首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
2.
The adhesion of pollen grains to the stigma is the first step of pollination in flowering plants. During this step, stigmas discriminate between pollen grains that can and cannot be permitted to effect fertilization. This selection is operated by various constituents of the cell walls of both partners. Several genes structurally related to the self-incompatibility system that prevents self-pollination in Brassica spp are known to target their products into the stigma cell wall. We proposed previously that one of these genes, the one encoding the S locus glycoprotein (SLG)-like receptor 1 (SLR1), which is coexpressed with that encoding SLG, may participate in pollen-stigma adhesion. Here, we exploit a biomechanical assay to measure the pollen adhesion force and show that it is reduced both by transgenic suppression of SLR1 expression and by pretreatment of wild-type stigmas with anti-SLR1 antibodies, anti-SLG antibodies, or pollen coat-protein extracts. Our results indicate a common adhesive function for the SLR1 and SLG proteins in the pollination process.  相似文献   

3.
Adhesion and guidance in compatible pollination   总被引:14,自引:0,他引:14  
The mechanisms of compatible pollination are less studied than those of incompatible pollination and yet most of the angiosperms show self-compatibility. From the release of pollen from anthers to the penetration of the micropyle by the pollen tube tip, there are numerous steps where the interaction between pollen and the pistil can be regulated. Recent studies have documented some diverse ways in which pollen tubes carrying sperm cells are guided to the ovules through the pistil extracellular matrices of the transmitting tract. What is still missing is an understanding of pollen tube cell biology in vivo. A recent finding supports the role of the synergids in the crucial guidance cue for the pollen tube tip at the micropyle, but experimental evidence for other 'guidepost' cells in the pistil is still lacking. The fact that the pollen tube must first travel through the matrices of the stigma and style before it can respond to the cue from the ovule makes it likely that there is a hierarchy of signalling events in pollen-pistil interactions starting at the stigma and ending at the micropyle. On the pistil side, several model systems have been used in the discovery of molecules implicated in either physical or chemical guidance. In lily, which has a hollow style, adhesion molecules (pectin and SCA) are implicated in guidance. SCA alone is also capable of inducing pollen chemotropism in an in vitro assay, suggesting that this peptide plays a dual role in lily pollination: chemotactic in the stigma and haptotactic (adhesion mediated) in the style.  相似文献   

4.
5.
During pollination the pollen tube grows into the style and toward the ovary via the transmitting tract. In lily the growth of pollen tubes involves tube cell adhesion to transmitting tract cells. We reported two molecules involved in this adhesion event. One is a pectic polysaccharide and the other, a 9 kDa basic protein named SCA for stigma/stylar cysteine-rich adhesin. SCA, which shows some identity with LTP (lipid transfer protein), was localized to the transmitting tract epidermis of the style where pollen tubes adhere. The present studies on the expression of SCA indicate that the protein has a similar expression pattern with LTP1 in Arabidopsis and that the protein is abundant in both the stigma and the style. For further proof of its role in pollen tube adhesion the activity of Escherichia coli-expressed protein has been studied in an in vitro adhesion assay system.  相似文献   

6.
Luu DT  Heizmann P  Dumas C 《Plant physiology》1997,115(3):1221-1230
The adhesion of pollen on the stigmas of flowering plants is a critical step for the success of reproduction in angiosperms, long considered to present some specificity in terms of self-incompatibility. We carried out quantitative measurements of the pollen-stigma adhesion (expressed in Newtons) in kale (Brassica oleracea), using the flotation force of Archimedes exerted by dense sucrose solutions (50%, w/v) to release pollen grains fixed on the surface of stigmas. We demonstrate that pollen adhesion varies with the genotypes of the plants used as partners, but increases with time in all cases for about 30 to 60 min after pollination. There is no correlation with the self- or cross-status of the pollinations, nor with the self-compatible or -incompatible genotypes of the parents. Only late events of pollination, after the germination or arrest of the pollen tube, depend on compatibility type. Biochemical and physiological dissection of pollen-stigma adhesion points to major components of this interaction: among male components, the pollen coating, eliminated by delipidation (or modified by mutation in the case of the cer mutants of the related species Arabidopsis thaliana), plays a major role in adhesion; the genetic background of the pollen parent is also of some importance. On the female side, the developmental stage of the stigma and the protein constituents of the stigmatic pellicle are critical for pollen capture. The SLG and SLR1 proteins are not involved in the initial stages of pollen adhesion on the stigma but one or both may be involved in the later stages.  相似文献   

