首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Infection of C57BL/6J mice with the parasite Toxoplasma gondii triggers a powerful Th1 immune response that is detrimental to the host. During acute infection, a reduction in CD4+Foxp3+ regulatory T cells (Treg) has been reported. We studied the role of Treg during T. gondii infection by adoptive transfer of cells purified from transgenic Foxp3EGFP mice to infected wild type animals. We found a less severe weight loss, a significant delayed mortality in infected Treg-transferred mice, and reduced pathology of the small intestine that were associated with lower IFN-γ and TNF-α levels. Nevertheless, higher cyst number and parasite load in brain were observed in these mice. Treg-transferred infected mice showed reduced levels of both IFN-γ and TNF-α in sera. A reduced number of CD4+ T cells producing IFN-γ was detected in these mice, while IL-2 producing CD4+ T cells were restored to levels nearly similar to uninfected mice. CD25 and CD69 expression of CD4+ T cells were also down modulated. Our data show that the low Treg cell number are insufficient to modulate the activation of CD4+ T cells and the production of high levels of IFN-γ. Thus, a delicate balance between an optimal immune response and its modulation by Treg cells must exist.  相似文献   

2.
Stockdale P. G. H., Stockdale M. J., Rickard M. D. and Mitchell G. F. 1985. Mouse strain variation and effects of oocyst dose in infection of mice with Eimeria falciformis, a coccidian parasite of the large intestine, International Journal for Parasitology15: 447–452. Five inbred strains of mice and three hypothymic (nude) strains were infected orally with different doses of E. falciförmis oocysts. After resolution of primary infection as determined by faecal oocyst output, mice were challenged orally with a second dose of E. falciformis. Amongst the intact mice, BALB/c proved the most resistant to primary infection, while C3H/He mice were most susceptible, in terms of faecal oocyst production. Resistance was far more dramatic in BALB/c mice given high numbers of challenge oocysts. In terms of mortality at high oocyst doses, CBA/H were the most susceptible. All of the strains of mice were highly resistant to reinfection. In the case of nude mice, BALB/c. nu/nu were more susceptible than CBA/H.nu/nu or C57BL/6.nu/nu both in terms of faecal oocyst production and mortality. Thus the most resistant inbred mouse strain (BALB/c) is the least resistant in the absence of T cells. Unlike intact mice, nude mice showed no resistance to reinfection, this result being in line with previous work on this and other Eimeria spp. in nude mice.  相似文献   

3.
Leishmania amazonensis is the etiological agent of diffuse cutaneous leishmaniasis. The immunopathology of leishmaniasis caused by L. amazonensis infection is dependent on the pathogenic role of effector CD4+ T cells. Purinergic signalling has been implicated in resistance to infection by different intracellular parasites. In this study, we evaluated the role of the P2X7 receptor in modulating the immune response and susceptibility to infection by L. amazonensis. We found that P2X7-deficient mice are more susceptible to L. amazonensis infection than wild-type (WT) mice. P2X7 deletion resulted in increased lesion size and parasite load. Our histological analysis showed an increase in cell infiltration in infected footpads of P2X7-deficient mice. Analysis of the cytokine profile in footpad homogenates showed increased levels of IFN-γ and decreased TGF-β production in P2X7-deficient mice, suggesting an exaggerated pro-inflammatory response. In addition, we observed that CD4+ and CD8+ T cells from infected P2X7-deficient mice exhibit a higher proliferative capacity than infected WT mice. These data suggest that P2X7 receptor plays a key role in parasite control by regulating T effector cells and inflammation during L. amazonensis infection.  相似文献   

4.
5.

Background

In murine models of malaria, an early proinflammatory response has been associated with the resolution of blood-stage infection. To dissect the protective immune mechanims that allow the control of parasitaemia, the early immune response of C57BL/6 mice induced during a non-lethal plasmodial infection was analysed.

Methods

Mice were infected with Plasmodium yoelii 265BY sporozoites, the natural invasive form of the parasite, in order to complete its full life cycle. The concentrations of three proinflammatory cytokines in the sera of mice were determined by ELISA at different time points of infection. The contribution of the liver and the spleen to this cytokinic response was evaluated and the cytokine-producing lymphocytes were identified by flow cytometry. The physiological relevance of these results was tested by monitoring parasitaemia in genetically deficient C57BL/6 mice or wild-type mice treated with anti-cytokine neutralizing antibody. Finally, the cytokinic response in sera of mice infected with parasitized-RBCs was analysed.

