首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In vitro packaging of restriction fragments of the bacteriophage phi 29 DNA-gp3 (DNA-gene product 3 complex) in the defined system was dependent on prohead RNA. Truncated prohead RNAs were obtained by in situ RNase A digestion, isolated and sequenced. Proheads having the intact 174 base RNA were compared to proheads having RNAs of 120, 95, 71, 69 or 54 bases for the capacity to package the DNA-gp3 left and right ends and internal (non-end) fragments generated by the restriction enzymes EcoRI, HpaI and BstNI. Proheads with the 174 or 120 base RNAs packaged both left and right ends; internal fragments were packaged more efficiently by proheads with the 120 base RNA. Proheads with the 95 base RNA packaged DNA-gp3 left ends and internal fragments efficiently, but lost the capacity to package right ends. Only internal fragments were packaged by proheads with the 71 base RNA, and proheads having 69 or 54 base RNAs were inactive. RNA-free proheads were effectively reconstituted with purified 174 and 120 base RNAs to produce particles similar in biological activity to the proheads from which the RNAs were isolated. The 95 base RNA was the smallest RNA of the group that could reconstitute the prohead and direct fragment packaging, although packaging was inefficient. Alteration of the specificity of DNA fragment packaging with truncated prohead RNAs has delineated RNA domains that function in DNA-gp3 recognition and prohead binding.  相似文献   

2.
The assembly of phage phi 29 occurs by a single pathway, and the DNA protein (DNA-gp3) of "packaging intermediates" can be obtained after DNase I interruption of in vitro complementation. A broad spectrum of DNA molecules of variable length was isolated from DNase I-treated proheads. Restriction endonuclease EcoRI digestion and electrophoretic analysis of these DNA molecules suggested that DNA-gp3 packaging was oriented with respect to the physical map and was a complex process. Proteinase K-treated exogenous DNA was not packaged. When exogenous DNA-gp3 was predigested with the restriction endonucleases BstEII. EcoRI, HpaI, and HpaII, the left-end fragments, ranging in size from 8 to 0.9 megadaltons, were selectively and efficiently packaged. During in vivo and in vitro assembly, DNA-gp3 is packaged into proheads, the "core-scaffolding" protein gp7 exits from the particles, and the DNA-filled heads assume the angular morphology of phage phi 29. The packaging of a 4.1-megadalton DNA-gp3 left-end fragment (one third of the genome) resulted in the exit of gp7 and the transition to angularity.  相似文献   

3.
Initiation events in in-vitro packaging of bacteriophage phi 29 DNA-gp3   总被引:6,自引:0,他引:6  
Initiation events in the packaging of bacteriophage phi 29 DNA-gp3 (DNA-gene product 3 complex) were studied in a completely defined in-vitro system that included purified proheads, DNA-gp3 and the DNA packaging protein gp16. In the sequential interactions, gp16 first bound to, and was modified by, the prohead. The prohead-gp16 complex then bound to DNA-gp3, resulting in a second modification of gp16 that permitted binding of ATP. DNA-gp3 aggregates were produced, and the hydrolysis of ATP accompanied DNA-gp3 packaging. Binding and hydrolysis of ATP by gp16 was both prohead- and DNA-gp3-dependent. Interruption of packaging by DNase I addition revealed filled heads but few particles containing partial lengths of DNA, suggesting that following a rate-limiting initiation, the translocation of DNA-gp3 into the prohead was much faster in the defined in-vitro system than in extracts.  相似文献   

4.
The 174-base prohead RNA encoded by bacteriophage phi 29 of Bacillus subtilis, essential for packaging of the DNA-gp3 (DNA-gene product 3) complex, was expressed efficiently from the cloned gene. Computer programs for RNA structure analysis were used to fold hypothetical RNA mutants and thus to target mutagenesis of the RNA for studies of structure and function. Five mutants of the RNA were then produced by oligonucleotide-directed mutagenesis that were altered in the primary sequence at selected sites; two of these mutants were predicted to be altered in secondary structure from a model established previously by a phylogenetic analysis. The binding of the 32P end-labeled mutant RNAs to RNA-free proheads was comparable with that of the wild-type RNA. However, the capability of the mutant RNAs to reconstitute RNA-free proheads for DNA-gp3 packaging in the defined in vitro system and for assembly of phage in RNA-free extracts was variable, depending upon the alteration. Changes of highly conserved bases that retained the predicted secondary structure of the RNA model were tolerated to a much greater extent than changes predicted to alter the RNA secondary structure.  相似文献   