7.
Adhesion occurs both between pollen tubes and between the pollen tube and transmitting tract epidermis (TTE) in lily. The stylar matrix secreted by the TTE can be isolated and used in an in vitro adhesion assay for pollen tubes. This bioassay was used to isolate two stigma/stylar adhesion molecules in lily: a pectic polysaccharide and a small cysteine-rich, basic protein we named SCA (stigma/stylar cysteine-rich adhesin). Both molecules were purified and used in an adhesion assay. Adhesion in the assay can be disrupted by treatment of the pectin with polygalacturonase and of SCA with proteinase K. The two molecules bind to each other in a pH-dependent fashion, and this binding is necessary for the adhesion assay to work. Antibodies to each of the molecules show their localization at the sites of pollen tube adhesion in the style. Pollen does not produce SCA but does bind this protein in vivo and in vitro. In vivo functional analyses are necessary to establish the roles of these molecules in lily pollination. Received: 29 October 2000 / Accepted: 17 April 2001  相似文献   

8.
利用磷酸铅淀淀技术对荞麦(Fagopyrum esculentum Monch.)pin型植株分别进行亲和授粉和不亲和授粉后的柱头、花粉粒、花粉管进行了ATPase的超微细胞化学定位。结果表明(1)亲和授粉和不亲和授粉后0.5h,柱头细胞的ATPase活性反应水平较低或基于无酶活性;柱头表面、柱头上附着的花粉粒内ATPase活性在不亲和授粉时较低,亲和授粉时较高,花粉粒内ATPase主要定位于线粒体和精子细胞;(2)授粉后1.5h,不亲和授粉的柱头细胞及花粉管的ATPase活性均较低,花粉管停止生长,细胞质开始解体;而亲和授粉的柱头细胞及花粉管的ATPase活性均较高,ATPase主要定位于柱头细胞的质膜、胞基质以及花粉管的壁、质体的膜、高尔基体、线粒体上。根据不同时期不同部位ATPase活性的差异,我们认为荞麦发生自交不亲和时,花粉管在花柱中停止生长不仅是因此花粉管得不到花柱中的营养物质而引起的,可能也与花粉管自身物质代谢发生障碍有关。  相似文献   

9.
Structural analysis of stigma development in sunflower highlights the secretory role of papillae due to its semi-dry nature. Production of lipid-rich secretions is initiated at the staminate stage of the flowers in stigma development and increases at the receptive stage, coinciding with an extensive development of elaioplasts and endoplasmic reticulum network in the basal region of the papillae. Transfer cells, earlier identified only in the wet type of stigma, are also present in the transmitting tissue of the sunflower stigma. Attainment of physiological maturity by the stigmatic tissue, accompanying development from bud to pistillate stage, appears to affect the initial steps of pollen–stigma interaction. The nature of self-incompatibility in Helianthus has also been investigated in relation with pollen adhesion, hydration and germination. Pollen adhesion to the stigma is a rapid process in sunflower and stigma papillae exhibit greater affinity for pollen during cross pollination as compared to self-pollination. Components of the pollen coat and the pellicle on the surface of stigmatic papillae are critical for the initial phase of pollen–stigma interaction (adhesion and hydration). The lipidic components of pollen coat and the proteinaceous and lipidic components from the surface of the papillae coalesce during adhesion, leading to the movement of water from stigma to the pollen, thereby causing pollen hydration and its subsequent germination. Pollen germination (both in self-and cross-pollen) on the stigma surface and the growth of the pollen tube characterize the flexibility of self-incompatibility in sunflower. Compatible pollen grains germinate and the pollen tube penetrates the stigma surface to enter the nutrient-rich transmitting tissue. The pollen tube from incompatible pollen germination, however, fails to penetrate the stigmatic tissue and it grows parallel to the papillae. Present findings provide new insights into structural and functional relationships during stigma development and pollen–stigma interaction.  相似文献   

