首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Carbon isotope composition of suspended organic matter (CICSOM) and of organic carbon of the bottom sediments (CICBS) was studied in a series of expeditions (starting in 1993) to the White, Kara, Chukchi, and Barents seas in the Russian Arctic. For each sea, CICSOM and CICBS was found to depend primarily on the ratio of OM produced in the water and OM of terrigenous origin. While in the White Sea, where the primary production (PP) is 5.3 times higher than the yearly inflow of terrigenous OM, δ13C of SOM carbon is ?29.1‰, in the Chukchi Sea, where PP is more than 300 times higher than the inflow of terrigenous OM, δ13C of SOM carbon is ?21.8‰. In the Barents and Chukchi seas, a considerable effect of suspended material arriving with the currents from the neighboring seas on formation of the CICSOM was demonstrated. The difference between CIC OM of the bottom sediments form CICSOM, the main component of organic matter in the sediments of all shelf seas, was demonstrated for the first time for all the seas studied. This results from production of additional microbial OM due to CO2 assimilation at the water-sediment redox boundary or in near-bottom water.  相似文献   

2.
At ten stations of the meridian profile in the eastern Kara Sea from the Yenisei estuary through the shallow shelf and further through the St. Anna trough, total microbial numbers (TMN) determined by direct counting, total activity of the microbial community determined by dark CO2 assimilation (DCA), and the carbon isotopic composition of organic matter in suspension and upper sediment horizons (δ13C, ‰) were investigated. Three horizons were studied in detail: (1) the near-bottom water layer (20–30 cm above the sediment); (2) the uppermost, strongly hydrated sediment horizon, further termed fluffy layer (5–10 mm); and (3) the upper sediment horizon (1–5 cm). Due to a decrease in the amount of isotopically light carbon of terrigenous origin with increasing distance from the Yenisei estuary, the TMN and DCA values decreased, and the δ13C changed gradually from ?29.7 to ?23.9‰. At most stations, a noticeable decrease in TMN and DCA values with depth was observed in the water column, while the carbon isotopic composition of suspended organic matter did not change significantly. Considerable changes of all parameters were detected in the interface zone: TMN and DCA increased in the sediments compared to their values in near-bottom water, while the 13C content increased significantly, with δ13C of organic matter in the sediments being at some stations 3.5–4.0‰ higher than in the near-bottom water. Due to insufficient illumination in the near-bottom zone, newly formed isotopically heavy organic matter (δ13C ~ ?20‰) could not be formed by photosynthesis; active growth of chemoautotrophic microorganisms in this zone is suggested, which may use reduced sulfur, nitrogen, and carbon compounds diffusing from anaerobic sediments. High DCA values for the interface zone samples confirm this hypothesis. Moreover, neutrophilic sulfur-oxidizing bacteria were retrieved from the samples of this zone.  相似文献   

3.
Microbiological, biogeochemical, and isotopic geochemical investigation of Lake Kislo-Sladkoe (Polusolenoe in early publications) at the Kandalaksha Bay shore (White Sea) was carried out in September 2010. Lake Kislo-Sladkoe was formed in the mid-1900s out of a sea gulf due to a coastal heave. At the time of investigation, the surface layer was saturated with oxygen, while near-bottom water contained sulfide (up to 32 mg/L). Total number of microorganisms was high (12.3 × 106 cells/mL on average). Light CO2 fixation exhibited two pronounced peaks. In the oxic zone, the highest rates of photosynthesis were detected at 1.0 and 2.0 m. The second, more pronounced peak of light CO2 fixation was associated with activity of anoxygenic phototrophic bacteria in the anoxic layer at the depth of 2.9 m (413 μg C L?1 day?1). Green-colored green sulfur bacteria (GSB) predominated in the upper anoxic layer (2.7–2.9 m), their numbers being as high as 1.12 × 104 cells/mL, while brown-colored GSB predominated in the lower horizons. The rates of both sulfate reduction and methanogenesis peaked in the 2.9 m horizon (1690 μg S L?1 day?1 and 2.9 μL CH4 L?1 day-1). The isotopic composition of dissolved methane from the near-bottom water layer (δ13C (CH4) = ?87.76‰) was significantly lighter than in the upper horizons (δ13C (CH4) = ?77.95‰). The most isotopically heavy methane (δ13C (CH4) = ?72.61‰) was retrieved from the depth of 2.9 m. The rate of methane oxidation peaked in the same horizon. As a result of these reactions, organic matter (OM) carbon of the 2.9 m horizon became lighter (?36.36‰), while carbonate carbon became heavier (?7.56‰). Thus, our results demonstrated that Lake Kislo-Sladkoe is a stratified meromictic lake with active microbial cycles of carbon and sulfur. Suspended matter in the water column was mostly of autochthonous origin. Anoxygenic photo-synthesis coupled to utilization of reduced sulfur compounds contributed significantly to OM production.  相似文献   

