首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Treatment of purified Rubisco with agents that specifically oxidize cysteine-thiol groups causes catalytic inactivation and increased proteolytic sensitivity of the enzyme. It has been suggested that these redox properties may sustain a mechanism of regulating Rubisco activity and turnover during senescence or stress. Current research efforts are addressing the structural basis of the redox modulation of Rubisco and the identification of critical cysteines. Redox shifts result in Rubisco conformational changes as revealed by the alteration of its proteolytic fragmentation pattern upon oxidation. In particular, the augmented susceptibility of Rubisco to proteases is due to increased exposure of a small loop (between Ser61 and Thr68) when oxidized. Progressive oxidation of Rubisco cysteines using disulphide/thiol mixtures at different ratios have shown that inactivation occurs under milder oxidative conditions than proteolytic sensitization, suggesting the involvement of different critical cysteines. Site-directed mutagenesis of conserved cysteines in the Chlamydomonas reinhardtii Rubisco identified Cys449 and Cys459 among those involved in oxidative inactivation, and Cys172 and Cys192 as the specific target for arsenite. The physiological importance of Rubisco redox regulation is supported by the in vivo response of the cysteine mutants to stress conditions. Substitution of Cys172 caused a pronounced delay in stress-induced Rubisco degradation, while the replacement of the functionally redundant Cys449-Cys459 pair resulted in an enhanced catabolism with a faster high-molecular weight polymerization and translocation to membranes. These results suggest that several cysteines contribute to a sequence of conformational changes that trigger the different stages of Rubisco catabolism under increasing oxidative conditions.  相似文献   

2.
Proximal Cys(172) and Cys(192) in the large subunit of the photosynthetic enzyme Rubisco (ribulose-1,5-bisphosphate carboxylase/oxygenase; EC 4.1.1.39) are evolutionarily conserved among cyanobacteria, algae and higher plants. Mutation of Cys(172) has been shown to affect the redox properties of Rubisco in vitro and to delay the degradation of the enzyme in vivo under stress conditions. Here, we report the effect of the replacement of Cys(172) and Cys(192) by serine on the catalytic properties, thermostability and three-dimensional structure of Chlamydomonas reinhardtii Rubisco. The most striking effect of the C172S substitution was an 11% increase in the specificity factor when compared with the wild-type enzyme. The specificity factor of C192S Rubisco was not altered. The V(c) (V(max) for carboxylation) was similar to that of wild-type Rubisco in the case of the C172S enzyme, but approx. 30% lower for the C192S Rubisco. In contrast, the K(m) for CO(2) and O(2) was similar for C192S and wild-type enzymes, but distinctly higher (approximately double) for the C172S enzyme. C172S Rubisco showed a critical denaturation temperature approx. 2 degrees C lower than wild-type Rubisco and a distinctly higher denaturation rate at 55 degrees C, whereas C192S Rubisco was only slightly more sensitive to temperature denaturation than the wild-type enzyme. X-ray crystal structures reveal that the C172S mutation causes a shift of the main-chain backbone atoms of beta-strand 1 of the alpha/beta-barrel affecting a number of amino acid side chains. This may cause the exceptional catalytic features of C172S. In contrast, the C192S mutation does not produce similar structural perturbations.  相似文献   

3.
The MarR/DUF24‐type repressor YodB controls the azoreductase AzoR1, the nitroreductase YodC and the redox‐sensing regulator Spx in response to quinones and diamide in Bacillus subtilis. Previously, we showed using a yodBCys6‐Ala mutant that the conserved Cys6 apparently contributes to the DNA‐binding activity of YodB in vivo. Here, we present data that mutation of Cys6 to Ser led to a form of the protein that was reduced in redox‐sensing in response to diamide and 2‐methylhydroquinone (MHQ) in vivo. DNA‐binding experiments indicate that YodB is regulated by a reversible thiol‐modification in response to diamide and MHQ in vitro. Redox‐regulation of YodB involves Cys6‐Cys101' intermolecular disulfide formation by diamide and quinones in vitro. Diagonal Western blot analyses confirm the formation of intersubunit disulfides in YodB in vivo that require the conserved Cys6 and either of the C‐terminal Cys101' or Cys108' residues. This study reveals a thiol‐disulfide switch model of redox‐regulation for the YodB repressor to sense electrophilic compounds in vivo.  相似文献   

