首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
The cellular redox state is an important determinant of metal phytotoxicity. In this study we investigated the influence of cadmium (Cd) and copper (Cu) stress on the cellular redox balance in relation to oxidative signalling and damage in Arabidopsis thaliana. Both metals were easily taken up by the roots, but the translocation to the aboveground parts was restricted to Cd stress. In the roots, Cu directly induced an oxidative burst, whereas enzymatic ROS (reactive oxygen species) production via NADPH oxidases seems important in oxidative stress caused by Cd. Furthermore, in the roots, the glutathione metabolism plays a crucial role in controlling the gene regulation of the antioxidative defence mechanism under Cd stress. Metal-specific alterations were also noticed with regard to the microRNA regulation of CuZnSOD gene expression in both roots and leaves. The appearance of lipid peroxidation is dual: it can be an indication of oxidative damage as well as an indication of oxidative signalling as lipoxygenases are induced after metal exposure and are initial enzymes in oxylipin biosynthesis.In conclusion, the metal-induced cellular redox imbalance is strongly dependent on the chemical properties of the metal and the plant organ considered. The stress intensity determines its involvement in downstream responses in relation to oxidative damage or signalling.  相似文献   

2.
3.
In Arabidopsis thaliana, the serine/threonine protein kinase oxidative signal-inducible 1 (OXI1), mediates oxidative stress signalling. Its activity is required for full activation of the mitogen-activated protein kinases (MAPKs), MPK3 and MPK6, in response to oxidative stress. In addition, the serine/threonine protein kinase Pto-interacting 1-2 (PTI1-2) has been positioned downstream from OXI1, but whether PTI1-2 signals through MAPK cascades is unclear. Using a yeast two-hybrid screen we show that OXI1 also interacts with PTI1-4. OXI1 and PTI1-4 are stress-responsive genes and are expressed in the same tissues. Therefore, studies were undertaken to determine whether PTI1-4 is positioned in the OXI1/MAPK signalling pathway. The interaction between OXI1 and PTI1-4 was confirmed by using in vivo co-immunoprecipitation experiments. OXI1 and PTI1-4 were substrates of MPK3 and MPK6 in vitro. Although no direct interaction was detected between OXI1 and MPK3 or MPK6, in vitro binding studies showed interactions between MPK3 or MPK6 with PTI1-4. In addition, PTI1-4 and MPK6 were found in vivo in the same protein complex. These results demonstrate that PTI1-4 signals via OXI1 and MPK6 signalling cascades.  相似文献   

4.
5.
6.
7.
The phytotoxicity imposed by cadmium (Cd) and its detoxifying responses of Bacopa monnieri L. have been investigated. Effect on biomass, photosynthetic pigments and protein level were evaluated as gross effect, while lipid peroxidation and electrolyte leakage reflected oxidative stress. Induction of phytochelatins and enzymatic and non-enzymatic antioxidants were monitored as plants primary and secondary metal detoxifying responses, respectively. Plants accumulated substantial amount of Cd in different plant parts (root, stem and leaf), the maximum being in roots (9240.11 microg g(-1) dw after 7 d at 100 microM). Cadmium induced oxidative stress, which was indicated by increase in lipid peroxidation and electrical conductivity with increase in metal concentration and exposure duration. Photosynthetic pigments showed progressive decline while protein showed slight increase at lower concentrations. Enzymes viz., superoxide dismutase (SOD, EC 1.15.1.1), guaiacol peroxidase (GPX, EC 1.11.1.7) ascorbate peroxidase (APX, EC 1.11.1.11) and glutathione reductase (GR, EC 1.6.4.2) showed stimulation except catalase (CAT, EC 1.11.1.6) which showed declining trend. Initially, an enhanced level of cysteine, glutathione and non-protein thiols was observed, which depleted with increase in exposure concentration and duration. Phytochelatins induced significantly at 10 microM Cd in roots and at 50 microM Cd in leaves. The phytochelatins decreased in roots at 50 microM Cd, which may be correlated with reduced level of GSH, probably due to reduced GR activity, which exerted increased oxidative stress as also evident by the phenotypic changes in the plant like browning of roots and slight yellowing of leaves. Thus, besides synthesis of phytochelatins, availability of GSH and concerted activity of GR seem to play a central role for Bacopa plants to combat oxidative stress caused by metal and to detoxify it. Plants ability to accumulate and tolerate high amount of Cd through enhanced level of PCs and various antioxidants suggest it to be a suitable candidate for phytoremediation.  相似文献   