5.
In vitro assembly of bacteriophage phi 29 in crude extracts involves efficient packaging of a DNA-protein complex (DNA- gp3 ) into a prohead with the aid of the gene 16 product ( gp16 ) and subsequent assembly of neck and tail proteins ( Bjornsti et al., J. Virol. 41:508-517, 1982; Bjornsti et al., J. Virol. 45:383-396, 1983; Bjornsti et al., Proc. Natl. Acad. Sci. U.S.A. 78:5861-5865, 1981). To define the viral proteins required for the DNA- gp3 encapsidation phase, we purified biologically active proheads and DNA- gp3 and constructed a chimeric plasmid, pUM101 , which contained and expressed gene 16 of phi 29 and no other viral genes. The plasmid-specified gp16 was both necessary and sufficient to package 24% of the DNA- gp3 added to the purified proheads , and the DNA-filled heads so produced were efficiently complemented to infectious phage by the addition of neck and tail proteins. Purified proheads and DNA- gp3 gave linear dose-response curves with slopes of approximately 1; in contrast, a 4-fold dilution of gp16 resulted in a 1,000-fold reduction of phi 29, suggesting a requirement for multiple copies of this protein.  相似文献   

6.
The ATPase activity of the DNA packaging protein gp16 (gene product 16) of bacteriophage phi 29 was studied in the completely defined in-vitro assembly system. ATP was hydrolyzed to ADP and Pi in the packaging reaction that included purified proheads, DNA-gp3 and gp16. Approximately one molecule of ATP was used in the packaging of 2 base-pairs of phi 29 DNA, or 9 X 10(3) ATP molecules per virion. The hydrolysis of ATP by gp16 was both prohead and DNA-gp3 dependent. gp16 contained both the "A-type" and the "B-type" ATP-binding consensus sequences (Walker et al., 1982) and the predicted secondary structure for ATP binding. The A-type sequence of gp16 was "basic-hydrophobic region-G-X2-G-X-G-K-S-X7-hydrophobic", and similar sequences were found in the phage DNA packaging proteins gpA of lambda, gp19 of T7 and gp17 of T4. Having both the ATP-binding and potential magnesium-binding domains, all of these proteins probably function as ATPases and may have common prohead-binding capabilities. The phi 29 protein gp3, covalently bound to the DNA, may be analogous in function to proteins gpNul of lambda and gpl of phi 21 that bind the DNA.  相似文献   

7.
Missense mutants of bacteriophage lambda that produce small proheads were found among prophage mutants defective in the major head protein gpE. Measurements of the sedimentation coefficient and molecular weight of the small proheads showed that they have the T = 4 structure composed of 240 molecules of gpE instead of the wild-type T = 7 structure composed of 420 molecules of gpE. When the phage mutants were grown in groE mutants of Escherichia coli, they produced small unprocessed proheads, which contained a smaller number (about 60) of the core protein (gpNu3) molecules than normal unprocessed proheads, which contain about 180 molecules of gpNu3. This shows that the major head protein determines the size of not only the shell but also the core of unprocessed proheads. These mutants by themselves produce very few mature small-headed phage particles, partly because the lambda DNA molecule, whose cos sites are separated at a distance of 48,500 bases, is too long to be packaged into the small proheads. However, the small proheads can package shorter DNA in vivo and in vitro at somewhat reduced efficiency, if the length or a multiple of the length between the cos sites of the DNA is 13,000 to 19,000 bases.  相似文献   

8.
We have identified and characterized structural intermediates in phage P22 assembly. Three classes of particles can be isolated from P22-infected cells: 500 S full heads or phage, 170 S empty heads, and 240 S “proheads”. One or more of these classes are missing from cells infected with mutants defective in the genes for phage head assembly. By determining the protein composition of all classes of particles from wild type and mutant-infected cells, and examining the time-course of particle assembly, we have been able to define many steps in the pathway of P22 morphogenesis.In pulse-chase experiments, the earliest structural intermediate we find is a 240 S prohead; it contains two major protein species, the products of genes 5 and 8. Gene 5 protein (p5) is the major phage coat protein. Gene 8 protein is not found in mature phage. The proheads contain, in addition, four minor protein species, PI, P16, P20 and PX. Similar prohead structures accumulate in lysates made with mutants of three genes, 1, 2 and 3, which accumulate uncut DNA. The second intermediate, which we identify indirectly, is a newly filled (with DNA) head that breaks down on isolation to 170 S empty heads. This form contains no P8, but does contain five of the six protein species of complete heads. Such structures accumulate in lysates made with mutants of two genes, 10 and 26.Experiments with a temperature-sensitive mutant in gene 3 show that proheads from such 3? infected cells are convertible to mature phage in vivo, with concomitant loss of P8. The molecules of P8 are not cleaved during this process and the data suggest that they may be re-used to form further proheads.Detailed examination of 8? lysates revealed aberrant aggregates of P5. Since P8 is required for phage morphogenesis, but is removed from proheads during DNA encapsulation, we have termed it a scaffolding protein, though it may have DNA encapsulation functions as well.All the experimental observations of this and the accompanying paper can be accounted for by an assembly pathway, in which the scaffolding protein P8 complexes with the major coat protein P5 to form a properly dimensioned prohead. With the function of the products of genes 1, 2 and 3, the prohead encapsulates and cuts a headful of DNA from the concatemer. Coupled with this process is the exit of the P8 molecules, which may then recycle to form further proheads. The newly filled heads are then stabilized by the action of P26 and gene 10 product to give complete phage heads.  相似文献   