4.
Ribulose‐1,5‐bisphosphate carboxylase/oxygenase (Rubisco) plays a critical role in sustaining life by catalysis of carbon fixation in the Calvin–Benson pathway. Incomplete knowledge of the assembly pathway of chloroplast Rubisco has hampered efforts to fully delineate the enzyme's properties, or seek improved catalytic characteristics via directed evolution. Here we report that a Mu transposon insertion in the Zea mays (maize) gene encoding a chloroplast dimerization co‐factor of hepatocyte nuclear factor 1 (DCoH)/pterin‐4α‐carbinolamine dehydratases (PCD)‐like protein is the causative mutation in a seedling‐lethal, Rubisco‐deficient mutant named Rubisco accumulation factor 2 (raf21). In raf2 mutants newly synthesized Rubisco large subunit accumulates in a high‐molecular weight complex, the formation of which requires a specific chaperonin 60‐kDa isoform. Analogous observations had been made previously with maize mutants lacking the Rubisco biogenesis proteins RAF1 and BSD2. Chemical cross‐linking of maize leaves followed by immunoprecipitation with antibodies to RAF2, RAF1 or BSD2 demonstrated co‐immunoprecipitation of each with Rubisco small subunit, and to a lesser extent, co‐immunoprecipitation with Rubisco large subunit. We propose that RAF2, RAF1 and BSD2 form transient complexes with the Rubisco small subunit, which in turn assembles with the large subunit as it is released from chaperonins.  相似文献   

5.
Ribulose‐1,5‐bisphosphate carboxylase/oxygenase (Rubisco) plays a central role in carbon dioxide fixation on our planet. Rubisco from a hyperthermophilic archaeon Thermococcus kodakarensis (Tk‐Rubisco) shows approximately twenty times the activity of spinach Rubisco at high temperature, but only one‐eighth the activity at ambient temperature. We have tried to improve the activity of Tk‐Rubisco at ambient temperature, and have successfully constructed several mutants which showed higher activities than the wild‐type enzyme both in vitro and in vivo. Here, we designed new Tk‐Rubisco mutants based on its three‐dimensional structure and a sequence comparison of thermophilic and mesophilic plant Rubiscos. Four mutations were introduced to generate new mutants based on this strategy, and one of the four mutants, T289D, showed significantly improved activity compared to that of the wild‐type enzyme. The crystal structure of the Tk‐Rubisco T289D mutant suggested that the increase in activity was due to mechanisms distinct from those involved in the improvement in activity of Tk‐Rubisco SP8, a mutant protein previously reported to show the highest activity at ambient temperature. Combining the mutations of T289D and SP8 successfully generated a mutant protein (SP8‐T289D) with the highest activity to date both in vitro and in vivo. The improvement was particularly pronounced for the in vivo activity of SP8‐T289D when introduced into the mesophilic, photosynthetic bacterium Rhodopseudomonas palustris, which resulted in a strain with nearly two‐fold higher specific growth rates compared to that of a strain harboring the wild‐type enzyme at ambient temperature. Proteins 2016; 84:1339–1346. © 2016 Wiley Periodicals, Inc.  相似文献   

6.
Previous work has indicated that the turnover of chloroplast ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco; EC 4.1.1. 39) may be controlled by the redox state of certain cysteine residues. To test this hypothesis, directed mutagenesis and chloroplast transformation were employed to create a C172S substitution in the Rubisco large subunit of the green alga Chlamydomonas reinhardtii. The C172S mutant strain was not substantially different from the wild type with respect to growth rate, and the purified mutant enzyme had a normal circular dichroism spectrum. However, the mutant enzyme was inactivated faster than the wild-type enzyme at 40 and 50 degrees C. In contrast, C172S mutant Rubisco was more resistant to sodium arsenite, which reacts with vicinal dithiols. The effect of arsenite may be directed to the cysteine 172/192 pair that is present in the wild-type enzyme, but absent in the mutant enzyme. The mutant enzyme was also more resistant to proteinase K in vitro at low redox potential. Furthermore, oxidative (hydrogen peroxide) or osmotic (mannitol) stress-induced degradation of Rubisco in vivo was delayed in C172S mutant cells relative to wild-type cells. Thus, cysteine residues could play a role in regulating the degradation of Rubisco under in vivo stress conditions.  相似文献   