Results

The early immune response of C57BL/6 mice to sporozoite-induced malaria is characterized by a peak of IFN-γ in the serum at day 5 of infection and splenic CD4 T lymphocytes are the major producer of this cytokine at this time point. Somewhat unexpected, the parasitaemia is significantly lower in P. yoelii -infected mice in the absence of IFN-γ. More precisely, at early time points of infection, IFN-γ favours parasitaemia, whereas helping to clear efficiently the blood-stage parasites at later time points. Interestingly, the early IFN-γ burst is induced by the pre-erythrocytic stage.

Conclusion

These results challenge the current view regarding the role of IFN-γ on the control of parasite growth since they show that IFN-γ is not an essential mediator of protection in P. yoelii -infected C57BL/6 mice. Moreover, the mice parasitaemia is more efficiently controlled in the absence of an early IFN-γ production, suggesting that this cytokine promotes parasite's growth. Finally, this early burst of IFN-γ is induced by the pre-erythrocytic stage, showing the impact of this stage on the immune response taking place during the subsequent erythrocytic stage.  相似文献   

6.
Interferon-γ (IFN-γ) is important for host defense against various intracellular organisms including a protozoan pathogen Toxoplasma gondii. Various immune cells are recently shown to produce IFN-γ in T. gondii infection, however, it remains elusive which cell types are important for anti-T. gondii host defense so far. Here we generate a new IFN-γ reporter "GREVEN" mouse line in which a fusion protein of Venus and NanoLuc to analyze IFN-γ producing cells during T. gondii infection and find that CD4+, CD8+, γδ T cells and natural killer cells express Venus in a time dependent manner. Furthermore, Lck-Cre/Ifngfl/fl mice are highly susceptible to T. gondii infection. Taken together, our results demonstrate that T cell-derived IFN-γ plays an important role in anti-T. gondii host defense.  相似文献   

7.
Gamma interferon (IFN-γ) is known to be a major mediator influencing host defense against Toxoplasma (T.) gondii. To evaluate lymphocyte populations involved in this cytokine-mediated early resistance to T. gondii, the effects of in vivo administration of monoclonal antibodies (MAbs) against T-cell subsets and anti-asialo GM1 antibody on the course of infection and IFN-γ response were investigated in mice infected acutely with this parasitic protozoan. A single injection of anti-CD8 MAb on day ?1 or day 4 severely exacerbated the infection, in accordance with a marked suppression of endogenous IFN-γ production. Moreover, the administration of anti-IFN-γ MAb on day 0 but not later than day 4 resulted in a total abrogation of resistance to T. gondii, suggesting that endogenous IFN-γ produced during the first several days of infection is critical for the generation of antitoxoplasmal resistance in mice. In contrast, no significant increase in mortality was observed when injected with either anti-CD4 MAb or anti-asialo GM1 antibody on day ? 1, while these antibodies reduced significantly the ability of mice to produce IFN-γ. Indeed, simultaneous depletion of CD4+ and CD8+ cells had no greater suppressive effect on host defense and endogenous IFN-γ production than depletion of CD8+ cells alone. Together, these results suggest that CD8+ T cells play a central role for resolution of acute toxoplasmosis by participating in endogenous IFN-γ production. The possible role of early produced IFN-γ in the development of protective immune response to T. gondii is also discussed.  相似文献   

8.
Lethal irradiation (850 rads) of mice made resistant to Trichuris muris markedly depressed their ability to expel a challenge infection. Expulsion was restored within 7-10 days when MLNC from uninfected mice were transferred on the day of infection, but no significant restoration was evident after transfer of immune serum. Transfer of BM alone had no restorative effect within 10 days and no synergism was seen when both BM and MLNC were transferred. MLNC from uninfected donors did not restore challenge expulsion when transfer was delayed until day 7 and the mice were killed 3 days later, although MLNC from resistant donors were effective within this time. When irradiated mice were given BM and the challenge infection allowed to continue for 15 days expulsion was restored, as it was when challenge was delayed for 7 days after BM transfer in thymectomized mice. The results confirm that expulsion of T. muris involves both antibody-mediated and lymphoid cell-mediated phases and offer no evidence for the involvement of other cell types.  相似文献   