9.
We previously demonstrated (Guo et al., 1987. Nucl. Acids Res. 15, 7081-7090) that purified proheads of bacteriophage phi 29 contain an RNA of 120 bases which is essential for DNA packaging. Here we report that this RNA exists primarily as a polymer of ca. 174 residues in phage-infected cells and that ca. 54 bases are cleaved from its 3'-terminus by adventitious nucleases during the purification of proheads. The long and short forms of the RNA had similar activity in in vitro DNA packaging and phage assembly. We report the sequence of the long form of the RNA and show that similar long and short forms can be isolated from the proheads of the phi 29 relatives phi 21, phi 15 and SF5. The concentration dependence in the reconstitution of RNA-free proheads suggests that one copy of the RNA is sufficient to restore DNA packaging activity to RNA-free proheads. However, quantitative measurements indicate that 5 to 6 copies of the RNA are present on proheads isolated from phage-infected cells.  相似文献   

10.
11.
M Saijo  T Enomoto  F Hanaoka  M Ui 《Biochemistry》1990,29(2):583-590
Type II topoisomerase has been purified from mouse FM3A cells by using P4 phage knotted DNA as a substrate. Analysis of the purified enzyme by sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed two bands of apparent molecular masses of 167 and 151 kDa. Partial digestion of the two bands with Staphylococcus aureus V8 protease indicated that the two polypeptides were structurally related. The enzyme required ATP and Mg2+ for activity. dATP could substitute for ATP, and ITP was slightly effective at 5-10 mM. The activity was sensitive to 4'-(9-acridinylamino)methanesulfon-m-anisidide (m-AMSA), coumermycin, and ethidium bromide. A protein kinase activity was detected in the partially purified topoisomerase II fraction, and this protein kinase was further purified. The protein kinase phosphorylated the purified topoisomerase II, and the phosphorylation of topoisomerase II by the kinase increased the activity by 8.6-fold over that of the unmodified enzyme. The treatment of the purified topoisomerase II with alkaline phosphatase abolished the enzyme activity almost completely, and the treatment of the dephosphorylated topoisomerase II with the protein kinase restored the enzyme activity. The protein kinase activity was not stimulated by Ca2+ or cyclic nucleotides, and the aminoacyl residue phosphorylated by the kinase was serine. Enzymatic properties of the kinase were very similar to those of the kinase reported to be tightly associated with the Drosophila topoisomerase II [Sander, M., Nolan, J. M., & Hsieh, T.-S. (1984) Proc. Natl. Acad. Sci. U.S.A. 81, 6938-6942]. The immunoprecipitation of nuclear extracts prepared from 32P-labeled cells with anti-mouse topoisomerase II antiserum indicated that DNA topoisomerase II existed in mouse cells as a phosphoprotein.  相似文献   

12.
The development of bacteriophage lambda and double-stranded DNA viruses in general involves the convergence of two separate pathways: DNA replication and head assembly. Clearly, packaging will proceed only if an empty capsid shell, the prohead, is present to receive the DNA, but genetic evidence suggests that proheads play another role in the packaging process. For example, lambda phages with an amber mutation in any head gene or in FI, the gene encoding the accessory packaging protein gpFI, are able to produce normal amounts of DNA concatemers but they are not cut, or matured, into unit length chromosomes for packaging. Similar observations have been made for herpes simplex 1 virus. In the case of lambda, a negative model proposes that in the amber phages, unassembled capsid components are inhibitory to maturation, and a positive model suggests that assembled proheads are required for cutting. We tested the negative model by using a deletion mutant devoid of all prohead genes and FI in an in vivo cos cleavage assay; in this deleted phage, the cohesive ends were not cut. When lambda proheads and gpFI were provided in vivo via a second prophage, cutting was restored, and gpFI was required, results that support the positive model. Phage 21 is a sister phage of lambda, and although its capsid proteins share approximately 60% residue identity with lambda's, phage 21 proheads did not restore cutting, even when provided with the accessory protein gpFI. Models for the role of proheads and gpFI in cos cutting are discussed.  相似文献   

