critical role for stable Rep protein-origin binding and, furthermore, that 284-Thr in this region of the ColE2 Rep protein and the corresponding 293-Trp of the ColE3 Rep protein mainly determine the Rep-origin binding specificity. On the other hand, region A and site alpha were involved in the efficient unwinding of several nucleotide residues around site alpha, although they were not involved in the stable binding of the Rep protein to the origin. Finally, we discussed how the action of the Rep protein on the origin involving these specificity determinants leads to the plasmid-specific replication initiation.  相似文献   

7.
S Takechi  H Matsui    T Itoh 《The EMBO journal》1995,14(20):5141-5147
Initiation of in vitro ColE2 DNA replication requires the plasmid-specified Rep protein and DNA polymerase I but not RNA polymerase and DnaG primase. The ColE2 Rep protein binds specifically to the origin where replication initiates. Leading-strand synthesis initiates at a unique site in the origin and lagging-strand DNA synthesis terminates at another unique site in the origin. Here we show that the primer RNA for leading-strand synthesis at the origin has a unique structure of 5'-ppApGpA. We reconstituted the initiation reaction of leading-strand DNA synthesis by using purified proteins, the ColE2 Rep protein, Escherichia coli DNA polymerase I and SSB, and we showed that the ColE2 Rep protein is a priming enzyme, primase, which is specific for the ColE2 origin. The ColE2 Rep protein is unique among other primases in that it recognizes the origin region and synthesizes the primer RNA at a fixed site in the origin region. Specific requirement for ADP as a substrate and its direct incorporation into the 5' end of the primer RNA are also unique properties of the ColE2 Rep protein.  相似文献   

8.
The Rep proteins of some plasmid replicons have two functions. Dimers bind to the operator sequences acting as auto-repressors, whereas monomers bind to the iterons to initiate replication of DNA. The ColE2 Rep proteins are present mostly in a dimeric form with some multimers larger than dimers in solution, while the form of Rep binding to Ori is not known. We used an EMSA-based method to determine the molecular weight of Rep in the Rep-Ori complex. The result suggested that Rep binds to Ori as a monomer. In addition, the result of EMSA using the Rep protein fused with the maltose binding protein and the His6-tag also supported this conclusion. We proposed that dimerization of Rep might probably be involved in keeping the copy number of the ColE2 plasmid at the normal low level by limiting the amount of active monomeric forms of Rep in the host cell.  相似文献   

9.
Nagase T  Nishio S  Itoh T 《Plasmid》2008,59(1):36-44
Translation initiation of mRNA encoding the plasmid-specified initiator protein (Rep) required for initiation of the ColE2 plasmid DNA replication is fairly efficient in Escherichia coli despite the absence of a canonical Shine-Dalgarno sequence. Although a GA cluster sequence exists upstream the initiation codon, its activity as the SD sequence has been shown to be very inefficient. Deletion analyses have shown that there are sequences important for the Rep translation in the regions upstream the GA cluster sequence and downstream the initiation codon. To further define regions important for translation of the Rep mRNA, a set of the ColE2 rep genes bearing single-base substitution mutations in the coding region near the initiation codon was generated and their translation activities examined. We showed that translation of the Rep mRNA was reduced by some of these mutations in a region ranging at least 70 nucleotides from the initiation codon in the coding region, indicating the presence of translation enhancer(s) outside the translation initiation region which is covered by the ribosome bound to the initiation codon. Some of them seem to be essential and specific for translation of the ColE2 Rep mRNA due to the absence of a canonical SD sequence.  相似文献   

10.
The ColE2 DNA can be replicated in an in vitro system consisting of a crude extract of Escherichia coli cells. DNA synthesis requires a plasmid-coded protein (Rep) and host DNA polymerase I but not host RNA polymerase. Replication starts at a fixed region containing the origin and proceeds unidirectionally. The leading- and lagging-strand DNA fragments synthesized around the origin were identified from early replicative intermediates. The 5' end of the leading-strand DNA fragment was mapped at a unique position in the minimal origin and carried RNA of a few residues. The results suggested that the initiation of the leading-strand DNA synthesis does not require the host DnaG protein. Thus the Rep protein itself seems to be a primase. Synthesis of the primer RNA at a fixed site in the origin region on a double-stranded DNA template is a unique property of the ColE2 Rep protein among other known primases. The 3' end of the lagging-strand DNA fragment was mapped at a unique position just at the end of the minimal origin region. Termination of the lagging-strand DNA fragment at that position seems to be the mechanism of the unidirectional replication of ColE2 plasmid.  相似文献   

