首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
1. Trophic interactions between predators and parasitoids can be described as intraguild predation (IGP) and are often asymmetric. Parasitoids (typically the IG prey) may respond to the threat of IGP by mitigating the predation risk for their offspring. 2. We used a system with a facultative predator Macrolophus caliginosus, the parasitoid Aphidius colemani, and their shared prey, the aphid Myzus persicae. We examined the functional responses of the parasitoid in the presence/absence of the predator on two host plants (aubergine and sweet pepper) with differing IGP risk. 3. Estimated model parameters such as parasitoid handling time increased on both plants where the predator was present, but impact of the predator varied with plant species. The predator, which could feed herbivorously on aubergine, had a reduced impact on parasitoid foraging on that plant. IG predator presence could reduce the searching effort of the IG prey depending on the plant, and on likely predation risk. 4. The results are discussed with regard to individual parasitoid's foraging behaviour and population stability; it is suggested that the presence of the predator can contribute to the stabilisation of host–parasitoid dynamics  相似文献   

2.
Two exotic phytoseiid mites, Neoseiulus cucumeris and Amblyseius swirskii, are commercially available in Japan for the control of thrips and other pest insects. As part of a risk assessment of the non-target effects of releasing these two species, we investigated intraguild predation (IGP) between these exotic phytoseiid mites and an indigenous phytoseiid mite Gynaeseius liturivorus, which is promising as an indigenous natural enemy for the control of thrips in Japan. To understand IGP relations between the exotic and indigenous phytoseiid mites after use of the exotic mites for biological control, we investigated IGP between them in the absence of their shared prey. When an IG prey was offered to an IG predator, both exotic and indigenous females consumed the IG prey at all immature stages (egg, larva, protonymph, deutonymph), especially at its larval stages. The propensity for IGP in a no-choice test was measured by the survival time of IG prey corrected using the survival time of thrips offered to the IG predator. There was no significant difference in the propensity for IGP between N. cucumeris and G. liturivorus, but the propensity was significantly higher in A. swirskii than G. liturivorus. The propensity for IGP in a choice test was measured by the prey choice of the IG predator when a conspecific and a heterospecific larva were offered simultaneously as IG prey. Both exotic females consumed the heterospecific larva only. The indigenous female preferentially consumed the heterospecific larva when the heterospecific larva was N. cucumeris, but consumed the conspecific larva when the heterospecific larva was A. swirskii. We concluded that further investigation would be necessary for the exotic mites’ risk assessment, since the propensity for IGP of the two exotic females was similar to or higher than that of the indigenous female in both the no-choice and choice tests.  相似文献   

3.
Intraguild predation (IGP) occurs when one species preys on a competitor species that shares a common resource. Modifying a prey–predator model with prey infection, we propose a model of IG interactions among host, parasitoid, and predator, in which the predator eats parasitized and unparasitized hosts, and the adult parasitoid density is explicitly expressed. Parameter dependences of community structure, including stability of the system, were analytically obtained. Depending on interaction strength (parasitization and predation on unparasitized and parasitized hosts), the model provides six types of community structure: (1) only the host exists, (2) the host and predator coexist stably, (3) the host and parasitoid coexist stably, (4) the host–parasitoid population dynamics are unstable, (5) the three species coexist stably, and (6) the population dynamics of the three species are unstable. In contrast to a traditional prey–predator model with prey infection, which predicts that population dynamics are always locally stable, our model predicts that they are unstable when the parasitization rate is high.  相似文献   

4.
Intraguild predation (IGP) occurs when consumers competing for a resource also engage in predatory interactions. A common type of IGP involves aphid predators and parasitoids: since parasitoid offspring develop within aphid hosts, they are particularly vulnerable to predation by aphid predators such as coccinellid beetles. Other intraguild interactions that include non-lethal behavioral effects, such as interference with foraging and avoidance of IGP, may also hamper parasitoid activity and reduce their effectiveness as biological control agents. In this study, we quantified mortality in and behavioral effects on Aphidius colemani Viereck (Hymenoptera: Aphidiidae) by its IG-predator Coccinella undecimpunctata L. (Coleoptera: Coccinellidae), and compared the impact of two release ratios of these natural enemies on aphid populations. Parasitoids did not leave the plant onto which they were first introduced, regardless of the presence of predators, even when alternative prey was offered on predator-free plants nearby. In 2-hour experiments, predator larvae interfered with wasp activity, and the level of aphid parasitism was lower in the presence of predators than in their absence. In these experiments, the parasitoids contributed more to aphid mortality than the predators and aphid suppression was higher when a parasitoid acted alone than in combination with a predator larva. These results were confirmed in a 5-day experiment, but only at one parasitoid:predator release ratio (4:3) not another (2:3). The over-all impact on aphid population growth was non-the-less stronger when both enemies acted together than when only one of them was present. Results indicate that for given release ratios and time scale, the negative lethal and non-lethal effects of the predator on parasitoid performance did not fully cancelled the direct impact of the predator on the aphid population.  相似文献   