4.
The benthos of the southeastern Chukchi Sea shelf is typified by high faunal abundance and biomass resulting from settlement of a large proportion of seasonal phytoplankton under highly nutritious offshore Bering Shelf Anadyr Water (BSAW). In contrast, inshore Alaska Coastal Water (ACW) is much less productive. Yet the Chukchi Bight and Kotzebue Sound, located under ACW in the southeastern Chukchi Sea, contain a substantial faunal abundance and biomass of invertebrates, fishes and marine mammals. We examined food web structure to gain an understanding of how a relatively rich benthic fauna with a high biomass can be supported under ACW with a supposedly low flux of carbon to the benthos. We measured stable isotope (δ13C and δ15N) values of selected organisms (from zooplankton to fishes) as markers of food sources and trophic position to compare fauna on the shelf under BSAW with that in the Chukchi Bight and Kotzebue Sound under ACW. Relative isotope position of organisms in all three regions was similar, even though some pelagic species within the Sound were depleted in δ13C compared to the other regions. We attribute the depletion to the influence of terrestrially derived carbon. We suggest that the hydrodynamics along an oceanic front between the Chukchi Shelf and the Chukchi Bight support the advection of nutrient-rich POC into the Bight and Sound as additional food sources to local production. We conclude that local conditions and multiple POC sources in the Bight and Sound support the substantial population of benthic invertebrates and the fishes, seabirds, and marine mammals that feed on them.  相似文献   

5.
Stable carbon and nitrogen isotope ratios (δ13C and δ15N) are used to study the trophic structure of food web in the Yellow Sea and East China Sea ecosystem. The trophic continuum of pelagic food web from phytoplankton to top preyer was elementarily established, and a trophic structure diagram in the Yellow Sea and East China Sea was outlined in combination with carbon isotopic data of benthic organisms, which is basically consistent with and makes some improvements on the simplified Yellow Sea food web and the trophic structure diagram drawn based on the biomass of main resource population during 1985–1986. This result indicates that the stable isotope method is a potential useful means for further studying the complete marine food web trophic continuum from viruses to top predators and food web stability.  相似文献   

6.
Comprehensive microbiological and biogeochemical investigation of a pockmark within one of the sites of gas-saturated sediments in the Gdansk depression, Baltic Sea was carried out during the 87th voyage of the Professor Shtokman research vessel. Methane content in the near-bottom water and in the underlying sediments indicates stable methane flow from the sediment into the water. In the 10-m water layer above the pockmark, apart from methane anomalies, elevated numbers of microorganisms and enhanced rates of dark CO2 fixation (up to 1.15 µmol C/(l day)) and methane oxidation (up to 2.14 nmol CH4/(l day)) were revealed. Lightened isotopic composition of suspended organic matter also indicates high activity of the near-bottom microbial community. Compared to the background stations, methane content in pockmark sediments increased sharply from the surface to 40–60 ml/dm3 in the 20–30 cm horizon. High rates of bacterial sulfate reduction (SR) were detected throughout the core (0–40 cm); the maximum of 74 µmol S/(dm3 day) was located in subsurface horizons (15–20 cm). The highest rates of anaerobic methane oxidation (AMO), up to 80 µmol/dm3 day), were detected in the same horizon. Good coincidence of the AMO and SR profiles with stoichiometry close to 1: 1 is evidence in favor of a close relation between these processes performed by a consortium of methanotrophic archaea and sulfate-reducing bacteria. Methane isotopic composition in subsurface sediments of the pockmark (from ?53.0 to ?56.5‰) does not rule out the presence of methane other than the biogenic methane from the deep horizons of the sedimentary cover.  相似文献   

7.