11.
Nagase T  Nishio SY  Itoh T 《Plasmid》2007,58(3):249-260
Translation initiation of mRNA encoding the Rep protein of the ColE2 plasmid required for initiation of plasmid DNA replication is fairly efficient in Escherichia coli cells despite the absence of a canonical Shine-Dalgarno sequence. To define sequences and structural elements responsible for translation efficiency of the Rep mRNA, a series of rep-lacZalpha translational fusions bearing various mutations in the region encoding the leader region of the Rep mRNA was generated and tested for the translation activity by measuring the beta-galactosidase activity. We showed that the region rich in A and U between the stem-loop II structure and GA cluster sequence, formation of the stem-loop II structure, but not its sequence, and the region between the GA cluster sequence and initiation codon are important along with the GA cluster sequence for efficient translation of the Rep protein. The existence of these important regions in the leader region of the Rep mRNA may explain the mechanism of inhibition of the Rep protein translation by an antisense RNA (RNAI), which is complementary to the leader region.  相似文献   

12.
S Hiraga  T Sugiyama    T Itoh 《Journal of bacteriology》1994,176(23):7233-7243
The incA gene product of ColE2-P9 and ColE3-CA38 plasmids is an antisense RNA that regulates the production of the plasmid-coded Rep protein essential for replication. The Rep protein specifically binds to the origin and synthesizes a unique primer RNA at the origin. The IncB incompatibility is due to competition for the Rep protein among the origins of the same binding specificity. We localized the regions sufficient for autonomous replication of 15 ColE plasmids related to ColE2-P9 and ColE3-CA38 (ColE2-related plasmids), analyzed their incompatibility properties, and determined the nucleotide sequences of the replicon regions of 9 representative plasmids. The results suggest that all of these plasmids share common mechanisms for initiation of DNA replication and its control. Five IncA specificity types, 4 IncB specificity types, and 9 of the 20 possible combinations of the IncA and IncB types were found. The specificity of interaction of the Rep proteins and the origins might be determined by insertion or deletion of single nucleotides and substitution of several nucleotides at specific sites in the origins and by apparently corresponding insertion or deletion and substitution of amino acid sequences at specific regions in the C-terminal portions of the Rep proteins. For plasmids of four IncA specificity types, the nine-nucleotide sequences at the loop regions of the stem-loop structures of antisense RNAs are identical, suggesting an evolutionary significance of the sequence. The mosaic structures of the replicon regions with homologous and nonhomologous segments suggest that some of them were generated by exchanging functional parts through homologous recombination.  相似文献   

13.
M Kido  H Yasueda    T Itoh 《Nucleic acids research》1991,19(11):2875-2880
The product of the rep gene of ColE2 is required for initiation of ColE2 DNA replication. The rep gene was placed under the control of the promoters, PL and PR, and the heat-labile cl857 repressor of bacteriophage lambda. The Rep protein was identified as a 35 Kd protein by the maxicell method in combination with heat-induced expression. The protein was efficiently expressed from these promoters in unirradiated cells and accumulated up to a few per cent of the total cellular proteins. It was partially purified (about 80% pure) and its properties examined. The amino acid sequence of the amino terminal portion of the partially purified protein agreed well with that predicted from the nucleotide sequence of the rep gene. One of the characteristic features of the rep gene is frequent usage of rare codons, especially those for arginine. The protein specifically stimulated replication of ColE2 DNA but not that of ColE3 DNA in crude cell extracts of Escherichia coli. Specific binding of the protein to plasmid DNA containing the origin region of ColE2 was demonstrated by the filter binding method. Neither endonuclease activity nor topoisomerase activity was detected by using ColE2 DNA.  相似文献   

14.
15.
Summary Approximately 200,000 clones of Escherichia coli carrying mutagen-treated colicinogenic plasmid E1 (ColE1) were examined for irreversible loss of the plasmid at 43°. Thirty of these clones that appeared to be most defective in plasmid DNA replication at the non-permissive temperature were selected for the study of: (a) the kinetics of plasmid and chromosomal DNA replication during a temperature shift in either the presence or absence of chloramphenicol; (b) the temperature stability of the plasmid DNA-protein relaxation complex; and (c) the temperature effect on F-promoted conjugal transfer. Two mutant plasmids, pJC307 and pJC301, showed defects in their relaxation complex. The relaxation complex of pJC307 exhibited an altered temperature stability in vitro. Reversion to temperature resistant replication resulted in four out of five cases in a concomitant change in the temperature stability of the relaxation complex. Conjugal mobility of this mutant was not markedly reduced at the permissive or non-permissive temperature. Plasmid pJC301 could not be isolated in the form of a relaxation complex and it was very poorly mobilized in an F-promoted conjugation. These results indicate that the ColE1 plasmid codes for at least one of the proteins of the relaxation complex and that the relaxation complex is involved in ColE1 DNA replication. In addition, the properties of the mutant plasmid pJC301 are consistent with a role for the complex in the mobilization of ColE1 during conjugation.  相似文献   