5.
Interspecific threat-sensitivity allows prey to maximize the net benefit of antipredator strategies by adjusting the type and intensity of their response to the level of predation risk. This is well documented for classical prey-predator interactions but less so for intraguild predation (IGP). We examined threat-sensitivity in antipredator behaviour of larvae in a predatory mite guild sharing spider mites as prey. The guild consisted of the highly vulnerable intraguild (IG) prey and weak IG predator Phytoseiulus persimilis, the moderately vulnerable IG prey and moderate IG predator Neoseiulus californicus and the little vulnerable IG prey and strong IG predator Amblyseius andersoni. We videotaped the behaviour of the IG prey larvae of the three species in presence of either a low- or a high-risk IG predator female or predator absence and analysed time, distance, path shape and interaction parameters of predators and prey. The least vulnerable IG prey A. andersoni was insensitive to differing IGP risks but the moderately vulnerable IG prey N. californicus and the highly vulnerable IG prey P. persimilis responded in a threat-sensitive manner. Predator presence triggered threat-sensitive behavioural changes in one out of ten measured traits in N. californicus larvae but in four traits in P. persimilis larvae. Low-risk IG predator presence induced a typical escape response in P. persimilis larvae, whereas they reduced their activity in the high-risk IG predator presence. We argue that interspecific threat-sensitivity may promote co-existence of IG predators and IG prey and should be common in predator guilds with long co-evolutionary history.  相似文献   

6.
Interactions such as competition, intraguild predation (IGP), and cannibalism affect the development and coexistence of predator populations and can have significance for biological control of commonly exploited pest organisms. We studied the consequences of combined versus single release of two predaceous mite species (Phytoseiidae), with differing degrees of diet specialization, on their population dynamics and the suppression of the carmine spider mite, Tetranychus cinnabarinus Boisduval (Tetranychidae), on greenhouse-grown gerbera. Population growth of the specialist predator Phytoseiulus persimilis Athias-Henriot was greater and population decline steeper when released in combination with the generalist Neoseiulus californicus McGregor than when released alone. In contrast, the N. californicus population grew and declined more gradually when released in combination with P. persimilis, compared to the single species release. The differential impact on each other's population dynamics can be primarily attributed to contrasting properties in competition, IGP, and cannibalism. At the same overall predator density and as long as prey was abundant, the specialist P. persimilis was more strongly affected by intraspecific competition than by interspecific competition with the generalist N. californicus. In contrast, interspecific competition with P. persimilis had a greater impact on N. californicus than intraspecific competition. After prey depletion, the generalist predator N. californicus was more likely to engage in IGP than was the specialist predator P. persimilis. Overall, the study demonstrates that prey specificity has significance for the quality and intensity of predator–predator interactions and indicates potential implications for biological control of spider mites. All predator releases (i.e., either species alone and both species in combination) resulted in reduction of the spider mite population to zero density. Individual release of the specialist P. persimilis led to the most rapid spider mite suppression. Nonetheless, in perennial greenhouse-grown crops P. persimilis and N. californicus could have complementary effects and a combination of the two predators could enhance long-term biological control of spider mites. The potential risks and benefits associated with the release of both species are discussed.  相似文献   