9.
Myeloid differentiation factor 88 (MyD88)-dependent IL-12 secretion by dendritic cells is critical for natural killer cell-mediated IFN-γ production and innate resistance to Toxoplasma gondii. Although MyD88−/− mice challenged with T. gondii have defective IL-12 responses and succumb to infection, administration of IL-12 to MyD88−/− mice fails to prevent acute mortality, suggesting that MyD88 may mediate signals within natural killer cells important for IL-12-dependent IFN-γ production and innate resistance to this parasite. In this study, we found that T. gondii antigens and IL-12 could synergistically trigger IFN-γ secretion by natural killer cells, which was dependent on toll-like receptor-MyD88 signaling. Further analysis showed that p38 mitogen-activated protein kinase, extracellular signal-regulated kinase, c-Jun N-terminal kinase and NF-κB multiple pathways downstream of MyD88 contributed to IFN-γ production by natural killer cells. Moreover, the well-established toll-like receptor agonists, T. gondii profilin (Tgprofilin) and T. gondii heat shock protein 70 (TgHSP70) could evoke a similar IFN-γ secretory response in natural killer cells to that evoked by T. gondii antigens. In vivo adoptive transfer experiments showed that, upon challenge with T. gondii, NOD/SCID-β2 microglobulin null (NOD/SCID-β2m−/−) mice injected i.v. with MyD88−/− natural killer cells had reduced serum IFN-γ levels and increased splenic tachyzoite burdens compared with those injected i.v. with wild-type natural killer cells. Taken together, these findings demonstrate a critical role for natural killer cell intrinsic toll-like receptor-MyD88 signaling in IL-12-dependent early IFN-γ production and innate resistance to T. gondii.  相似文献   

10.
Toxoplasma gondii takes two different life cycle stages within intermediate hosts including humans. Tachyzoites proliferate during the acute stage, and they transform into cysts to establish a chronic infection preferentially in the brain. IFN-γ production by infiltrated CD4+ and CD8+ T cells is required for the prevention of cerebral tachyzoite growth. IFN-γ production by brain-resident cells, most likely microglia, plays a key first line defense role to facilitate both innate and T cell-mediated protective immunity to control the tachyzoite growth. IFN-γ produced by brain-resident cells activates cerebral expression of IFN-dependent effector molecules to suppress tachyzoite growth during the early stage of infection. Their IFN-γ production also induces an expression of CXCL9 and CXCL10 chemokines to recruit immune T cells into the brain, and upregulates cerebral expression of MHC class I and II molecules for antigen presentation to the recruited T cells to activate their IFN-γ production. CD8+ T cells also have the activity to remove T. gondii cysts from the brains of infected hosts. Of interest, the anti-cyst activity of CD8+ T cells does not require their IFN-γ but does require perforin. Notably, we discovered that CD8+ cytotoxic T cells penetrate in the cysts in a perforin-mediated manner, which induces morphological deterioration and destruction of the cysts and an accumulation of microglia and macrophages for their elimination. Thus, the immune system employs two distinct effector mechanisms mediated by IFN-γ or perforin depending on two different life cycle stages of a single pathogen, T. gondii, to control its cerebral infection.  相似文献   

11.
Toxoplasma gondii is a ubiquitous intracellular parasite affecting most mammals including humans. In epidemiological studies, infection with T. gondii and allergy development have been postulated to be inversely related. Using a mouse model of birch pollen allergy we investigated whether infection with T. gondii influences allergic immune responses to birch pollen. BALB/c mice were infected with T. gondii oocysts either before or at the end of sensitisation with the major birch pollen allergen Bet v 1 and thereafter aerosol challenged with birch pollen extract. During the acute phase of infection, clinical signs correlated with increased levels of serum TNF-α, IL-6, IFN-γ and anti-Toxoplasma-IgM. In the chronic phase, Toxoplasma-specific serum IgG, brain tissue cysts and high IFN-γ production in spleen cell cultures were detected. Mice infected prior to allergic sensitisation produced significantly less allergen-specific IgE and IgG1, while IgG2a levels were markedly increased. IL-5 levels in spleen cell cultures and bronchoalveolar lavage fluid were significantly reduced, and airway inflammation was prevented in these mice. Notably, in mice infected at the end of the allergic sensitisation process, systemic and local immune responses to the allergen were markedly reduced. T.gondii infection was associated with up-regulation of Toll-like receptor 2 (TLR2), 4, 9 and 11, as well as T-bet (a differentiation factor for Th1 cells) mRNA expression in splenocytes; moreover, enhanced TGF-β, IL-10 and Foxp3 mRNA expression in these cells suggested that regulatory mechanisms were involved in suppression of the allergic immune response. Kinetic studies confirmed the induction of Foxp3+CD4+CD25+ regulatory T cells preferentially during the chronic phase of T. gondii infection. Our data demonstrate that T. gondii exhibits strong immunomodulating properties which lead to prevention of allergic immune responses and thereby support the hygiene hypothesis.  相似文献   