Stable carbon (C) and nitrogen (N) isotope ratios of sedimentary organic matter (OM) can reflect the biogeochemical history of aquatic ecosystems. However, diagenetic processes in sediments may alter isotope records of OM via microbial activity and preferential degradation of isotopically distinct organic components. This study investigated the isotope alteration caused by preferential degradation in surface sediments sampled from a eutrophic reservoir in Germany. Sediments were treated sequentially with hot water extraction, hydrochloric acid hydrolysis, hydrogen peroxide oxidation and di-sodium peroxodisulfate oxidation to chemically simulate preferential degradation pathways of sedimentary OM. Residue and extracts from each extraction step were analyzed using elemental analyzer-isotope ratio mass spectrometry and solid-state 13C nuclear magnetic resonance spectroscopy. Our results show that stable C and N isotope ratios reacted differently to changes in the biochemical composition of sedimentary OM. Preferential degradation of proteins and carbohydrates resulted in a 1.2‰ depletion of 13C, while the isotope composition of 15N remained nearly the same. Sedimentary δ15N values were notably altered when lignins and lipids were oxidized from residual sediments. Throughout the sequential fractionation procedure, δ13C was linearly correlated with the C:N of residual sediments. This finding demonstrates that changes in biochemical composition caused by preferential degradation altered δ13C values of sedimentary OM, while this trend was not observed for δ15N values. Our study identifies the influence of preferential degradation on stable C isotope ratios and provide additional insight into the isotope alteration caused by post-depositional processes.

  相似文献   

8.
In agricultural landscapes, the spatio-temporal distribution of organic matter (OM) varies greatly across landscape structures and soil types. We investigated patterns of organic carbon (OC) content, polyvalent cations, and isotopic values for specific OM fractions along transects spanning topographic positions from erosional to depositional areas, including aquatic sediments within a single kettle hole. We hypothesized different drivers exist at different scales. At the transect scale, we hypothesized (1) landscape form and land management to explain patterns of isotopic and OC content from different OM fractions. At the aggregate scale, (2) we expected different OM-mineral associations to explain stabilized OM. We also hypothesized, (3) that shallow sediment δ13C and δ15N of the kettle hole reflected different terrestrial sources. We found that distinct differences in the OM turnover rates existed between the fractions suggesting that different processes are affecting the transformation rates that are recorded in the isotopic composition patterns. Erosion along with plant productivity drive mineral-associated fractions over the transect, while microbial decomposition and slurry influence freely available and aggregated OM fractions. The type and magnitude of OM-mineral associations changed along the transect while binding OM of different decomposition status. OM in mineral-associated fractions in kettle hole sediments were derived from clay- and silt-sized particles from the field, whereas OM in freely available and aggregated fractions potentially originated from macrophytes. We conclude that kettle holes constitute important sinks for terrestrial OM across the landscape.  相似文献   

9.
The soil microbial biomass (SMB) is known to participate in key soil processes such as the decomposition of soil organic matter (SOM). However, its contribution to the isotopic composition of the SOM is not clear yet. Shifts in the 13C and 15N natural abundances of the SMB and SOM fractions (mineralised, water soluble and non-extractable) were investigated by incubating an unamended arable soil for 6 months. Microbial communities were also studied using Fatty Acid Methyl Ester specific isotope analysis. The SMB was significantly 13C and 15N-enriched relative to other fractions throughout the incubation. However, significant isotopic variations with time were also observed due to the rapid consumption of relatively 13C-enriched water soluble compounds. The increase in the difference in SMB and water soluble 15N compositions as the water soluble C/N ratio decreased, indicated a shift from N assimilation to N dissimilation during the incubation. These changes also induced modifications of the microbial community structure. Once the system reached a steady-state (after 1 month), the isotopic trends appeared to corroborate those obtained in long term experiments in the field in that there was a constant microbial isotopic fractionation leading to a 13C and 15N enrichment of the SOM over the long-term. This work also suggests that caution must be exercised when interpreting short term incubation studies since perturbations associated with experimental set-up can have an important effect on C and N dynamics, microbial fractionation of 13C and 15N and microbial community structure.  相似文献   

