首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The heterochronic pathway in C. elegans controls the relative timing of cell fate decisions during post-embryonic development. It includes a network of microRNAs (miRNAs), such as let-7, and protein-coding genes, such as the stemness factors, LIN-28 and LIN-41. Here we identified the acn-1 gene, a homologue of mammalian angiotensin-converting enzyme (ACE), as a new suppressor of the stem cell developmental defects of let-7 mutants. Since acn-1 null mutants die during early larval development, we used RNAi to characterize the role of acn-1 in C. elegans seam cell development, and determined its interaction with heterochronic factors, including let-7 and its downstream interactors – lin-41, hbl-1, and apl-1. We demonstrate that although RNAi knockdown of acn-1 is insufficient to cause heterochronic defects on its own, loss of acn-1 suppresses the retarded phenotypes of let-7 mutants and enhances the precocious phenotypes of hbl-1, though not lin-41, mutants. Conversely, the pattern of acn-1 expression, which oscillates during larval development, is disrupted by lin-41 mutants but not by hbl-1 mutants. Finally, we show that acn-1(RNAi) enhances the let-7-suppressing phenotypes caused by loss of apl-1, a homologue of the Alzheimer's disease-causing amyloid precursor protein (APP), while significantly disrupting the expression of apl-1 during the L4 larval stage. In conclusion, acn-1 interacts with heterochronic genes and appears to function downstream of let-7 and its target genes, including lin-41 and apl-1.  相似文献   

2.
Developmental timing in the nematode Caenorhabditis elegans is controlled by heterochronic genes, mutations in which cause changes in the relative timing of developmental events. One of the heterochronic genes, let-7, encodes a microRNA that is highly evolutionarily conserved, suggesting that similar genetic pathways control developmental timing across phyla. Here we report that the nuclear receptor nhr-25, which belongs to the evolutionarily conserved fushi tarazu-factor 1/nuclear receptor NR5A subfamily, interacts with heterochronic genes that regulate the larva-to-adult transition in C. elegans. We identified nhr-25 as a regulator of apl-1, a homolog of the Alzheimer's amyloid precursor protein-like gene that is downstream of let-7 family microRNAs. NHR-25 controls not only apl-1 expression but also regulates developmental progression in the larva-to-adult transition. NHR-25 negatively regulates the expression of the adult-specific collagen gene col-19 in lateral epidermal seam cells. In contrast, NHR-25 positively regulates the larva-to-adult transition for other timed events in seam cells, such as cell fusion, cell division and alae formation. The genetic relationships between nhr-25 and other heterochronic genes are strikingly varied among several adult developmental events. We propose that nhr-25 has multiple roles in both promoting and inhibiting the C. elegans heterochronic gene pathway controlling adult differentiation programs.  相似文献   

3.
4.
The founding heterochronic microRNAs, lin-4 and let-7, together with their validated targets and well-characterized phenotypes in C. elegans, offer an opportunity to test functionality of microRNAs in a developmental context. In this study, we defined sequence requirements at the microRNA level for these two microRNAs, evaluating lin-4 and let-7 mutant microRNAs for their ability to support temporal development under conditions where the wild-type lin-4 and let-7 gene products are absent. For lin-4, we found a strong requirement for seed sequences, with function drastically affected by several central mutations in the seed sequence, while rescue was retained by a set of mutations peripheral to the seed. let-7 rescuing activity was retained to a surprising degree by a variety of central seed mutations, while several non-seed mutant effects support potential noncanonical contributions to let-7 function. Taken together, this work illustrates both the functional partnership between seed and non-seed sequences in mediating C. elegans temporal development and a diversity among microRNA effectors in the contributions of seed and non-seed regions to activity.  相似文献   

5.
6.
The Puf family of RNA-binding proteins directs cell fates by regulating gene expression at the level of translation and RNA stability. Here, we report that the Caenorhabditis elegans pumilio homolog, puf-9, controls the differentiation of epidermal stem cells at the larval-to-adult transition. Genetic analysis reveals that loss-of-function mutations in puf-9 enhance the lethality and heterochronic phenotypes caused by mutations in the let-7 microRNA (miRNA), while suppressing the heterochronic phenotypes of lin-41, a let-7 target and homolog of Drosophila Brat. puf-9 interacts with another known temporal regulator hbl-1, the Caenorhabditis elegans ortholog of hunchback. We present evidence demonstrating that puf-9 is required for the 3'UTR-mediated regulation of hbl-1, in both the hypodermis and the ventral nerve cord. Finally, we show that this regulation is dependent on a region of the hbl-1 3'UTR that contains putative Puf family binding sites as well as binding sites for the let-7 miRNA family, suggesting that puf-9 and let-7 may mediate hypodermal seam cell differentiation by regulating common targets.  相似文献   

