首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
The polypeptides of etioplast and chloroplast fractions, purified on Percoll discontinuous gradient, were phosphorylated in vitro using (γ-32P)ATP, resolved by SDS-PAGE and autoradiographed. In general, about 15-18 phosphopolypeptides in the range of 14-150 kD were distinctly visible in autoradiograms of both organelle fractions with varying degree of radiolabel incorporation. Although short-term irradiation with red or far-red light did not have any significant effect on phosphorylation status of etioplast polypeptides, in vivo irradiation with 1 h white light, followed by in vitro phosphorylation, decreased phosphorylation of a 116 kD polypeptide and increased the phosphorylation of polypeptides of 38 kD and a doublet around 20 kD. Strikingly, the phosphorylation status of 116 kD etioplast polypeptide was adversely affected by Ca2+ as well, and this phosphopolypeptlde was not distinctly visible in the autoradiogram of the chloroplast fraction proteins. However, in vitro phosphorylation of 98, 57 and 50 kD polypeptides of both etioplast and chloroplast fractions was found to be Ca2+ dependent. Unlike Ca2+, 3′,5′-cyclic AMP down-regulated the phosphorylation of several polypeptides of both etioplasts and chloroplasts, including 98 and 50 kD, and up-regulated the phosphorylation of 32 and 57 kD polypeptides. The significance of these observations on changes in phosphoprotein profile of etioplasts and chloroplasts, as influenced by light, Ca2+ and cyclic nucleotides, has been discussed.  相似文献   

2.
Using solid-phase `Sandwich' immunoassays we studied DNA-dependent RNA polymerase of spinach chloroplasts with regard to (i) polypeptide composition of the multimeric enzyme; (ii) immunological cross-reaction with Escherichia coli RNA polymerase; (iii) sites of synthesis of polymerase polypeptides. Our main results are as follows. (i) All polypeptides of isolated chloroplast RNA polymerase (150, 145, 110, 102, 80, 75 and 38 kd) are labeled by an antibody-linked polymerase assay (ALPA), i.e., they are immunologically related to subunits of the holoenzyme. On the other hand differences in the patterns of `ALPA-reactive' polypeptides of a crude RNA polymerase fraction and of the purified enzyme preparation indicate partial proteolytic degradation of polymerase polypeptides during purification. Thus the 80- and 75-kd polypeptides, which had been previously considered as true RNA polymerase polypeptides, probably result from partial proteolytic degradation. (ii) The 150- and 145-kd polypeptides show immunochemical similarities with the β and/orβ' subunits of E. coli RNA polymerase. (iii) Results from solidphase immunoassay of in vitro translated products of both chloroplast RNA and poly(A)+ (nuclear) RNA suggest that all chloroplast RNA polymerase polypeptides are coded for by the nucleus.  相似文献   

3.
4.
5.
Spinach DNA dependent RNA polymerase was purified from isolated chloroplasts by two different procedures. Analysis of the protein composition of the two preparations by SDS-polyacrylamide gel electrophoresis always shows six abundant polypeptides with Mr of 150, 110, 102, 80, 75 and 38 Kd and one less abundant polypeptide of 25 Kd. Some other proteins ranging from 40–70 Kd in Mr are also detected but in a minor and variable amount. The two preparations have an optimum of enzyme activity at 30°C and at 15 mM (NH4)2SO4 when tested with denatured calf thymus DNA. Binding experiments with two different nick translated fragments of spinach chloroplast DNA show that the 80 and 75 Kd polypeptides possess a strong DNA binding capacity.  相似文献   

6.
7.
8.
One approach to study the structure of promoter regions1–3 is to isolate RNA polymerase binding sites. Several attempts have been made to isolate such sites as protected DNA fragments4–10, but so far the DNA isolated has not definitely shown to be only one or a few specific sites. We report here the isolation of a single RNA polymerase binding site from the replicative form (RF) DNA of bacteriophage fd. The site as isolated is a short double-stranded DNA with a unique nucleotide sequence.  相似文献   