10.
Summary Adenylate cyclase has been localized cytochemically in female and male parents as well as during the pollen-stigma interaction with an original technique employing strontium as the capture ion and adenyl imidodiphosphate as the specific substrate. The specificity of the reaction was checked by using several controls. No final specific reaction product was detected in unpollinated P. deltoides stigmas or in the P. deltoides or P. alba pollen grains used for compatible and incompatible pollinations. In the compatible cross between P. deltoides × P. deltoides, fine dense precipitates were observed in the dictyosomes and the plasma membrane and exterior to the exine of hydrated pollen grains adhering to the stigma surface. Labeling of the stigmatic pellicle was also observed after pollen adhesion and hydration. This was accompanied by a strong reactivity of the cell wall and plasmalemma of the stigma papillae at the sites of pollen tube germination on the stigma surface and at the sites of penetration of pollen tubes between adjacent papillae. In the incompatible cross between P. deltoides x P. alba, adenylate cyclase activity was still present but reduced at the stigma surface following adhesion, hydration, and germination of P. alba pollen. This activity was completely abolished after the penetration of pollen tubes between stigma papillae. These findings suggest that in Populus, adenylate cyclase activity is correlated to pollen adhesion, hydration, and germination at the stigma surface, and that the abolition of this enzyme activity could be one of the cellular events governing the gametophytic phenotype of incompatibility in the cross between P. deltoides and P. alba.  相似文献   

11.
In most plant species with abiotic pollination systems, pollen is dispersed in three dimensions. Theoretical considerations suggest, however, that there are significant advantages for two-dimensional pollination systems over three-dimensional systems, especially if pollen is dispersed in conveyances or aggregations of large diameter. We report that two-dimensional pollination systems occur in the genera Halodule, Halophila, Lepilaena, and Ruppia, where pollen grains are not transported through the water singly, but in rafts or search vehicles. These genera possess unusual pollen morphologies which facilitate assemblage of pollen grains into search vehicles. These floating search vehicles have large diameters, thus greatly increasing probability of encountering a stigma. The grains have a hydrophobic surface that appears to mediate adhesion by an external coating of proteins and carbohydrates. Similar adaptations to two-dimensional pollination are found in the target organs, the stigmas. The long filamentous stigmas of the marine genera float, as do the indusiate stigmas of the freshwater genera, creating small depressions in the water surface. Pollination occurs through the collision of a moving search vehicle with a floating stigma. The existence of similar pollen search vehicles, stigma morphologies, and flowering phenologies in these unrelated hydrophilous genera evidences convergent evolution towards efficient search strategies in surface-pollinated aquatic plants.  相似文献   

12.
13.
The self-incompatibility system in Brassica is controlled by the S-locus, which contains S-receptor kinase (SRK) and S-locus protein 11 (SP11). SRK and SP11 control stigma and pollen S-haplotype specificity, respectively. SP11 binding to SRK induces the autophosphorylation of SRK, which triggers the signaling cascade that results in the rejection of self-pollen. The localization of SP11 protein during pollen development and pollination, however, have never been demonstrated. In this study, we examined the localization of S(8)-SP11 protein in the anther or pollinated stigma by immuno-electron microscopy. The immunostaining suggested that S(8)-SP11 was secreted from the tapetal cell into the anther locule as a cluster and translocated to the pollen surface at the early developmental stage of the anther. During the pollination process, SP11 was translocated from the pollen surface to the papilla cell, and then penetrated the cuticle layer of the papilla cell to diffuse across the pectin cellulose layer. Furthermore, SP11 protein could only penetrate the cuticle layer of the papilla cell in the presence of pollen grains, and could not penetrate on its own. This suggests that another factor from the pollen grain is needed for SP11 protein to penetrate the papilla cell wall.  相似文献   