7.
Oxidation of the cysteines from ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO) leads to inactivation and promotes structural changes that increase the proteolytic sensitivity and membrane association propensity related to its catabolism. To uncover the individual role of the different cysteines, the sequential order of modification under increasing oxidative conditions was determined using chemical labeling and mass spectrometry. Besides, site-directed RubisCO mutants were obtained in Chlamydomonas reinhardtii replacing single conserved cysteines (Cys84, Cys172, Cys192, Cys247, Cys284, Cys427, Cys459 from the large and sCys41, sCys83 from the small subunit) and the redox properties of the mutant enzymes were determined. All mutants retained significant carboxylase activity and grew photoautotrophically, indicating that these conserved cysteines are not essential for catalysis. Cys84 played a noticeable structural role, its replacement producing a structurally altered enzyme. While Cys247, Cys284, and sCys83 were not affected by the redox environment, all other residues were oxidized using a disulfide/thiol ratio of around two, except for Cys172 whose oxidation was distinctly delayed. Remarkably, Cys192 and Cys427 were apparently protective, their absence leading to a premature oxidation of critical residues (Cys172 and Cys459). These cysteines integrate a regulatory network that modulates RubisCO activity and conformation in response to oxidative conditions.  相似文献   

8.
Reactive oxidative species (ROS) and S‐glutathionylation modulate the activity of plant cytosolic triosephosphate isomerases (cTPI). Arabidopsis thaliana cTPI (AtcTPI) is subject of redox regulation at two reactive cysteines that function as thiol switches. Here we investigate the role of these residues, AtcTPI‐Cys13 and At‐Cys218, by substituting them with aspartic acid that mimics the irreversible oxidation of cysteine to sulfinic acid and with amino acids that mimic thiol conjugation. Crystallographic studies show that mimicking AtcTPI‐Cys13 oxidation promotes the formation of inactive monomers by reposition residue Phe75 of the neighboring subunit, into a conformation that destabilizes the dimer interface. Mutations in residue AtcTPI‐Cys218 to Asp, Lys, or Tyr generate TPI variants with a decreased enzymatic activity by creating structural modifications in two loops (loop 7 and loop 6) whose integrity is necessary to assemble the active site. In contrast with mutations in residue AtcTPI‐Cys13, mutations in AtcTPI‐Cys218 do not alter the dimeric nature of AtcTPI. Therefore, modifications of residues AtcTPI‐Cys13 and AtcTPI‐Cys218 modulate AtcTPI activity by inducing the formation of inactive monomers and by altering the active site of the dimeric enzyme, respectively. The identity of residue AtcTPI‐Cys218 is conserved in the majority of plant cytosolic TPIs, this conservation and its solvent‐exposed localization make it the most probable target for TPI regulation upon oxidative damage by reactive oxygen species. Our data reveal the structural mechanisms by which S‐glutathionylation protects AtcTPI from irreversible chemical modifications and re‐routes carbon metabolism to the pentose phosphate pathway to decrease oxidative stress.  相似文献   

9.
Ribulose‐1,5‐bisphosphate carboxylase/oxygenase (Rubisco) mediates the fixation of atmospheric CO2 in photosynthesis by catalyzing the carboxylation of the 5‐carbon sugar ribulose‐1,5‐bisphosphate (RuBP). Despite its pivotal role, Rubisco is an inefficient enzyme and thus has been a key target for bioengineering. However, efforts to increase crop yields by Rubisco engineering remain unsuccessful, due in part to the complex machinery of molecular chaperones required for Rubisco biogenesis and metabolic repair. While the large subunit of Rubisco generally requires the chaperonin system for folding, the evolution of the hexadecameric Rubisco from its dimeric precursor resulted in the dependence on an array of additional factors required for assembly. Moreover, Rubisco function can be inhibited by a range of sugar‐phosphate ligands. Metabolic repair of Rubisco depends on remodeling by the ATP‐dependent Rubisco activase and hydrolysis of inhibitors by specific phosphatases. This review highlights our work toward understanding the structure and mechanism of these auxiliary machineries.  相似文献   