7.
Arthropods often engage in complex trophic interactions such as intraguild predation (IGP), true omnivory (i.e., feeding on plants and prey), and apparent competition. Theoretical treatments of the effects of such interactions on herbivore populations have been concerned almost entirely with equilibrium conditions. Yet these interactions are common in non-equilibrium settings such as agroecosystems, where they are likely to have a strong influence on pest populations. We therefore tested short-term effects of IGP and food supplementation on interactions between two predators (the phytoseiid mite Neoseiulus cucumeris and the anthocorid bug Orius laevigatus) and their shared prey, Frankliniella occidentalis, on strawberry plants. All three consumers feed on strawberry pollen, both mites and bugs prey on thrips, and the bug also feeds on the mites (IGP). Strong IGP on mites (IG prey) by the bugs (IG predator) was recorded in structurally-simple arenas. In a more complex setting (whole-plants), however, the intensity of IGP differed among plant structures. Likewise, pollen supplementation reduced both IGP and predation on thrips in a structurally simple setting. In the whole-plant experiment, IGP was more intense on pollen-bearing than pollen-free flowers. The study illustrated how spatial dynamics, generated when consumers track food sources differently in the habitat and possibly when herbivorous and IG prey alter their distribution to escape predation, led to site-specific configuration of interacting populations. The intensity of resulting trophic interactions was weakened by food supplementation and by increased complexity of the habitat.  相似文献   

8.
In agroecosystems, parasitoids and predators may exert top-down regulation and predators for different reasons may avoid or give preference to parasitised prey, i.e., become an intraguild predator. The success of pest suppression with multiple natural enemies depends essentially on predator–prey dynamics and how this is affected by the interplay between predation and parasitism. We conducted a simple laboratory experiment to test whether predators distinguished parasitised prey from non-parasitised prey and to study how parasitism influenced predation. We used a host-parasitoid system, Spodoptera frugiperda and one of its generalist parasitoids, Campoletis flavicincta, and included two predators, the stinkbug Podisus nigrispinus and the earwig Euborellia annulipes. In the experiment, predators were offered a choice between non-parasitised and parasitised larvae. We observed how long it took for the predator to attack a larva, which prey was attacked first, and whether predators opted to consume the other prey after their initial attack. Our results suggest that, in general, female predators are less selective than males and predators are more likely to consume non-parasitised prey with this likelihood being directly proportional to the time taken until the first prey attack. We used statistical models to show that males opted to consume the other prey with a significantly higher probability if they attacked a parasitised larva first, while females did so with the same probability irrespective of which one they attacked first. These results highlight the importance of studies on predator–parasitoid interactions, as well as on coexistence mechanisms in agroecosystems. When parasitism mediates predator choice so that intraguild predation is avoided, natural enemy populations may be larger, thus increasing the probability of more successful biological control.  相似文献   

9.
Although ecological theory exists to predict dynamics in communities with intraguild predation (IGP), few empirical tests have examined this theory. IGP theory, in particular, predicts that when two competitors interact via IGP, with increasing resource productivity: (1) the IG predator will increase in abundance as the IG prey declines, and (2) increasing dominance of the IG predator will cause resource density to increase. Here, we provide a first test of these predictions in a field community consisting of a scale insect and its two specialist parasitoids, Aphytis melinus (the IG predator) and Encarsia perniciosi (the IG prey). The shared resource, California red scale, is a pest of citrus, and its productivity varies across a threefold range among citrus cultivars. We examined both absolute and relative densities of parasitoids along this natural gradient of scale productivity in three citrus cultivars (orange, grapefruit and lemon). Although both parasitoid species were found in all three cultivars, their abundances reflected those predicted by IGP theory: the IG prey species dominated at low productivity and the IG predator dominated at high productivity. This relationship was caused by an increase in Aphytis density with productivity. In addition, the density of scale increased with the dominance of the IG predator. These results from a field system demonstrate the important dynamic outcomes for food webs with IGP.  相似文献   

10.
Predator species with the same prey interact not only by competition for food and space but also by intraguild predation (IGP). The impact of IGP on introduced phytoseiid mites and native species in the context of biological control is a matter of considerable debate. Amblyseius eharai is the dominant native citrus species in central China, while Amblyseius cucumeris and Amblyseius barkeri are candidates for importation. All three species can feed on the spider mite Panonychus citri, which is the main pest in citrus. This study investigated, in the laboratory, possible IGP among these species in the absence and presence of P. citri, respectively. IGP in different densities of shared prey and intraguild (IG) prey was also studied. All three species consumed heterospecific larvae and eggs but not adults, and the IGP rate of larvae was significantly higher than that of eggs in the absence of shared prey. Additionally, the IGP rate of each group was reduced dramatically in the presence of both shared and IG prey when compared to the absence of shared prey. This occurs most likely because the three species prefer to feed on their natural prey P. citri, rather than on IG prey. Our results showed that A. eharai seems to be a more voracious IG predator than A. cucumeris. A. eharai was much more prone to IGP than A. barkeri.  相似文献   