14.
Two methods of in vitro pollination of aspen were tested and compared, first with moist pollen by transferring swollen pollen grains from a wet agar surface to the stigma and, second, using dry pollen grains. In vitro pollination with dry pollen grains appeared to be more efficient and this method was applied in three subsequent years. Additionally, pollination was performed with selected pollen grains in order to obtain triploid plants. Diploid pollen was induced by heat-treatment of pollen mother cells, but the enrichment of unreduced pollen from natural pollen mixtures was also successful. The selection of diploid pollen, which is larger in diameter than haploid pollen, was performed by sieving using micro sieves. Five triploid plants from different poplar combinations were obtained from 1,227 zygotic embryos cultured after in vitro pollination of 2,676 ovaries with dry pollen over 3?years. Embryo rescue was used to facilitate the development of immature zygotic embryos. The results of this study demonstrate the possibility to effect pollination using selected single pollen grains with the help of in vitro techniques.  相似文献   

15.
Research documents related to the morphology and function of style branches and stigmatic surface of Asteraceae are still rather few, and the literature reports are thus controversial. We report in the present study that the stigmatic surfaces of two non-related species of Asteraceae (Lessingianthus grandiflorus and Lucilia lycopodioides) have features of semidry stigmas. Sporodermis of both species was also analyzed so that we could understand how the stigmatic surface works during pollen deposition and rehydration. Stylar branches and pollen grains (sporodermis) were studied using scanning and transmission electron microscopy (SEM and TEM) and histochemistry techniques. The inner and marginal bands of stylar branches in these species display intermediary features between the dry and wet types of stigma: the cuticle characterizes the dry stigma and cells with secretory activity characterize the wet stigma; these showed differences from what has been described to the Asteraceae family, where stigmatic surface of species from several tribes is considered dry. Pollen grains are medium-size to large with exine ornamentation (echinate and echinolophate) and abundant secretion which latter characterizes pollenkitt. We can assume that two processes might help pollen grain hydration on stigmatic surface in Lessingianthus grandiflorus and Lucilia lycopodioides: (1) the presence of pollenkitt, as observed in the secretory content inside exine cavities and around pollen grains; and (2) the secretory activity of stigmatic surface cells, whose secretion accumulates among intercellular and subcuticular spaces and leads to cuticle disruption during the floral receptive phase. Our results suggest that ultrastructural and histochemical studies should be considered when describing stigmatic surface and that the “semidry” feature within Asteraceae should be investigated still more in detail, so that the taxonomic or adaptation value of this trait in the family can be verified.  相似文献   

16.
Plant reproduction in crucifers is dependent on interactions that occur at the stigma surface between the male gametophyte (pollen and pollen tube) and papillar cells. To dissect these complex interactions, papillar cells were genetically ablated by targeting the expression of a toxin to appropriate cells of the flower with a flower-specific and developmentally regulated promoter. In transgenic Brassica plants that expressed the toxic gene fusion, flower morphology was normal except for aberrant papillar cell development and partial pollen sterility. Microscopic, biochemical, and functional analyses, mainly focused on papillar cell responses, revealed that papillar cells lost their ability to elongate, to synthesize cell-specific proteins, and to support pollen germination after self- or cross-pollination. This loss of stigma receptivity to pollination was mimicked by treating pistils with protein phosphatase inhibitors. Differences in the effects of genetic and chemical ablation on the pollination responses of Brassica and Arabidopsis flowers are discussed and are ascribed in part to a requirement for phosphorylation/dephosphorylation events in Brassica but not in Arabidopsis.  相似文献   

17.
利用磷酸铅沉淀技术对荞麦(Fagopyrum esculentum Month.)pin型植株分别进行亲和授粉和不亲和授粉后的柱头、花粉粒、花粉管进行了ATPase的超微细胞化学定位。结果表明(1)亲和授粉和不亲和授粉后0.5h,柱头细胞的ATPase活性反应水平较低或基本无酶活性;柱头表面、柱头上附着的花粉粒内ATPase活性在不亲和授粉时较低,亲和授粉时较高,花粉粒内ATPase主要定位于线粒体和精子细胞;(2)授粉后1.5h,不亲和授粉的柱头细胞及花粉管的ATPase活性均较低,花粉管停止生长,细胞质开始解体;而亲和授粉的柱头细胞及花粉管的ATPase活性均较高,ATPase主要定位于柱头细胞的质膜、胞基质以及花粉管的壁、质体的膜、高尔基体、线粒体上。根据不同时期不同部位ATPase活性的差异,我们认为荞麦发生自交不亲和时,花粉管在花柱中停止生长不仅是因为花粉管得不到花柱中的营养物质而引起的,可能也与花粉管自身物质代谢发生障碍有关。  相似文献   