10.
Introducing a carbon‐concentrating mechanism and a faster Rubisco enzyme from cyanobacteria into higher plant chloroplasts may improve photosynthetic performance by increasing the rate of CO2 fixation while decreasing losses caused by photorespiration. We previously demonstrated that tobacco plants grow photoautotrophically using Rubisco from Synechococcus elongatus, although the plants exhibited considerably slower growth than wild‐type and required supplementary CO2. Because of concerns that vascular plant assembly factors may not be adequate for assembly of a cyanobacterial Rubisco, prior transgenic plants included the cyanobacterial chaperone RbcX or the carboxysomal protein CcmM35. Here we show that neither RbcX nor CcmM35 is needed for assembly of active cyanobacterial Rubisco. Furthermore, by altering the gene regulatory sequences on the Rubisco transgenes, cyanobacterial Rubisco expression was enhanced and the transgenic plants grew at near wild‐type growth rates, although still requiring elevated CO2. We performed detailed kinetic characterization of the enzymes produced with and without the RbcX and CcmM35 cyanobacterial proteins. These transgenic plants exhibit photosynthetic characteristics that confirm the predicted benefits of introduction of non‐native forms of Rubisco with higher carboxylation rate constants in vascular plants and the potential nitrogen‐use efficiency that may be achieved provided that adequate CO2 is available near the enzyme.  相似文献   

11.
12.
Cysteine glutathione peroxidases (CysGPxs) control oxidative stress levels by reducing hydroperoxides at the expense of cysteine thiol (‐SH) oxidation, and the recovery of their peroxidatic activity is generally accomplished by thioredoxin (Trx). Corynebacterium glutamicum mycothiol peroxidase (Mpx) is a member of the CysGPx family. We discovered that its recycling is controlled by both the Trx and the mycothiol (MSH) pathway. After H2O2 reduction, a sulfenic acid (‐SOH) is formed on the peroxidatic cysteine (Cys36), which then reacts with the resolving cysteine (Cys79), forming an intramolecular disulfide (S‐S), which is reduced by Trx. Alternatively, the sulfenic acid reacts with MSH and forms a mixed disulfide. Mycoredoxin 1 (Mrx1) reduces the mixed disulfide, in which Mrx1 acts in combination with MSH and mycothiol disulfide reductase as a biological relevant monothiol reducing system. Remarkably, Trx can also take over the role of Mrx1 and reduce the Mpx‐MSH mixed disulfide using a dithiol mechanism. Furthermore, Mpx is important for cellular survival under H2O2 stress, and its gene expression is clearly induced upon H2O2 challenge. These findings add a new dimension to the redox control and the functioning of CysGPxs in general.  相似文献   

13.
The regulation of Rubisco, the gatekeeper of carbon fixation into the biosphere, by its molecular chaperone Rubisco activase (Rca) is essential for photosynthesis and plant growth. Using energy from ATP hydrolysis, Rca promotes the release of inhibitors and restores catalytic competence to Rubisco‐active sites. Rca is sensitive to moderate heat stress, however, and becomes progressively inhibited as the temperature increases above the optimum for photosynthesis. Here, we identify a single amino acid substitution (M159I) that fundamentally alters the thermal and regulatory properties of Rca in bread wheat (Triticum aestivum L.). Using site‐directed mutagenesis, we demonstrate that the M159I substitution extends the temperature optimum of the most abundant Rca isoform by 5°C in vitro, while maintaining the efficiency of Rubisco activation by Rca. The results suggest that this single amino acid substitution acts as a thermal and regulatory switch in wheat Rca that can be exploited to improve the climate resilience and efficiency of carbon assimilation of this cereal crop as temperatures become warmer and more volatile.  相似文献   