7.
The lin-12/Notch signaling pathway is conserved from worms to humans and is a master regulator of metazoan development. Here, we demonstrate that lin-12/Notch gain-of-function (gf) animals display precocious alae at the L4 larval stage with a significant increase in let-7 expression levels. Furthermore, lin-12(gf) animals display a precocious and higher level of let-7 gfp transgene expression in seam cells at L3 stage. Interestingly, lin-12(gf) mutant rescued the lethal phenotype of let-7 mutants similar to other known heterochronic mutants. We propose that lin-12/Notch signaling pathway functions in late developmental timing, upstream of or in parallel to the let-7 heterochronic pathway. Importantly, the human microRNA let-7a was also upregulated in various human cell lines in response to Notch1 activation, suggesting an evolutionarily conserved cross-talk between let-7 and the canonical lin-12/Notch signaling pathway.  相似文献   

8.
The microRNA let-7 is a critical regulator of developmental timing events at the larval-to-adult transition in C. elegans. Recently, microRNAs with sequence similarity to let-7 have been identified. We find that doubly mutant animals lacking the let-7 family microRNA genes mir-48 and mir-84 exhibit retarded molting behavior and retarded adult gene expression in the hypodermis. Triply mutant animals lacking mir-48, mir-84, and mir-241 exhibit repetition of L2-stage events in addition to retarded adult-stage events. mir-48, mir-84, and mir-241 function together to control the L2-to-L3 transition, likely by base pairing to complementary sites in the hbl-1 3' UTR and downregulating hbl-1 activity. Genetic analysis indicates that mir-48, mir-84, and mir-241 specify the timing of the L2-to-L3 transition in parallel to the heterochronic genes lin-28 and lin-46. These results indicate that let-7 family microRNAs function in combination to affect both early and late developmental timing decisions.  相似文献   

9.
The let-7 microRNA (miRNA) regulates developmental timing at the larval-to-adult transition in Caenorhabditis elegans. Dysregulation of let-7 results in irregular hypodermal and vulval development. Disrupted let-7 function is also a feature of human lung cancer. However, little is known about the mechanism and co-factors of let-7. Here we demonstrate that ribosomal protein RPS-14 is able to modulate let-7 function in C. elegans. The RPS-14 protein co-immunoprecipitated with the nematode Argonaute homolog, ALG-1. Reduction of rps-14 gene expression by RNAi suppressed the aberrant vulva and hypodermis development phenotypes of let-7(n2853) mutant animals and the mis-regulation of a reporter bearing the lin-41 3′UTR, a well established let-7 target. Our results indicate an interactive relationship between let-7 miRNA function and ribosomal protein RPS-14 in regulation of terminal differentiation that may help in understanding the mechanism of translational control by miRNAs.  相似文献   

10.
hunchback regulates the temporal identity of neuroblasts in Drosophila. Here we show that hbl-1, the C. elegans hunchback ortholog, also controls temporal patterning. Furthermore, hbl-1 is a probable target of microRNA regulation through its 3'UTR. hbl-1 loss-of-function causes the precocious expression of adult seam cell fates. This phenotype is similar to loss-of-function of lin-41, a known target of the let-7 microRNA. Like lin-41 mutations, hbl-1 loss-of-function partially suppresses a let-7 mutation. The hbl-1 3'UTR is both necessary and sufficient to downregulate a reporter gene during development, and the let-7 and lin-4 microRNAs are both required for HBL-1/GFP downregulation. Multiple elements in the hbl-1 3'UTR show complementarity to regulatory microRNAs, suggesting that microRNAs directly control hbl-1. MicroRNAs may likewise function to regulate Drosophila hunchback during temporal patterning of the nervous system.  相似文献   

11.
lin-28 is a conserved regulator of cell fate succession in animals. In Caenorhabditis elegans, it is a component of the heterochronic gene pathway that governs larval developmental timing, while its vertebrate homologs promote pluripotency and control differentiation in diverse tissues. The RNA binding protein encoded by lin-28 can directly inhibit let-7 microRNA processing by a novel mechanism that is conserved from worms to humans. We found that C. elegans LIN-28 protein can interact with four distinct let-7 family pre-microRNAs, but in vivo inhibits the premature accumulation of only let-7. Surprisingly, however, lin-28 does not require let-7 or its relatives for its characteristic promotion of second larval stage cell fates. In other words, we find that the premature accumulation of mature let-7 does not account for lin-28's precocious phenotype. To explain let-7's role in lin-28 activity, we provide evidence that lin-28 acts in two steps: first, the let-7-independent positive regulation of hbl-1 through its 3'UTR to control L2 stage-specific cell fates; and second, a let-7-dependent step that controls subsequent fates via repression of lin-41. Our evidence also indicates that let-7 functions one stage earlier in C. elegans development than previously thought. Importantly, lin-28's two-step mechanism resembles that of the heterochronic gene lin-14, and the overlap of their activities suggests a clockwork mechanism for developmental timing. Furthermore, this model explains the previous observation that mammalian Lin28 has two genetically separable activities. Thus, lin-28's two-step mechanism may be an essential feature of its evolutionarily conserved role in cell fate succession.  相似文献   