16.
Starting from pAO3, a plasmid consisting of a quarter of colicinogenic factor E1 (ColE1) DNA, various small ColE1 derivatives were constructed by in vitro recombination and their ability to achieve autonomous replication was examined. The 436 base pair HaeIII-C fragment of pAO3 contained information for replication when it was recombined with the non-replicating Amp fragment. However, when it was connected to other DNA fragments, the resulting hybrid molecules were not isolated as plasmids. The present results indicate that the additional region of about 240 base pairs next to the HaeIII-C fragment of ColE1 is also essential for the maintenance of a plasmid state. Moreover, using various small ColE1 derivatives, the DNA region responsible for the interference and incompatibility functions of ColE1 DNAs was located. The results indicate that the interference and incompatibility functions are coded by the same ColE1 DNA segment and are not essential for the maintenance of a plasmid state.  相似文献   

17.
Deletion mutants of plasmid ColE1 that involve the replication origin and adjacent regions of the plasmid have been studied to determine the mechanism by which those mutations affect the expression of plasmid incompatibility. It was observed that (i) a region of ColE1 that is involved in the expression of plasmid incompatibility lies between base pairs -185 and -684; (ii) the integrity of at least part of the region of ColE1 DNA between base pairs -185 and -572 is essential for the expression of ColE1 incompatibility; (iii) the expression of incompatibility is independent of the ability of the ColE1 genome to replicate autonomously; (iv) plasmid incompatibility is affected by plasmid copy number; and (v) ColE1 plasmid-mediated DNA replication of the lambda phage-ColE1 chimera lambda imm434 Oam29 Pam3 ColE1 is inhibited by ColE1-incompatible but not by ColE1-compatible plasmids.  相似文献   

18.
Han M  Yagura M  Itoh T 《Journal of bacteriology》2007,189(3):1061-1071
The replication initiator protein (Rep) of plasmid ColE2-P9 (ColE2) is multifunctional. We are interested in how Rep binds to the origin (Ori) to perform various functions. We used the wild type and variants of Rep to study the Rep-Ori interaction by both in vitro and in vivo approaches, including biochemical analyses of protein-DNA interactions and an in vivo replication assay. We identified three regions (I, II, and III) of Rep, located in the C-terminal half, and three corresponding binding sites (I, II, and III) in Ori which are important for Rep-Ori interaction. We showed that region I, containing a putative helix-turn-helix motif, is necessary and sufficient for specific Ori recognition, interacting with site I of the origin DNA from the major groove. Region II interacts with site II of the origin DNA, from the adjacent minor groove in the left half of Ori, and region III interacts with site III, next to the template sequence for primer synthesis, which is one and one-half turn apart from site I on the opposite surface of the origin DNA. A putative linker region located between the two DNA binding domains (regions II and III) was identified, which might provide Rep an extended conformation suitable for binding to the two separate sites in Ori. Based on the results presented in this paper, we propose a model for Rep-Ori interaction in which Rep binds to Ori as a monomer.  相似文献   

19.
Construction and characterization of a class of multicopy plasmid cloning vehicles containing the replication system of miniplasmid P15A are described. The constructed plasmids have cleavage sites within antibiotic resistance genes for a variety of commonly employed site-specific endonucleases, permitting convenient use of the insertional inactivation procedure for the selection of clones that contain hybrid DNA molecules. Although the constructed plasmids showed DNA sequence homology with the ColE1 plasmid within the replication region, were amplifiable by chloramphenicol or spectinomycin, required DNA polymerase I for replication, and shared other replication properties with ColE1, they were nevertheless compatible with ColE1. P15A-derived plasmids were not self-transmissible and were mobilized poorly by Hfr strains; however, mobilization was complemented by the presence of a ColE1 plasmid within the same cell.  相似文献   

20.
The site-specific recombination system used by multicopy plasmids of the ColE1 family uses two identical plasmid-encoded recombination sites and four bacterial proteins to catalyze the recombination reaction. In the case of the Escherichia coli plasmid ColE1, the recombination site, cer, is a 280 by DNA sequence which is acted on by the products of the argR, pepA, xerC and xerD genes. We have constructed a model system to study this recombination system, using tandemly repeated recombination sites from the plasmids ColE1 and NTP16. These plasmids have allowed us precisely to define the region of strand exchange during site-specific recombination, and to derive a model for cer intramolecular site-specific recombination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号