13.
The assembly of phage phi 29 occurs by a single pathway, and DNA-protein (DNA-gp3) has been shown to be an intermediate on the assembly pathway by a highly efficient in vitro complementation. At 30 degrees C, about one-half of the viral DNA synthesized was assembled into mature phage, and the absolute plating efficiency of phi 29 approached unity. DNA packaging at 45 degrees C was comparable to that at 30 degrees C, but the burst size was reduced by one-third. When cells infected with mutant ts3(132) at 30 degrees C to permit DNA synthesis were shifted to 45 degrees C before phage assembly, DNA synthesis ceased and no phage were produced. However, a variable amount of DNA packaging occurred. Superinfection by wild-type phage reinitiated ts3(132) DNA synthesis at 45 degrees C, and if native gp3 was covalently linked to this DNA during superinfection replication, it was effectively packaged and assembled. Treatment of the DNA-gp3 complex with trypsin prevented in vitro maturation of phi 29, although substantial DNA packaging occurred. A functional gp3 linked to the 5' termini of phi 29 DNA is a requirement for effective phage assembly in vivo and in vitro.  相似文献   

14.
We developed a system for DNA packaging of isolated bacteriophage T4 proheads in vitro and studied the role of prohead expansion in DNA packaging. Biologically active proheads have been purified from a number of packaging-deficient mutant extracts. The cleaved mature prohead is the active structural precursor for the DNA packaging reaction. Packaging of proheads requires ATP, Mg2+ and spermidine, and is stimulated by polyethylene glycol and dextran. Predominantly expanded proheads (ELPs) are produced at 37 degrees C and predominantly unexpanded proheads (ESPs) are produced at 20 degrees C. Both the expanded and unexpanded proheads are active in DNA packaging in vitro. This is based on the observations that (1) both ESPs and ELPs purified by chromatography on DEAE-Sephacel showed DNA packaging activity; (2) apparently homogeneous ELPs prepared by treatment with sodium dodecyl sulfate (which dissociates ESPs) retained significant biological activity; (3) specific precipitation of ELPs with anti-hoc immunoglobulin G resulted in loss of DNA packaging activity; and (4) ESPs upon expansion in vitro to ELPs retained packaging activity. Therefore, contrary to the models that couple DNA packaging to head expansion, in T4 the expansion and packaging appear to be independent, since the already expanded DNA-free proheads can be packaged in vitro. We therefore propose that the unexpanded to expanded prohead transition has evolved to stabilize the capsid and to reorganize the prohead shell functionally from a core-interacting to a DNA-interacting inner surface.  相似文献   

15.
Abstract Infectious phage particles can be formed in vitro when extracts of T1-infected cells are incubated with T1 DNA. The DNA packaging system is based on mixtures of complementing extracts from Escherichia coli sup0 cells infected with the amber mutants am 4 (gene 16) or am 10 (gene 13). Gene 16 mutants are defective in the formation of DNA-filled heads but make proheads; gene 13 mutants are defective in prohead formation. Three forms of DNA have been packaged: (1) endogenous concatemeric DNA present in mixtures of am 4 and am 10 mutant extracts; (2) concatemeric DNA; (3) virion DNA both when supplied exogenously to mixtures of am 4 · am 20 and am 10 · am 20 double mutant extracts ( am 20 inhibits T1 DNA synthesis). The reaction requires added ATP, Mg2+ and spermidine for optimum efficiency and produces about 1.5 × 103 pfu/ μ g and about 1 × 104 pfu/ μ g for exogenous concatemeric and virion DNA, respectively.  相似文献   