10.
Because allochthonous organic matter (OM) loading supplements autochthonous OM in supporting lake and reservoir food webs, C and N elemental and isotopic ratios of sedimenting particulate OM were measured during an annual cycle in a polymictic, eutrophic reservoir. Particulate organic C and N deposition rates were greatest during winter and lowest during spring. C:N ratios decreased through our study indicating that OM largely originated from allochthonous sources in winter and autochthonous sources thereafter. δ13C were influenced by C4 plant signatures and became increasingly light from winter through autumn. δ15N indirectly recorded the OM source shift through nitrate utilization degree with maximum values occurring in May as nitrate concentrations decreased. Unlike relationships from stratified systems, δ13C decreased with increasing algal biomass. This relationship suggests that minimal inorganic C fixation relative to supplies maintained photosynthetic isotopic discrimination during productive periods. Water column mixing likely maintained adequate inorganic C concentrations in the photic zone. Alternatively, OM isotopic composition may have been influenced by changing dissolved inorganic nutrient pools in this rapidly flushed system. δ15N also recorded increased N2 fixation as nitrate concentrations declined through autumn. Secondary sediment transport mechanisms strongly influenced OM delivery. Particulate organic C and N deposition rates were 3× greater near the sediment-water interface. Isotopic ratio mixing models suggested that river plume sedimentation, sediment resuspension, and horizontal advection influenced excess sediment deposition with individual mechanisms being more important seasonally. Our findings suggest that allochthonous OM loading and secondarily-transported OM seasonally supplement phytoplankton production in productive reservoirs.  相似文献   

11.
12.
Understanding stable isotope fractionation in trophic networks is important for the interpretation of stable isotope composition of ecosystem components. This work explores the influence of grazing pressure on the nitrogen isotope composition (?? 15N) of vegetation (standing biomass), soil, and sheep??s faeces and wool in a three-years (2005?C2007) experiment with different stocking rates (0.375?C2.25 sheep ha-1 year-1) in semi-arid Inner Mongolia grassland. The 15N of wool (from a yearly shearing) reflects vegetation at the whole-year grazing grounds-scale while faeces reflect that of the area grazed within a few days. Stocking rate had no effect on ?? 15N of vegetation and soil, and sheep??s faeces and wool, although nitrogen content of bulk vegetation increased with stocking rate. Furthermore, ?? 15N of vegetation and diet did not differ between stocking rates. Hence, 15N fractionations between vegetation and faeces (??veg-faeces), vegetation and wool (?? veg-wool), faeces and soil (?? faeces-soil) and soil and vegetation (?? soil-veg) were constants, with ?? veg-faeces?=?3.0?? (±0.1??, 95% confidence interval), ?? veg-wool?=?5.3?? (±0.1??), ?? faeces-soil?=?1.1?? (±0.4??) and ?? soil-veg?=?-4.1?? (±0.3??). This finding is useful as it means that ?? 15N of wool or faeces can be used to estimate the 15N of grazed vegetation, even if grazing pressure is unknown.  相似文献   

13.
S. Shimoda 《Photosynthetica》2012,50(3):387-394
Photosynthetic parameters and leaf carbon isotope composition (??13C) in contrasting rice genotypes in relation to supplemental nitrogen (N) application and water management during the grain-filling period were compared. The changes in stomatal conductance (g s) and ratio of intercellular to ambient CO2 mole fraction (C i/C a) depended on the leaf nitrogen concentration (leaf N) in both ??Hinohikari?? (temperate japonica genotype) and ??IR36?? (indica genotype). In ??Hinohikari??, ??13C reflects photosynthetic gas exchange during the grain-filling period, which is indicated by the significant response of ??13C to leaf N. In contrast, in ??IR36?? ??13C did not depend on leaf N. This varietal difference in ??13C to leaf N can be attributed to a difference in the timing of leaf senescence. In ??IR36??, leaf N and photosynthetic parameters decreased more rapidly, indicating earlier senescence and a shorter grain-filling period in comparison with ??Hinohikari??. The significant increase in shoot dry mass in ??Hinohikari?? resulting from supplemental N application, compared with nonsignificant effect observed in ??IR36??, suggests that the timing of senescence in relation to the grainfilling period has a preponderant influence on productivity.  相似文献   