8.
Plants can assimilate nitrogen from soil pools of both ammonium and nitrate, and the relative levels of these two nitrogen sources are highly variable in soil. Long‐term ammonium nutrition is known to cause damage to Arabidopsis that has been linked to mitochondrial oxidative stress. Using hydroponic cultures, we analysed the consequences of rapid shifts between nitrate and ammonium nutrition. This did not induce growth retardation, showing that Arabidopsis can compensate for the changes in redox metabolism associated with the variations in nitrogen redox status. During the first 3 h of ammonium treatment, we observed distinct transient shifts in reactive oxygen species (ROS), low‐mass antioxidants, ROS‐scavenging enzymes, and mitochondrial alternative electron transport pathways, indicating rapid but temporally separated changes in chloroplastic, mitochondrial and cytosolic ROS metabolism. The fast induction of antioxidant defences significantly lowered intracellular H2O2 levels, and thus protected Arabidopsis leaves from oxidative stress. On the other hand elevated extracellular ROS production in response to ammonium supply may be involved in signalling. The response pattern displays an intricate plasticity of Arabidopsis redox metabolism to minimise stress in responses to nutrient changes.  相似文献   

9.
10.
Cells possess stress‐activated protein kinase (SAPK) signalling pathways, which are activated practically in response to any cellular insult, regulating responses for survival and adaptation to harmful environmental changes. To understand the function of SAPK pathways in T. atroviride, mutants lacking the MAPKK Pbs2 and the MAPK Tmk3 were analysed under several cellular stresses, and in their response to light. All mutants were highly sensitive to cellular insults such as osmotic and oxidative stress, cell wall damage, high temperature, cadmium, and UV irradiation. Under oxidative stress, the Tmk3 pathway showed specific roles during development, which in conidia are essential for tolerance to oxidant agents and appear to play a minor role in mycelia. The function of this pathway was more evident in Δpbs2 and Δtmk3 mutant strains when combining oxidative stress or cell wall damage with light. Light stimulates tolerance to osmotic stress through Tmk3 independently of the photoreceptor Blr1. Strikingly, photoconidiation and expression of blue light regulated genes was severally affected in Δtmk3 and Δpbs2 strains, indicating that this pathway regulates light responses. Furthermore, Tmk3 was rapidly phosphorylated upon light exposure. Thus, our data indicate that Tmk3 signalling cooperates with the Blr photoreceptor complex in the activation of gene expression.  相似文献   

11.
  • Calcium (Ca) signalling has an essential role in regulating plant responses to various abiotic stresses.
  • This study applied Ca in various forms (Ca acetate and CaCl2) and concentrations to reduce cadmium (Cd) concentration in rice and propose a possible mechanism through which Ca acts to control the Cd concentration in rice.
  • The results showed that supplementation of Cd‐contaminated soil with Ca acetate reduced the Cd concentration in rice after exposure for 7 days in both hydroponic and soil conditions. The possible involvement of the auto‐inhibited Ca2+‐ATPase gene (ACA) might act to control the primary signal of the Cd stress response. The messages from ACA3 and ACA13 tended to up‐regulate the low‐affinity cation transporter (OsLCT1) and down‐regulate Cd uptake and the Cd translocation transporter, including the genes, natural resistance‐associated macrophage protein 5 (Nramp5) and Zn/Cd‐transporting ATPase 2 (HMA2), which resulted in a reduction in the Cd concentration in rice. After cultivation for 120 days, the application of Ca acetate into Cd‐contaminated soil inhibited Cd uptake of rice.
  • Increasing the Ca acetate concentration in the soil lowered the Cd concentration in rice shoots and grains. Moreover, Ca acetate maintained rice productivity and quality whereas both aspects decreased under Cd stress.
  相似文献   