16.
Baby hamster kidney (BHK) 21/C13 cell proteins, labeled with [35S]methionine, [14C]leucine or [3H]leucine in intact cells, were degraded in soluble, cell-free extracts by an ATP-stimulated process. The stimulatory effect of ATP appeared to require ATP hydrolysis and was mediated to a large extent by ubiquitin. Although the cell extracts contained endogenous ubiquitin, supplementation with exogenous ubiquitin increased ATP-dependent proteolysis by up to 2-fold. Furthermore, antibodies against the E1 ubiquitin conjugating enzyme specifically inhibited both conjugation of [125I]ubiquitin to endogenous proteins and ATP/ubiquitin-dependent proteolysis. Addition of purified E1 to antibody-treated extracts restored conjugation and proteolysis. Proteins containing the amino acid analogues canavanine and azatryptophan were also degraded in vitro by an ATP/ubiquitin-dependent process but at a rate up to 2-fold faster than normal proteins. These results indicate that soluble, cell-free extracts of BHK cells can selectively degrade proteins whose rates of degradation are increased in intact cells. Treatment of cell-free extracts with antibodies against the high molecular weight proteinase, macropain, also greatly inhibited the ATP/ubiquitin-dependent degradation of endogenous proteins. Proteolysis was specifically restored when purified macropain L was added to the antibody-treated extracts. Treatment of cell extracts with both anti-macropain and anti-E1 antibodies reduced ATP/ubiquitin-dependent proteolysis to the same extent as treatment with either antibody alone. Furthermore, proteolysis could be restored to the double antibody treated extracts only after addition of both purified E1 and macropain. These results provide strong evidence for an important role for macropain in the ATP/ubiquitin-dependent degradation of endogenous proteins in BHK cell extracts.  相似文献   

17.
Plasmid 6.4 kbp DNA, 14 kbp DNA, lambda phage particles, all of which contained herpes simplex virus type 1 (HSV-1) thymidine kinase (TK) gene, or IgM molecules, were mixed with erythrocyte membranes and treated with neutral detergent. The transparent mixture was diluted with phosphate-buffered saline (PBS), followed by centrifugation to collect membrane vesicles containing the large macromolecules. 10-15% of 6.4 kbp, 3% of 14 kbp, 4-7% of the lambda phage particles and 14.5% of IgM were trapped within erythrocyte membrane vesicles. The membrane vesicles containing these molecules were fused with L cells, or rat F2408#20 cells, both of which are deficient in thymidine kinase activity. In each case, transformants were obtained. 2 X 10(5) - 7 X 10(5) phage PFU or 1.5 X 10(6) - 8 X 10(7) DNA molecules were required to obtain one transformant from L cells, but 2-3 X 10(7) phage PFU or 2 X 10(9) - 1 X 10(10) DNA molecules were required for one transformant from rat cells. Number of colonies which transiently expressed TK genes in L cells was also determined by autoradiography. The ratio of stable transformants to colonies positive for transient expression in cells treated with low doses of DNA or lambda phage was 46-68%. The transformation efficiency of human fibroblast cells by pSV2-gpt DNA trapped in erythrocyte membrane vesicles was less than that of L cells by HSV-TK DNA, but almost the same as that of rat cells by HSV-TK DNA.  相似文献   

18.
The connector of bacteriophage phi 29 is required for prohead assembly, binds DNA, and drives DNA packaging into viral proheads. Limited proteolysis of the connector protein with endoproteinase Glu-C from Staphylococcus aureus V8 and chymotrypsin showed that a domain of the NH2-terminal region is involved in DNA binding and in the subsequent packaging into preformed proheads, but not in prohead assembly. Mutants in specific amino acids of the NH2-terminal domain, obtained by directed mutagenesis techniques, showed that the Ala1-Arg2-Lys3-Arg4 region of the connector is absolutely necessary for DNA packaging into the proheads as well as for efficient DNA binding.  相似文献   

19.
20.
Two amber mutations in gene 67 of bacteriophage T4 were constructed by oligonucleotide-directed mutagenesis and the resulting mutated genes were recombined back into the phage genome and their phenotype was studied. The 67amK1 mutation is close to the amino terminus of the gene, and phage carrying this mutation are unable to form plaques on suppressor-negative hosts. A second mutation, 67amK2, which lies in the middle of the gene, three codons N-terminal to a proteolytic cleavage site, produces a small number of viable phage particles. In suppressor-negative hosts, both mutants produce polyheads and proheads. 67amK1 assembles only few proheads that have a disorganized core structure, as judged from thin sections of infected cells. The proheads and the mature phages of both mutants are mainly isometric rather than having the usual prolate shape. Depending on the 67 mutant and the host, between 20% and 73% of the particles that are produced are isometric, and 1 to 10% are two-tailed biprolate particles. 67amK2 phages grown on a supD suppressor strain that inserts serine in place of the wild-type leucine do not contain gp67* derived from gene product 67 (gp67) by proteolytic cleavage. This demonstrates the importance of the correct amino acid at this position in the protein. Other abnormalities in these 67amK2 phages are the presence of uncleaved scaffolding core proteins (IPIII and gp68), indicating a structural alteration in the prohead scaffold, resulting in only partial cleavage. In wild-type phages these proteins are found in the head only in the cleaved form. With double-mutants of 67 with mutations in the major shell protein gp23 no naked scaffolding cores were found, confirming the necessity of gp67 for the assembly or persistence of a "normal" core.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号