14.
Like many other coastal systems across the world, the Coorong lagoonal ecosystem (South Australia) has degraded over the last 100 years; in this case as a result of extensive regulation and diversions of water across the Murray-Darling Basin following European settlement. To evaluate whether the sources of organic matter (OM) supporting its food-web have changed since the inception of water management and barrage construction, sedimentary OM was characterised in cores spanning the Coorong’s salinity gradient at depths representative of the last 100 years over which the management alterations to river and estuarine flow were most marked. Detailed 210Pb, 137Cs and Pu dating in conjunction with palaeolimnological data (Pinus pollen) allowed for the reconstruction of the timing of substantial changes observed in the composition of the OM, most of which occur during the early 1950s, concurrent with management-related variations in water flow and salinity. Negative shifts in δ13C of up to 8.3‰ in the 2–10 and <2 μm fractions after the 1950s suggest a pronounced alteration in biogeochemical cycling or in the origin of OM. Elemental ratios and δ13C values of potential sources are inconclusive as to the cause of these biogeochemical changes. However, 13C-NMR spectra of the sediments suggest that degraded phytoplankton constitutes a large proportion of today’s OM and also reveal that an OM source rich in lignin was present prior to the 1950s. The high δ13C (?18.3‰) and low C/N (7.5) signatures of the lignin-bearing sediments are inconsistent with a C3 terrestrial OM source and instead suggest that the lignin-bearing seagrass Ruppia megacarpa13C of ?13‰) contributed to a large degree to the sediment of the North Lagoon. R. megacarpa once was abundant in the North Lagoon but today has all but vanished from the system. Thus, only through a combination of isotopic and spectroscopic techniques was it possible to effectively decipher the changes in the composition of OM deposited throughout the Coorong over space and time. These results have important implications for research in estuarine OM dynamics in other geographic locations. Specifically, utilising complementary analytical techniques may sometimes be essential in reliably determining OM sources and processes in estuaries and lagoons.  相似文献   

15.
The spatial and temporal distribution of carbon isotopes (13C, 14C) in soil organic matter (SOM) were studied based on SOM content, SOM 14C and SOM 13C of thinly layered soil samples for six soil profiles with different elevations at the Dinghushan Biosphere Reserve (DHSBR), South China. The results indicate that variations of SOM 13C with depth of the soil profiles at different elevations are controlled by soil development, and correlate well with SOM composition in terms of SOM compartments with different turnover rates, and SOM turnover processes at the DHSBR. The effect of carbon isotope fractionation was obvious during transformation of organic matter (OM) from plant debris to SOM in topsoil and SOM turnover processes after the topsoil was buried, which resulted in great increments of OM 13C, respectively. Increments of SOM 13C of topsoil from 13C of plant debris were controlled by SOM turnover rates. Both topsoil SOM 13C and plant debris 13C increase with elevation, indicating regular changes in vegetation species and composition with elevation, which is consistent with the vertical distribution of vegetation at the DHSBR. The six soil profiles at different elevations had similar characteristics in variations of SOM 13C with depth, alterations of SOM contents with depth and that SOM 14C apparent ages increasing with depth, respectively. These are presumably attributed to the regular distribution of different SOM compartments with depth because of their regular turnover during soil development. Depth with the maximal SOM 13C value is different in mechanism and magnitude with penetrating depth of 14C produced by nuclear explosion into atmosphere from 1952 to 1962, and both indicate controls of topography and vegetation on the distribution of SOM carbon isotopes with depth. Elevation exerts indirect controls on the spatial and temporal distribution of SOM carbon isotopes of the studied mountainous soil profiles at the DHSBR. This study shows that mountainous soil profiles at different elevations and with distinctive aboveground vegetation are presumably ideal sites for studies on soil carbon dynamics in different climatic-vegetation zones.  相似文献   

16.
The isotopic composition of particulate organic carbon (POC) from the Black Sea deep-water zone was studied during a Russian-Swiss expedition in May 1998. POC from the upper part of the hydrogen sulfide zone (the C-layer) was found to be considerably enriched with the12C isotope, as compared to the POC of the oxycline and anaerobic zone. In the C-layer waters, the concurrent presence of dissolved oxygen and hydrogen sulfide and an increased rate of dark CO2 fixation were recorded, suggesting that the change in the POC isotopic composition occurs at the expense of newly formed isotopically light organic matter of the biomass of autotrophic bacteria involved in the sulfur cycle. In the anaerobic waters below the C-layer, the organic matter of the biomass of autotrophs is consumed by the community of heterotrophic microorganisms; this results in weighting of the POC isotopic composition. Analysis of the data obtained and data available in the literature allows an inference to be made about the considerable seasonable variability of the POC δ13C value, which depends on the ratio of terrigenic and planktonogenic components in the particulate organic matter.  相似文献   