12.
Temporal control of development is an important aspect of pattern formation that awaits complete molecular analysis. We identified lin-57 as a member of the C. elegans heterochronic gene pathway, which ensures that postembryonic developmental events are appropriately timed. Loss of lin-57 function causes the hypodermis to terminally differentiate and acquire adult character prematurely. lin-57 is hbl-1, revealing a role for the worm hunchback homolog in control of developmental time. Significantly, fly hunchback (hb) temporally specifies cell fates in the nervous system. The hbl-1/lin-57 3'UTR is required for postembryonic downregulation in the hypodermis and nervous system and contains multiple putative binding sites for temporally regulated microRNAs, including let-7. Indeed, we find that hbl-1/lin-57 is regulated by let-7, at least in the nervous system. Examination of the hb 3'UTR reveals potential binding sites for known fly miRNAs. Thus, evolutionary conservation of hunchback genes may include temporal control of cell fate specification and microRNA-mediated regulation.  相似文献   

13.
14.
15.
MicroRNAs (miRNAs) were first discovered in genetic screens for regulators of developmental timing in the stem-cell-like seam cell lineage in Caenorhabditis elegans. As members of the heterochronic pathway, the lin-4 and let-7 miRNAs are required in the seam cells for the correct progression of stage-specific events and to ensure that cell cycle exit and terminal differentiation occur at the correct time. Other heterochronic genes such as lin-28 and lin-41 are direct targets of the lin-4 and let-7 miRNAs. Recent findings on the functions of the let-7 and lin-4/mir-125 miRNA families and lin-28 and lin-41 orthologs from a variety of organisms suggest that core elements of the heterochronic pathway are retained in mammalian stem cells and development. In particular, these genes appear to form bistable switches via double-negative feedback loops in both nematode and mammalian stem cell development, the functional relevance of which is finally becoming clear. let-7 inhibits stem cell self-renewal in both normal and cancer stem cells of the breast and acts as a tumor suppressor in lung and breast cancer. let-7 also promotes terminal differentiation at the larval to adult transition in both nematode stem cells and fly wing imaginal discs and inhibits proliferation of human lung and liver cancer cells. Conversely, LIN-28 is a highly specific embryonic stem cell marker and is one of four “stemness” factors used to reprogram adult fibroblasts into induced pluripotent stem cells; furthermore, lin-28 is oncogenic in hepatocellular carcinomas. Therefore, a core module of heterochronic genes—lin-28, lin-41, let-7, and lin-4/mir-125—acts as an ancient regulatory switch for differentiation in stem cells (and in some cancers), illustrating that nematode seam cells mirror miRNA regulatory networks in mammalian stem cells during both normal development and cancer.  相似文献   

16.
17.

Background  

lin-4 and let-7, the two founding members of heterochronic microRNA genes, are firstly confirmed in Caenorhabditis elegans to control the proper timing of developmental programs in a heterochronic pathway. let-7 has been thought to trigger the onset of adulthood across animal phyla. Ecdysone and Broad-Complex are required for the temporal expression of let-7 in Drosophila melanogaster. For a better understanding of the conservation and functions of let-7, we seek to explore how it is expressed in the silkworm (Bombyx mori).  相似文献   

18.
19.
The Wnt signaling pathway regulates multiple aspects of the development of stem cell-like epithelial seam cells in Caenorhabditis elegans, including cell fate specification and symmetric/asymmetric division. In this study, we demonstrate that lit-1, encoding the Nemo-like kinase in the Wnt/β-catenin asymmetry pathway, plays a role in specifying temporal identities of seam cells. Loss of function of lit-1 suppresses defects in retarded heterochronic mutants and enhances defects in precocious heterochronic mutants. Overexpressing lit-1 causes heterochronic defects opposite to those in lit-1(lf) mutants. LIT-1 exhibits a periodic expression pattern in seam cells within each larval stage. The kinase activity of LIT-1 is essential for its role in the heterochronic pathway. lit-1 specifies the temporal fate of seam cells likely by modulating miRNA-mediated silencing of target heterochronic genes. We further show that loss of function of other components of Wnt signaling, including mom-4, wrm-1, apr-1, and pop-1, also causes heterochronic defects in sensitized genetic backgrounds. Our study reveals a novel function of Wnt signaling in controlling the timing of seam cell development in C. elegans.  相似文献   

20.
let-7 microRNA (miRNA) regulates heterochronic genes in developmental timing of the nematode Caenorhabditis elegans. Binding of miRNA to messenger RNA (mRNA) and structural features of the complex are crucial for gene silencing. We herein present the NMR solution structure of a model mimicking the interaction of let-7 miRNA with its complementary site (LCS 2) in the 3′ untranslated region (3′-UTR) of the lin-41 mRNA. A structural study was performed by NMR spectroscopy using NOE restraints, torsion angle restraints and residual dipolar couplings. The 33-nt RNA construct folds into a stem–loop structure that features two stem regions which are separated by an asymmetric internal loop. One of the stems comprises a GU wobble base pair, which does not alter its overall A-form RNA conformation. The asymmetric internal loop adopts a single, well-defined structure in which three uracils form a base triple, while two adenines form a base pair. The 3D structure of the construct gives insight into the structural aspects of interactions between let-7 miRNA and lin-41 mRNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号