11.
The role of natural enemy diversity in biological pest control has been debated in many studies, and understanding how interactions amongst predators and parasitoids affect herbivore populations is crucial for pest management. In this study, we assessed the individual and combined use of two species of natural enemies, the parasitoid Aphidius ervi Haliday, and the predatory brown lacewing Micromus variegatus (Fabricius), on their shared prey, the foxglove aphid, Aulacorthum solani (Kaltenbach), on sweet pepper. We hypothesized that the presence of intraguild predation (IGP) and predator facilitation (through induced aphid dropping behaviour) might have both negative and positive effects on aphid control, respectively. Our greenhouse trial showed that overall, the greatest suppression of aphids occurred in the treatment with both the parasitoid and the lacewing. While the combination of lacewings and parasitoids significantly increased aphid control compared to the use of parasitoids alone, the effect was not significantly different to the treatment with only predators, although there was a clear trend of enhanced suppression. Thus, the combined effects of both species of natural enemies were between additive and non‐additive, suggesting that the combination is neither positive nor negative for aphid control. High levels of IGP, as proven in the laboratory, were probably compensated for by the strong aphid suppression provided by the lacewings, whether or not supplemented with some level of predator facilitation. For aphid management over a longer time scale, it might still be useful to combine lacewings and parasitoids to ensure stable and resilient aphid control.  相似文献   

12.
Based on the hypothesis that matching diets of intraguild (IG) predator and prey indicate strong food competition and thus intensify intraguild predation (IGP) as compared to non‐matching diets, we scrutinized diet‐dependent mutual IGP between the predatory mites Neoseiulus cucumeris and N. californicus. Both are natural enemies of herbivorous mites and insects and used in biological control of spider mites and thrips in various agricultural crops. Both are generalist predators that may also feed on plant‐derived substances such as pollen. Irrespective of diet (pollen or spider mites), N. cucumeris females had higher predation and oviposition rates and shorter attack latencies on IG prey than N. californicus. Predation rates on larvae were unaffected by diet but larvae from pollen‐fed mothers were a more profitable prey than those from spider‐mite fed mothers resulting in higher oviposition rates of IG predator females. Pollen‐fed protonymphs were earlier attacked by IG predator females than spider‐mite fed protonymphs. Spider mite‐fed N. californicus females attacked protonymphs earlier than did pollen‐fed N. californicus females. Overall, our study suggests that predator and prey diet may exert subtle influences on mutual IGP between bio‐control agents. Matching diets did not intensify IGP between N. californicus and N. cucumeris but predator and prey diets proximately influenced IGP through changes in behaviour and/or stoichiometry.  相似文献   

13.
A growing body of research has examined the effect of shared resource density on intraguild predation (IGP) over relatively short time frames. Most of this work has led to the conclusion that when the shared resource density is high, the strength of IGP should be lower, due to prey dilution. However, experiments addressing this topic have been done using micro- or mesocosms that excluded the possibility of intraguild predator aggregation. We examined the effect of shared resource density on IGP of an aphid parasitoid in an open field setting where the effects of prey dilution and predator aggregation could occur simultaneously. We brought potted soybean plants with 2, 20, or 200 soybean aphids (Aphis glycines) and 20 pupae (‘mummies’) of the soybean aphid parasitoid Binodoxys communis into soybean fields in Minnesota, USA. We monitored predator aggregation onto the potted plants, predation of parasitoid mummies, and successful adult emergence of B. communis. We found that predator aggregation was higher at the higher aphid densities on our experimental plants and that this coincided with lower adult emergence of B. communis, indicating that even if a prey dilution effect occurred in our study, it was overcome by short-term predator aggregation. Our results suggest that the effect of shared resource density on IGP may be more nuanced in a field setting than in microcosms due to predator aggregation.  相似文献   