12.
探讨不同疟原虫感染BALB/c小鼠的免疫应答特点。BALB/c小鼠经腹腔注射致死型约氏疟原虫(P.y17XL)和夏氏疟原虫(P.cAS)感染的红细胞,计数红细胞感染率;ELISA动态检测感染小鼠脾细胞培养上清中IFN-γ和IL-4水平;流式细胞术检测脾中CD4+T细胞凋亡数量。约氏疟原虫(P.y17XL)感染早期,小鼠原虫血症持续上升;IFN-γ和IL-4分泌水平仅在感染后第3天出现一过性有意义的升高,而且峰值较低;脾中CD4+T细胞大量凋亡,小鼠全部死亡;而夏氏疟原虫(P.cAS)感染小鼠,原虫血症上升缓慢;IFN-γ分泌水平在感染后第5天达峰值;IL-4分泌水平在感染后第10天达峰值,且峰值较高维持时间较长;脾中CD4+T细胞凋亡细胞于感染后8 d出现有意义升高,小鼠全部存活。抗疟保护性免疫有赖于Th1和Th2型免疫应答的有效建立和协调过渡,感染期间CD4+T细胞凋亡的时相和数量可能是影响免疫应答的强度或引起宿主免疫抑制的原因,从而影响宿主疟原虫感染的结局。  相似文献   

13.
The malaria parasite, Plasmodium yoelii 17X, causes a self-limited, nonlethal infection characterized, in the blood stage, by preferential invasion of reticulocytes. Previous studies have suggested that immunity to the blood stage infection may be related to enhanced levels of class I MHC Ag on the parasitized reticulocyte surface and can be adoptively transferred to immunodeficient mice by immune CD8+ T cells in the absence of CD4+ T cells. To further examine the mechanisms of CD8+ T cell involvement in immunity to blood stage P. yoelii infection, we performed in vivo CD8 depletion and adoptive transfer experiments. Depletion of CD8+ T cells during primary blood stage infection in BALB/c mice did not diminish the ability of the mice to resolve their infections. Spleen cells from immune BALB/c and C57BL/10 mice were transferred to BALB/c-nu/nu and C57BL/10-nu/nu mice, respectively. The recipient mice were CD4 depleted in vivo to kill any transferred CD4+ T cells. The mice failed to control the infection. Populations of CD4-, CD8+ T cells were transferred from immune CBA/CaJ donors to in vivo CD4-depleted CBA/CaJ recipients. The mice were unable to control the infection. Although immune unfractionated spleen cells transferred rapid protection in all three mouse strains and immune CD4+ T cells transferred immunity in the two mouse strains studied, CD8+ T cells by themselves were neither protective nor did they enhance immunity.  相似文献   

14.
Intraperitoneal proliferation of the metacestode stage of Echinococcus multilocularis in experimentally infected mice is followed by an impaired host immune response favoring parasite survival. We here demonstrate that infection in chronically infected mice was associated with a 3-fold increase of the percentages of CD4+ and CD8+ peritoneal T (pT) cells compared to uninfected controls. pT cells of infected mice expressed high levels of IL-4 mRNA, while only low amounts of IFN-γ mRNA were detected, suggesting that a Th2-biased immune response predominated the late stage of disease. Peritoneal dendritic cells from infected mice (AE-pDCs) expressed high levels of TGF-β mRNA and very low levels of IL-10 and IL-12 (p40) mRNA, and the expression of surface markers for DC-maturation such as MHC class II (Ia) molecules, CD80, CD86 and CD40 was down-regulated. In contrast to pDCs from non-infected mice, AE-pDCs did not enhance Concanavalin A (ConA)-induced proliferation when added to CD4+ pT and CD8+ pT cells of infected and non-infected mice, respectively. In addition, in the presence of a constant number of pDCs from non-infected mice, the proliferation of CD4+ pT cells obtained from infected animals to stimulation with ConA was lower when compared to the responses of CD4+ pT cells obtained from non-infected mice. This indicated that regulatory T cells (Treg) may interfere in the complex immunological host response to infection. Indeed, a subpopulation of regulatory CD4+ CD25+ pT cells isolated from E. multilocularis-infected mice reduced ConA-driven proliferation of CD4+ pT cells. The high expression levels of Foxp3 mRNA by CD4+ and CD8+ pT cells suggested that subpopulations of regulatory CD4+ Foxp3+ and CD8+ Foxp3+ T cells were involved in modulating the immune responses within the peritoneal cavity of E. multilocularis-infected mice.  相似文献   