14.
The cytochrome c maturation process is carried out in the bacterial periplasm, where some specialized thiol‐disulfide oxidoreductases work in close synergy for the correct reduction of oxidized apocytochrome before covalent heme attachment. We present a structural and functional characterization of the soluble periplasmic domain of CcmG from the opportunistic pathogen P. aeruginosa (Pa‐CcmG), a component of the protein machinery involved in cyt c maturation in gram‐negative bacteria. X‐ray crystallography reveals that Pa‐CcmG is a TRX‐like protein; high‐resolution crystal structures show that the oxidized and the reduced forms of the enzyme are identical except for the active‐site disulfide. The standard redox potential was calculated to be E0′ = ?0.213 V at pH 7.0; the pKa of the active site thiols were pKa = 6.13 ± 0.05 for the N‐terminal Cys74 and pKa = 10.5 ± 0.17 for the C‐terminal Cys77. Experiments were carried out to characterize and isolate the mixed disulfide complex between Pa‐CcmG and Pa‐CcmH (the other redox active component of System I in P. aeruginosa). Our data indicate that the target disulfide of this TRX‐like protein is not the intramolecular disulfide of oxidized Pa‐CcmH, but the intermolecular disulfide formed between Cys28 of Pa‐CcmH and DTNB used for the in vitro experiments. This observation suggests that, in vivo, the physiological substrate of Pa‐CcmG may be the mixed‐disulfide complex between Pa‐CcmH and apo‐cyt. Proteins 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

15.
16.
Rubisco activase (Rca) facilitates the release of sugar‐phosphate inhibitors at Rubisco catalytic sites during CO2 fixation. Most plant species express two Rca isoforms, the larger Rca‐α and the shorter Rca‐β, either by alternative splicing from a single gene or expression from separate genes. The mechanism of Rubisco activation by Rca isoforms has been intensively studied in C3 plants. However, the functional role of Rca in C4 plants where Rubisco and Rca are located in a much higher [CO2] compartment is less clear. In this study, we selected four C4 bioenergy grasses and the model C4 grass setaria (Setaria viridis) to investigate the role of Rca in C4 photosynthesis. All five C4 grass species contained two Rca genes, one encoding Rca‐α and the other Rca‐β, which were positioned closely together in the genomes. A variety of abiotic stress‐related motifs were identified in the Rca‐α promoter of each grass, and while the Rca‐β gene was constantly highly expressed at ambient temperature, Rca‐α isoforms were expressed only at high temperature but never surpassed 30% of Rca‐β content. The pattern of Rca‐α induction on transition to high temperature and reduction on return to ambient temperature was the same in all five C4 grasses. In sorghum (Sorghum bicolor), sugarcane (Saccharum officinarum), and setaria, the induction rate of Rca‐α was similar to the recovery rate of photosynthesis and Rubisco activation at high temperature. This association between Rca‐α isoform expression and maintenance of Rubisco activation at high temperature suggests that Rca‐α has a functional thermo‐protective role in carbon fixation in C4 grasses by sustaining Rubisco activation at high temperature.  相似文献   

17.
Microorganisms produce volatile compounds (VCs) that promote plant growth and photosynthesis through complex mechanisms involving cytokinin (CK) and abscisic acid (ABA). We hypothesized that plants' responses to microbial VCs involve posttranslational modifications of the thiol redox proteome through action of plastidial NADPH‐dependent thioredoxin reductase C (NTRC), which regulates chloroplast redox status via its functional relationship with 2‐Cys peroxiredoxins. To test this hypothesis, we analysed developmental, metabolic, hormonal, genetic, and redox proteomic responses of wild‐type (WT) plants and a NTRC knockout mutant (ntrc) to VCs emitted by the phytopathogen Alternaria alternata. Fungal VC‐promoted growth, changes in root architecture, shifts in expression of VC‐responsive CK‐ and ABA‐regulated genes, and increases in photosynthetic capacity were substantially weaker in ntrc plants than in WT plants. As in WT plants, fungal VCs strongly promoted growth, chlorophyll accumulation, and photosynthesis in ntrcΔ2cp plants with reduced 2‐Cys peroxiredoxin expression. OxiTRAQ‐based quantitative and site‐specific redox proteomic analyses revealed that VCs promote global reduction of the thiol redox proteome (especially of photosynthesis‐related proteins) of WT leaves but its oxidation in ntrc leaves. Our findings show that NTRC is an important mediator of plant responses to microbial VCs through mechanisms involving global thiol redox proteome changes that affect photosynthesis.  相似文献   