12.
Salt marshes constitute major sinks for heavy metal accumulation but the precise impact of salinity on heavy metal toxicity for halophyte plant species remains largely unknown. Young seedlings of Kosteletzkya virginica were exposed during 3 weeks in nutrient solution to Cd 5 µM in the presence or absence of 50 mM NaCl. Cadmium (Cd) reduced growth and shoot water content and had major detrimental effect on maximum quantum efficiency (Fv/Fm), effective quantum yield of photosystem II (Y(II)) and electron transport rates (ETRs). Cd induced an oxidative stress in relation to an increase in O2?? and H2O2 concentration and lead to a decrease in endogenous glutathione (GSH) and α‐tocopherol in the leaves. Cd not only increased leaf zeatin and zeatin riboside concentration but also increased the senescing compounds 1‐aminocyclopropane‐1‐carboxylic acid (ACC) and abscisic acid (ABA). Salinity reduced Cd accumulation already after 1 week of stress but was unable to restore shoot growth and thus did not induce any dilution effect. Salinity delayed the Cd‐induced leaf senescence: NaCl reduced the deleterious impact of Cd on photosynthesis apparatus through an improvement of Fv/Fm, Y(II) and ETR. Salt reduced oxidative stress in Cd‐treated plants through an increase in GSH, α‐tocopherol and ascorbic acid synthesis and an increase in glutathione reductase (EC 1.6.4.2) activity. Additional salt reduced ACC and ABA accumulation in Cd+NaCl‐treated leaves comparing to Cd alone. It is concluded that salinity affords efficient protection against Cd to the halophyte species K. virginica, in relation to an improved management of oxidative stress and hormonal status.  相似文献   

13.
14.
The mechanisms of plant tolerance to cadmium stress were studied by short-term exposure of Potamogeton crispus L. to various concentrations of Cd ranging from 0 to 0.09 mM. The accumulation of Cd and its influence on nutrient elements, chlorophyll pigments, ultrastructure, proline and MDA contents, and free radical production, as well as the activities of superoxide dismutase (SOD), peroxidase (POD), ascorbate peroxidase (APX), and glutathione reductase (GR) were investigated. The higher Cd concentration in the medium resulted in a significant enhancement of Cd accumulation. Photosynthetic pigment content decreased and ultrastructural damage to the leaf cells was aggravated with the increase in the Cd concentrations. Disruption of chloroplasts and mitochondria was observed even at the lowest concentration of Cd. Meantime, the rate of O2*− generation and the contents of H2O2 and MDA significantly increased under Cd stress, suggesting that Cd caused oxidative stress. In addition, the antioxidant system was clearly activated following Cd exposure. SOD and POD activities increased initially and then decreased, while APX and GR activities markedly increased. Simultaneously, mineral nutrition was disturbed. While K, P, Ca, and Cu contents decreased, Na, Fe, and Mn contents increased. Induction of antioxidant enzyme activities in leaves exposed to elevated Cd concentrations may be involved in Cd tolerance of P. crispus.  相似文献   

15.
16.
17.
The comprehension of metal homeostasis in plants requires the identification of molecular markers linked to stress tolerance. Proteomic changes in leaves and cambial zone of Populus tremula×P. alba (717‐1B4 genotype) were analyzed after 61 days of exposure to cadmium (Cd) 360 mg/kg soil dry weight in pot‐soil cultures. The treatment led to an acute Cd stress with a reduction of growth and photosynthesis. Cd stress induced changes in the display of 120 spots for leaf tissue and 153 spots for the cambial zone. It involved a reduced photosynthesis, resulting in a profound reorganisation of carbon and carbohydrate metabolisms in both tissues. Cambial cells underwent stress from the Cd actually present inside the tissue but also a deprivation of photosynthates caused by leaf stress. An important tissue specificity of the response was observed, according to the differences in cell structures and functions.  相似文献   