18.
Formation of pollen wall exine is preceded by the development of several transient layers of extracellular materials deposited on the surface of developing pollen grains. One such layer is primexine (PE), a thin, ephemeral structure that is present only for a short period of time and is difficult to visualize and study. Recent genetic studies suggested that PE is a key factor in the formation of exine, making it critical to understand its composition and the dynamics of its formation. In this study, we used high-pressure frozen/freeze-substituted samples of developing Arabidopsis (Arabidopsis thaliana) pollen for a detailed transmission electron microscopy analysis of the PE ultrastructure throughout the tetrad stage of pollen development. We also analyzed anthers from wild-type Arabidopsis and three mutants defective in PE formation by immunofluorescence, carefully tracing several carbohydrate epitopes in PE and nearby anther tissues during the tetrad and the early free-microspore stages. Our analyses revealed likely sites where these carbohydrates are produced and showed that the distribution of these carbohydrates in PE changes significantly during the tetrad stage. We also identified tools for staging tetrads and demonstrate that components of PE undergo changes resembling phase separation. Our results indicate that PE behaves like a much more dynamic structure than has been previously appreciated and clearly show that Arabidopsis PE creates a scaffolding pattern for formation of reticulate exine.

Transmission electron microscopy and immunofluorescence analyses of Arabidopsis primexine reveal dynamic changes in its structure and composition throughout the tetrad stage of pollen development.  相似文献   

19.
Background and Aims The S-locus receptor kinase (SRK), which is expressed in stigma epidermal cells, is responsible for the recognition and inhibition of ‘self’ pollen in the self-incompatibility (SI) response of the Brassicaceae. The allele-specific interaction of SRK with its cognate pollen coat-localized ligand, the S-locus cysteine-rich (SCR) protein, is thought to trigger a signalling cascade within the stigma epidermal cell that leads to the arrest of ‘self’ pollen at the stigma surface. In addition to the full-length signalling SRK receptor, stigma epidermal cells express two other SRK protein species that lack the kinase domain and whose role in the SI response is not understood: a soluble version of the SRK ectodomain designated eSRK and a membrane-tethered form designated tSRK. The goal of this study was to describe the sub-cellular distribution of the various SRK protein species in stigma epidermal cells as a prelude to visualizing receptor dynamics in response to SCR binding.Methods The Arabidopsis lyrata SRKb variant was tagged with the Citrine variant of yellow fluorescent protein (cYFP) and expressed in A. thaliana plants of the C24 accession, which had been shown to exhibit a robust SI response upon transformation with the SRKb–SCRb gene pair. The transgenes used in this study were designed for differential production and visualization of the three SRK protein species in stigma epidermal cells. Transgenic stigmas were analysed by pollination assays and confocal microscopy.Key Results and Conclusions Pollination assays demonstrated that the cYFP-tagged SRK proteins are functional and that the eSRK is not required for SI. Confocal microscopic analysis of cYFP-tagged SRK proteins in live stigma epidermal cells revealed the differential sub-cellular localization of the three SRK protein species but showed no evidence for redistribution of these proteins subsequent to incompatible pollination.  相似文献   

20.
The pollen grains of angiosperms are usually desiccated to some extent at the time of dispersal. Rehydration is an essential prelude to germination, and this takes place by uptake of water from the stigma after capture, water entering from the cells of the stigma surface following a water potential gradient. The passage of water into the pollen grain is regulated by the cuticle of the stigma papilla in the vicinity of the contact face, and also by the apertural mechanisms of the pollen grain exine, which act by varying the degree of exposure of the underlying pectocellulosic intine according to the degree of hydration of the grain. The sequence of events during rehydration suggests that at first the vegetative cell of the male gametophyte is without a normal plasmalemma, so that the initial dilation of the grain is followed by an interval of exudation. Thereafter, with the re-establishment of the cell membranes, the vegetative cell behaves in the manner of a normal plant cell through the period of germination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号