18.
CrtJ from Rhodobacter capsulatus is a regulator of genes involved in the biosynthesis of haem, bacteriochlorophyll, carotenoids as well as structural proteins of the light harvesting‐II complex. Fluorescence anisotropy‐based DNA‐binding analysis demonstrates that oxidized CrtJ exhibits ~ 20‐fold increase in binding affinity over that of reduced CrtJ. Liquid chromatography electrospray tandem ionization mass spectrometric analysis using DAz‐2, a sulfenic acid (–SOH)‐specific probe, demonstrates that exposure of CrtJ to oxygen or to hydrogen peroxide leads to significant accumulation of a sulfenic acid derivative of Cys420 which is located in the helix–turn–helix (HTH) motif. In vivo labelling with 4‐(3‐azidopropyl)cyclohexane‐1,3‐dione (DAz‐2) shows that Cys420 also forms a sulfenic acid modification in vivo when cells are exposed to oxygen. Moreover, a Cys420 to Ala mutation leads to a ~ 60‐fold reduction of DNA binding activity while a Cys to Ser substitution at position 420 that mimics a cysteine sulfenic acid results in a ~ 4‐fold increase in DNA binding activity. These results provide the first example where sulfenic acid oxidation of a cysteine in a HTH‐motif leads to differential effects on gene expression.  相似文献   

19.
Arsenic is an environmental toxin and a worldwide health hazard. Since this metalloid is ubiquitous in nature, virtually all living organisms require systems for detoxification and tolerance acquisition. Here, we show that during chronic exposure to arsenite [As(III)], Saccharomyces cerevisiae (budding yeast) exports and accumulates the low‐molecular‐weight thiol molecule glutathione (GSH) outside of cells. Extracellular accumulation of the arsenite triglutathione complex As(GS)3 was also detected and direct transport assays demonstrate that As(GS)3 does not readily enter cells. Yeast cells with increased extracellular GSH levels accumulate less arsenic and display improved growth when challenged with As(III). Conversely, cells defective in export and extracellular accumulation of GSH are As(III) sensitive. Taken together, our data are consistent with a novel detoxification mechanism in which GSH is exported to protect yeast cells from arsenite toxicity by preventing its uptake.  相似文献   

20.
The dinoflagellate alga Symbiodinium sp., living in symbiosis with corals, clams and other invertebrates, is a primary producer in coral reefs and other marine ecosystems. The function of the carbon‐fixing enzyme ribulose 1,5‐bisphosphate carboxylase/oxygenase (Rubisco) in dinoflagellates is difficult to study because its activity is rapidly lost after extraction from the cell. We report procedures for the extraction of Rubisco from Symbiodinium cells and for stable storage. We describe a continuous assay for Rubisco activity in these crude cell extracts using the Mn2+ chemiluminescence of Rubisco oxygenase. Chemiluminescence time courses exhibited initial transients resembling bacterial Form II Rubisco, followed by several minutes of linearly decreasing activity. The initial activity was determined from extrapolation of this linear section of the time course. The activity of fast‐frozen cell extracts was stable at ?80 °C and, after thawing and storage on ice, remained stable for up to 1 h before declining non‐linearly. Crude cell extracts bound [14C] 2‐carboxy‐D‐arabitinol 1,5‐bisphosphate to a high molecular mass fraction separable by gel filtration chromatography. After pre‐treatment of Symbiodinium cell cultures in darkness at temperatures above 30 °C, the extracted Rubisco activities decreased, with almost complete loss of activity above 36 °C. The implications for the sensitivity to elevated temperature of Symbiodinium photosynthesis are assessed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号