15.
Leishmania major infect only macrophages in the host, where they reside in endolysosomal compartments into which MHC class II molecules co-localize. Experimental infection in mice has provided a useful model for the differentiation of Th1 CD4+ effector lymphocytes that are required for the generation of IFN-γ that activates the macrophage to a microbicidal state. Genetically susceptible BALB/c mice aberrantly activate Th2 CD4+ effector cells that are ineffective in arresting infection. Increasing evidence suggests that, rather than discrete parasite antigens or MHC molecules, cytokines mediate the critical decision in the developmental switch to either the Th1 or Th2 effector phenotype.  相似文献   

16.
We previously reported that the baculovirus induced a strong host immune response against infections and malignancies. Among the immune cells, the dendritic cells were most strongly infected and activated by the baculovirus, although the exact mechanism remained unclear. Here, we evaluated the non-specific immune responses of bone marrow-derived dendritic cells (BMDCs) after infection by a wild-type baculovirus. MHC class I and II molecules and co-stimulation molecules (CD40, CD80, and CD86) on BMDCs were up-regulated by baculovirus infection. At the same time, the BMDCs produced pre-inflammatory cytokines (IL-6, IL12p70, and TNF-α) and IFN-α. NK cells showed IFN-γ production, CD69 up-regulation, and enhanced cytotoxicity when they were co-cultured with baculovirus-infected BMDCs. T cells showed IFN-γ production, CD69 up-regulation, and cell proliferation. Ex vivo analysis performed in vitro produced similar results. These findings suggested that baculovirus-infected dendritic cells induce non-specific immune responses and can be used as an immunotherapeutic agent against viral infections and malignancies, together with present therapeutic drug regimens.  相似文献   

17.
The central role of CD4+ T lymphocytes in mediating DNA vaccine-induced tumor immunity against the viral oncoprotein simian virus 40 (SV40) large tumor antigen (Tag) has previously been described by our laboratory. In the present study, we extend our previous findings by examining the roles of IFN-γ and Th1-associated effector cells within the context of DNA immunization in a murine model of pulmonary metastasis. Immunization of BALB/c mice with plasmid DNA encoding SV40 Tag (pCMV-Tag) generated IFN-γ-secreting T lymphocytes that produced this cytokine upon in vitro stimulation with mKSA tumor cells. The role of IFN-γ as a mediator of protection against mKSA tumor development was assessed via in vivo IFN-γ neutralization, and these experiments demonstrated a requirement for this cytokine in the induction immune phase. Neutralization of IFN-γ was associated with a reduction in Th1 cytokine-producing CD4+ and CD8+ splenocytes, as assessed by flow cytometry analysis, and provided further evidence for the role of CD4+ T lymphocytes as drivers of the cellular immune response. Depletion of NK cells and CD8+ T lymphocytes demonstrated the expendability of these cell types individually, but showed a requirement for a resident cytotoxic cell population within the immune effector phase. Our findings demonstrate the importance of IFN-γ in the induction of protective immunity stimulated by pCMV-Tag DNA-based vaccine and help to clarify the general mechanisms by which DNA vaccines trigger immunity to tumor cells.  相似文献   