9.
10.
11.
A DNA primase activity was isolated from pea chloroplasts and examined for its role in replication. The DNA primase activity was separated from the majority of the chloroplast RNA polymerase activity by linear salt gradient elution from a DEAE-cellulose column, and the two enzyme activities were separately purified through heparin-Sepharose columns. The primase activity was not inhibited by tagetitoxin, a specific inhibitor of chloroplast RNA polymerase, or by polyclonal antibodies prepared against purified pea chloroplast RNA polymerase, while the RNA polymerase activity was inhibited completely by either tagetitoxin or the polyclonal antibodies. The DNA primase activity was capable of priming DNA replication on single-stranded templates including poly(dT), poly(dC), M13mp19, and M13mp19_+ 2.1, which contains the AT-rich pea chloroplast origin of replication. The RNA polymerase fraction was incapable of supporting incorporation of 3H-TTP in in vitro replication reactions using any of these single-stranded DNA templates. Glycerol gradient analysis indicated that the pea chloroplast DNA primase (115–120 kDa) separated from the pea chloroplast DNA polymerase (90 kDa), but is much smaller than chloroplast RNA polymerase. Because of these differences in size, template specificity, sensitivity to inhibitors, and elution characteristics, it is clear that the pea chloroplast DNA primase is an distinct enzyme form RNA polymerase. In vitro replication activity using the DNA primase fraction required all four rNTPs for optimum activity. The chloroplast DNA primase was capable of priming DNA replication activity on any single-stranded M13 template, but shows a strong preference for M13mp19+2.1. Primers synthesized using M13mp19+2.1 are resistant to DNase I, and range in size from 4 to about 60 nucleotides.  相似文献   

12.
Euglena gracilis Chloroplast DNA Codes for Polyadenylated RNA   总被引:1,自引:0,他引:1       下载免费PDF全文
Polyadenylated RNA, isolated from total cellular RNA of photoautotrophically grown Euglena gracilis, comprised 2.1% of the total cellular RNA and contained 6.2% polyadenylic acid. Polyadenylated RNA, labeled in vitro with 125I, hybridized at saturating levels to an average 7.7% of the chloroplast DNA. In the presence of excess chloroplast rRNA, hybridization of polyadenylated RNA was reduced, but was still observed at a level corresponding to 2.8% of the chloroplast DNA. Polyadenylic acid was not detected in mRNA prepared from chloroplast polyribosomes, indicating a level of less than 0.1% polyadenylic acid in mature chloroplast mRNA. Of the total RNA isolated from cytoplasmic polyribosomes, 2.0% contained polyadenylic acid. This latter polyadenylated RNA did not hybridize to chloroplast DNA.  相似文献   

13.
14.
RNA Polymerase Binding Sites of Phage fd Replicative Form DNA   总被引:3,自引:0,他引:3  
  相似文献   

15.
16.
H D Royer  C P Hollenberg 《Plasmid》1979,2(3):403-416
The 2-μm DNA plasmids from Saccharomyces cerevisiae strain H1 and strain HQ/5C were analyzed by electron microscopy for the presence of Escherichia coli RNA polymerase binding sites. On native 2-μm DNA isolated from strain HQ/5C five RNA polymerase binding sites were detected. One further site was mapped on cloned 2-μm DNA type 23 from S. cerevisiae strain H1. This additional site is located at a distance of 2.15 kilobases from EcoRI site B inside one of the inverted duplication (id) sequences. No such binding site could be detected in the other id sequence of the type 23 molecule, thus indicating that the two id sequences of strain H1 differ in at least one short region. The location of the id sequence carrying the RNA polymerase binding site was analyzed in native 2-μm DNA isolated from strain H1 and found to be present on HindIII fragment 2 and absent from HindIII fragment 5. This indicates that at least a part of the id sequences has a fixed position with respect to the unique S segment and further suggests a site specific recombination mechanism for the inversion of one of the unique segments. As a control for the specificity of RNA polymerase binding, we have mapped binding sites on vectors pBR313 and pBR322. The location of the E. coli RNA polymerase binding sites on 2-μm DNA is discussed in relation to the DNA regions expressed in E. coli minicells.  相似文献   

17.
Many plants have a self‐incompatibility (SI) system in which the rejection of self‐pollen is determined by multiple haplotypes at a single locus, termed S. In the Solanaceae, each haplotype encodes a single ribonuclease (S‐RNase) and multiple S‐locus F‐box proteins (SLFs), which function as the pistil and pollen SI determinants, respectively. S‐RNase is cytotoxic to self‐pollen, whereas SLFs are thought to collaboratively recognize non‐self S‐RNases in cross‐pollen and detoxify them via the ubiquitination pathway. However, the actual mechanism of detoxification remains unknown. Here we isolate the components of a SCFSLF (SCF = SKP1‐CUL1‐F‐box‐RBX1) from Petunia pollen. The SCFSLF polyubiquitinates a subset of non‐self S‐RNases in vitro. The polyubiquitinated S‐RNases are degraded in the pollen extract, which is attenuated by a proteasome inhibitor. Our findings suggest that multiple SCFSLF complexes in cross‐pollen polyubiquitinate non‐self S‐RNases, resulting in their degradation by the proteasome.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号