14.
The probability of individuals being targeted as prey often decreases as they grow in size. Such size‐dependent predation risk is very common in systems with intraguild predation (IGP), i.e. when predatory species interact through predation and competition. Theory on IGP predicts that community composition depends on productivity. When recently testing this prediction using a terrestrial experimental system consisting of two phytoseiid mite species, Iphiseius degenerans as the IG‐predator and Neoseiulus cucumeris as the IG‐prey, and pollen (Typha latifolia) as the shared resource, we could not find the predicted community shift. Instead, we observed that IG‐prey excluded IG‐predators when the initial IG‐prey/IG‐predator ratio was high, whereas the opposite held when the initial ratio was low, which is also not predicted by theory. We therefore hypothesized that the existence of vulnerable and invulnerable stages in the two populations could be an important driver of the community composition. To test this, we first demonstrate that IG‐prey adults indeed attacked IG‐predator juveniles in the presence of the shared resource. Second, we show that the invasion capacity of IG‐predators at high productivity levels indeed depended on the structure of resident IG‐prey populations. Third, we further confirmed our hypothesis by mimicking successive invasion events of IG‐predators into an established population of IG‐prey at high productivity levels, which consistently failed. Our results show that the interplay between stage structure of populations and reciprocal intraguild predation is decisive at determining the species composition of communities with intraguild predation.  相似文献   

15.
Invasive pest species may strongly affect biotic interactions in agro-ecosystems. The ability of generalist predators to prey on new invasive pests may result in drastic changes in the population dynamics of local pest species owing to predator-mediated indirect interactions among prey. On a short time scale, the nature and strength of such indirect interactions depend largely on preferences between prey and on predator behavior patterns. Under laboratory conditions we evaluated the prey preference of the generalist predator Macrolophus pygmaeus Rambur (Heteroptera: Miridae) when it encounters simultaneously the local tomato pest Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) and the invasive alien pest Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae). We tested various ratios of local vs. alien prey numbers, measuring switching by the predator from one prey to the other, and assessing what conditions (e.g. prey species abundance and prey development stage) may favor such prey switching. The total predation activity of M. pygmaeus was affected by the presence of T. absoluta in the prey complex with an opposite effect when comparing adult and juvenile predators. The predator showed similar preference toward T. absoluta eggs and B. tabaci nymphs, but T. absoluta larvae were clearly less attacked. However, prey preference strongly depended on prey relative abundance with a disproportionately high predation on the most abundant prey and disproportionately low predation on the rarest prey. Together with the findings of a recent companion study (Bompard et al. 2013, Population Ecology), the insight obtained on M. pygmaeus prey switching may be useful for Integrated Pest Management in tomato crops, notably for optimal simultaneous management of B. tabaci and T. absoluta, which very frequently co-occur on tomato.  相似文献   

16.
Predation is a major selective force for the evolution of behavioural characteristics of prey. Predation among consumers competing for food is termed intraguild predation (IGP). From the perspective of individual prey, IGP differs from classical predation in the likelihood of occurrence because IG prey is usually more rarely encountered and less profitable because it is more difficult to handle than classical prey. It is not known whether IGP is a sufficiently strong force to evolve interspecific threat sensitivity in antipredation behaviours, as is known from classical predation, and if so whether such behaviours are innate or learned. We examined interspecific threat sensitivity in antipredation in a guild of predatory mite species differing in adaptation to the shared spider mite prey (i.e. Phytoseiulus persimilis, Neoseiulus californicus and Amblyseius andersoni). We first ranked the players in this guild according to the IGP risk posed to each other: A. andersoni was the strongest IG predator; P. persimilis was the weakest. Then, we assessed the influence of relative IGP risk and experience on maternal strategies to reduce offspring IGP risk: A. andersoni was insensitive to IGP risk. Threat sensitivity in oviposition site selection was induced by experience in P. persimilis but occurred independently of experience in N. californicus. Irrespective of experience, P. persimilis laid fewer eggs in choice situations with the high- rather than low-risk IG predator. Our study suggests that, similar to classical predation, IGP may select for sophisticated innate and learned interspecific threat-sensitive antipredation responses. We argue that such responses may promote the coexistence of IG predators and prey.  相似文献   

17.
Trophic supplements to intraguild predation   总被引:2,自引:0,他引:2  
Intraguild predation (IGP) is a dominant community module in terrestrial food webs that occurs when multiple consumers feed both on each other and on a shared prey. This specific form of omnivory is common in terrestrial communities and is of particular interest for conservation biology and biological control given its potential to disrupt management of threatened or pest species. Extensive theory exists to describe the dynamics of three-species IGP, but these models have largely overlooked the potential for other, exterior interactions, to alter the dynamics within the IGP module. We investigated how three forms of feeding outside of the IGP module by intraguild predators (i.e. trophic supplementation) affect the dynamics of the predators (both IG predator and IG prey) and their shared resource. Specifically, we examined how the provision of a constant donor-controlled resource, the availability of an alternative prey species, and predator plant-feeding affect the dynamics of IGP models. All three forms of trophic supplements modified the basic expectations of IGP theory in two important ways, and their effects were similar. First, coexistence was possible without the IG prey being a superior competitor for the original shared resource if the IG prey could effectively exploit one of the types of trophic supplements. However, supplements to the IG predator restricted the potential for coexistence. Second, supplements to the IG prey ameliorated the disruptive effects of the IG predator on the suppression of the shared resource, promoting effective control of the resource in the presence of both predators. Consideration of these three forms of trophic supplementation, all well documented in natural communities, adds substantial realism and predictive power to intraguild predation theory.  相似文献   