18.
Chagas disease, caused by Trypanosoma cruzi (Tc), is an important cause of heart disease. Resistance to Tc infection is multifactorial and associated with Th1 response. IL-18 plays an important role in regulation of IFN-γ production/development of Th1 response. However, the role of IL-18 in the setting of Tc infection remains unclear. Therefore, we investigated the role of IL-18 in the modulation of immune response and myocarditis in Tc infection. C57BL/6 and IL-18 KO mice were infected with Tc (Y or Colombian strain) and parasitemia, immune response and pathology were evaluated. Y strain infection of IL-18 KO did not alter any parameters when compared with C57BL/6 mice. However, during the acute phase (20 and 40 days post infection-dpi), Colombian strain infected-IL-18 KO mice displayed higher serum levels of IL-12 and IFN-γ, respectively, and at the chronic phase (100 dpi) an increase in splenic IFN-γ-producing CD4+ and CD8+ T memory cells. There was an IL-10, FOXP3 and CD4+CD25+ cells reduction during acute infection in spleen. Additionally, there was a significant reduction in leukocyte infiltration and parasite load in myocardium of chronically infected IL-18 KO mice. Collectively, these data indicate that IL-18 contributes to the pathogenesis of Tc-induced myocarditis when infected with Colombian but not Y strain. These observations also underscore that parasite and host strain differences are important in evaluation of experimental Tc infection pathogenesis.  相似文献   

19.
Neospora caninum is an apicomplexan parasite, closely related to Toxoplasma gondii, and causes abortion and congenital neosporosis in cattle worldwide. Trophoblast cells act in mechanisms of innate immune defense at the fetal-maternal interface and no data are available about the interaction of Neospora with human trophoblasts. Thus, this study aimed to verify the susceptibility of human trophoblastic (BeWo) compared with uterine cervical (HeLa) cell lines to N. caninum. BeWo and HeLa cells were infected with different parasite:cell ratios of N. caninum tachyzoites and analyzed at different times after infection for cell viability using thiazolyl blue tetrazole and lactate dehydrogenase assays. Both cell lines were also evaluated for cytokine production and parasite infection/replication assays when pre-treated or not with Neospora lysate antigen (NLA) or human recombinant IFN-γ. Cell viability was increased up to 48 h of infection in both types of cells, suggesting that infection could inhibit early cell death and/or induce cell proliferation. Neospora infection induced up-regulation of the macrophage migration inhibitory factor (MIF), mainly in HeLa cells, which was enhanced by cell pre-treatment by NLA or IFN-γ. Conversely, parasite infection induced down-regulation of the transforming growth factor (TGF-β), mostly in BeWo cells, which was decreased with NLA or IFN-γ pre-treatment. HeLa cells were more susceptible to Neospora infection than BeWo cells and IFN-γ pre-treatment resulted in reduced infection indices in both cell lines. Control of parasite growth was mediated by IFN-γ through an indoleamine-2,3-dioxygenase-dependent mechanism in HeLa cells alone. Based on these results, we concluded that BeWo and HeLa cells are readily infected by N. caninum, although presenting differences in susceptibility to infection, cytokine production and cell viability. Thus, these host cells can be considered in comparative approaches to understand strategies used by N. caninum to survive at the maternal-fetal interface.  相似文献   

20.
The cultivation of bone marrow was used to quantitate the levels of eosinophil differentiation factors (EDF) produced in conditioned medium (CM) by incubation of mesenteric lymph node cells (MLNC) with mitogens or specific antigens from the intestinal nematode parasite, Trichostrongylus colubriformis. In liquid cultures with 20 units ml−1 recombinant murine interleukin-5 (IL-5), bone marrow cells (BMC) from either normal or infected donors contained <5% eosinophils and differentiated to > 50% eosinophils over 2–3 weeks. Conditioned medium from 3–4 week infected donors produced between 20 and 50% eosinophils when donor MLNC were stimulated with the specific antigen preparation SP3, but macrophages predominated when using CM from MLNC incubated with Concanavalin A (ConA). CM from MLNC of challenged donors incubated with SP3 produced 30–70% eosinophils in BMC assays, with highest levels induced by CM from high responder (HR) donors. Marrow from parasitized or normal donors gave rise to comparable proportions of eosinophils. CM was also produced from LNC of donors given protein or parasite antigens in adjuvant where between 28 and 35% eosinophils were produced in culture. There were no differences between activities attributable to the antigen, but Freund's complete adjuvant induced earlier differentiation of BMC than alum-induced CM. The results confirm that high levels of EDF activity are specifically induced by parasitic infection, and can also be produced by intraperitoneal and subcutaneous inoculation of adjuvanted antigens. Consistent with the greater eosinophilia exhibited by HR guinea pigs to infection with T.colubriformis L3, their MLNC also produced the highest levels of EDF activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号