18.
Cadmium (Cd)-induced oxidative stress and antioxidant defense mechanisms were analyzed in roots and leaves of Vigna mungo L. Seeds were germinated in perlite-vermiculite and irrigated with Hoagland nutrient solution. At day 6, seedlings were exposed to 40 μM Cd under semi-hydroponic conditions for a period of 12 days. Growth anomalies and abnormal chromatin condensation were observed in Cd-treated plants, in comparison with control ones. Cd accumulation was observed in roots of treated plants. The analyses of antioxidative defense and oxidative parameters in roots, stems and leaves showed different tissue-specific responses. Superoxide dismutase (SOD) and guaiacol peroxidase (GPx) activities and the level of lipid peroxidation (MDA content) decreased in roots. However, they increased in leaves. Catalase activity and chlorophyll content, on the other hand, decreased over exposure to Cd stress. Total glutathione, non-protein thiols, reduced glutathione (GSH) and phytochelatins increased significantly, while oxidized glutathione (GSSG) decreased, as compared with control plants. The present data suggest that the presence of Cd in soil and water can cause oxidative damage that may be detrimental for optimum production of nutritional mung.  相似文献   

19.
Plant heme oxygenases (HOs) regulate biosynthesis of phytochrome which accounts for photo‐acceptance and ‐morphogenesis. Recent studies have demonstrated that plant HOs also regulate many other physiological processes including response to environmental stimuli. To elucidate the mechanism by which HOs regulate plant adaptation to heavy metal exposure, three novel HOs genes were isolated from rapeseed (Brassica napus) and their expression patterns were analysed. Alignment of deduced protein sequences revealed that the three BnHOs share high identity with their corresponding orthologos (AtHO1‐3) from Arabidopsis. To investigate whether the BnHO regulates plant tolerance to Hg toxicity, we constructed B. napus transgenic plants overexpressing BnHO‐1. Under Hg stress, the transgenic plants had 1.41–1.59 folds higher biomass than the untransformants. However, overexpression of BnHO‐1 resulted in less accumulation of Hg in some lines of transformants than in untransformants. The transgenic plants show lower abundance of reactive oxygen species and attenuated oxidative injury compared with the untransgenic plants. We cloned the promoter sequences of BnHO‐1 from B. napus. Analysis revealed that the 1119 bp fragment contains a conserved Cd responsive element (CdRE) and others responding to multiple environmental stimuli. Transient expression in tobacco leaves showed differential responses to heavy metals (Zn, Cu, Pb, Hg and Cd).  相似文献   

20.
The Niemann‐Pick type C is a rare metabolic disease with a severe neurodegenerative phenotype characterized by an accumulation of high amounts of lipids (cholesterol and sphingolipids) in the late endosomal/lysosomal network. It is caused by loss‐of‐function point mutations in either NPC1 or NPC2, which seem to mediate proper intracellular lipid transport through endocytic pathway. In this study, we show that yeast cells lacking Ncr1p, an orthologue of mammalian NPC1, exhibited a higher sensitivity to hydrogen peroxide and a shortened chronological lifespan. These phenotypes were associated with increased levels of oxidative stress markers, decreased levels of antioxidant defences and mitochondrial dysfunctions. Moreover, we report that Ncr1p‐deficient cells displayed high levels of long chain bases (LCB), and that Sch9p‐phospho‐T570 and Sch9p levels increased in ncr1Δ cells through a mechanism regulated by Pkh1p, a LCB‐activated protein kinase. Notably, deletion of PKH1 or SCH9 suppressed ncr1Δ phenotypes but downregulation of de novo sphingolipid biosynthesis had no protective effect, suggesting that LCBs accumulation may result from an increased turnover of complex sphingolipids. These results suggest that sphingolipid signalling through Pkh1p‐Sch9p mediate mitochondrial dysfunction, oxidative stress sensitivity and shortened chronological lifespan in the yeast model of Niemann‐Pick type C disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号