18.
Predator–prey interactions presumably play major roles in shaping the composition and dynamics of microbial communities. However, little is understood about the population biology of such interactions or how predation-related parameters vary or correlate across prey environments. Myxococcus xanthus is a motile soil bacterium that feeds on a broad range of other soil microbes that vary greatly in the degree to which they support M. xanthus growth. In order to decompose predator–prey interactions at the population level, we quantified five predation-related parameters during M. xanthus growth on nine phylogenetically diverse bacterial prey species. The horizontal expansion rate of swarming predator colonies fueled by prey lawns served as our measure of overall predatory performance, as it incorporates both the searching (motility) and handling (killing and consumption of prey) components of predation. Four other parameters—predator population growth rate, maximum predator yield, maximum prey kill, and overall rate of prey death—were measured from homogeneously mixed predator–prey lawns from which predator populations were not allowed to expand horizontally by swarming motility. All prey species fueled predator population growth. For some prey, predator-specific prey death was detected contemporaneously with predator population growth, whereas killing of other prey species was detected only after cessation of predator growth. All four of the alternative parameters were found to correlate significantly with predator swarm expansion rate to varying degrees, suggesting causal interrelationships among these diverse predation measures. More broadly, our results highlight the importance of examining multiple parameters for thoroughly understanding the population biology of microbial predation.  相似文献   

19.
To determine whether to use single or multiple predator species for biological pest control requires manipulative field experiments. We performed such tests in Benin (West Africa) in cassava fields infested by the cassava green mite Mononychellus tanajoa, and the cotton red mite Oligonychus gossypii. These fields also harboured the cassava apex-inhabiting predator Typhlodromalus aripo and either the leaf-inhabiting predator Amblydromalus manihoti or Euseius fustis. We manipulated predator species composition on individual plants to determine their effect on prey and predator densities. In fields with T. aripo plus A. manihoti, M. tanajoa densities were reduced by T. aripo alone or together with A. manihoti, but neither of these predators, alone or together, reduced O. gossypii densities. In fields with T. aripo plus E. fustis, T. aripo alone or together with E. fustis exerted significant control over O. gossypii, but weak control over M. tanajoa. Densities of any of the predator species were not affected by co-occurring predator species, suggesting a minor role for intraguild predation in the field, contrary to earlier experiments on small plants in the laboratory. We conclude that (1) T. aripo is the most effective predator species in suppressing M. tanajoa, (2) two predator species, T. aripo and E. fustis, are needed to suppress O. gossypii, and (3) predator species together on the same plant do not negatively affect each other nor the extent to which they control their prey. We argue that intraguild predation is reduced due to partial niche separation among predator species.  相似文献   

20.
Intraguild predation (IGP) is a combination of competition and predation which is the most basic system in food webs that contains three species where two species that are involved in a predator/prey relationship are also competing for a shared resource or prey. We formulate two intraguild predation (IGP: resource, IG prey and IG predator) models: one has generalist predator while the other one has specialist predator. Both models have Holling-Type I functional response between resource-IG prey and resource-IG predator; Holling-Type III functional response between IG prey and IG predator. We provide sufficient conditions of the persistence and extinction of all possible scenarios for these two models, which give us a complete picture on their global dynamics. In addition, we show that both IGP models can have multiple interior equilibria under certain parameters range. These analytical results indicate that IGP model with generalist predator has “top down” regulation by comparing to IGP model with specialist predator. Our analysis and numerical simulations suggest that: (1) Both IGP models can have multiple attractors with complicated dynamical patterns; (2) Only IGP model with specialist predator can have both boundary attractor and interior attractor, i.e., whether the system has the extinction of one species or the coexistence of three species depending on initial conditions; (3) IGP model with generalist predator is prone to have coexistence of three species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号