17.
1. Methanogenic carbon can be incorporated by methane‐oxidising bacteria, leading to a 13C‐depleted stable carbon isotopic composition (δ13C) of chironomids that feed on these microorganisms. This has been shown for the chironomid tribe Chironomini, but very little information is available about the δ13C of other abundant chironomid groups and the relationship between chironomid δ13C and methane production in lakes. 2. Methane flux was measured at the water surface of seven lakes in Sweden. Furthermore, fluxes from the sediments to the water column were measured in transects in two of the lakes. Methane fluxes were then compared with δ13C of chitinous chironomid remains isolated from the lake surface sediments. Several different chironomid groups were examined (Chironomini, Orthocladiinae, Tanypodinae and Tanytarsini). 3. Remains of Orthocladiinae in the seven study lakes had the highest δ13C values (?31.3 to ?27.0‰), most likely reflecting δ13C of algae and other plant‐derived organic matter. Remains of Chironomini and Tanypodinae had lower δ13C values (?33.2 to ?27.6‰ and ?33.6 to ?28.0‰, respectively). A significant negative correlation was observed between methane fluxes at the lake surface and δ13C of Chironomini (r = ?0.90, P = 0.006). Methane release from the sediments was also negatively correlated with δ13C of Chironomini (r = ?0.67, P = 0.025) in the transect samples obtained from two of the lakes. The remains of other chironomid taxa were only weakly or not correlated with methane fluxes measured in our study lakes (P > 0.05). 4. Selective incorporation of methane‐derived carbon can explain the observed correlations between methane fluxes and δ13C values of Chironomini. Remains of this group might therefore have the potential to provide information about past changes in methane availability in lakes using sediment records. However, differences in productivity, algal δ13C composition and the importance of allochthonous organic matter input between the studied lakes may also have influenced Chironomini δ13C. More detailed studies with a higher number of analysed samples and detailed measurement of δ13C of different ecosystem components (e.g. methane, dissolved inorganic carbon) will be necessary to further resolve the relative contribution of different carbon sources to δ13C of chironomid remains.  相似文献   

18.
Grassland ecosystems store an estimated 30% of the world's total soil C and are frequently disturbed by wildfires or fire management. Aboveground litter decomposition is one of the main processes that form soil organic matter (SOM). However, during a fire biomass is removed or partially combusted and litter inputs to the soil are substituted with inputs of pyrogenic organic matter (py‐OM). Py‐OM accounts for a more recalcitrant plant input to SOM than fresh litter, and the historical frequency of burning may alter C and N retention of both fresh litter and py‐OM inputs to the soil. We compared the fate of these two forms of plant material by incubating 13C‐ and 15N‐labeled Andropogon gerardii litter and py‐OM at both an annually burned and an infrequently burned tallgrass prairie site for 11 months. We traced litter and py‐OM C and N into uncomplexed and organo‐mineral SOM fractions and CO2 fluxes and determined how fire history affects the fate of these two forms of aboveground biomass. Evidence from CO2 fluxes and SOM C:N ratios indicates that the litter was microbially transformed during decomposition while, besides an initial labile fraction, py‐OM added to SOM largely untransformed by soil microbes. Additionally, at the N‐limited annually burned site, litter N was tightly conserved. Together, these results demonstrate how, although py‐OM may contribute to C and N sequestration in the soil due to its resistance to microbial degradation, a long history of annual removal of fresh litter and input of py‐OM infers N limitation due to the inhibition of microbial decomposition of aboveground plant inputs to the soil. These results provide new insight into how fire may impact plant inputs to the soil, and the effects of py‐OM on SOM formation and ecosystem C and N cycling.  相似文献   

19.
Knowledge of the fate of deposited N in the possibly N-limited, highly biodiverse north Andean forests is important because of the possible effects of N inputs on plant performance and species composition. We analyzed concentrations and fluxes of NO3 ??CN, NH4 +?CN and dissolved organic N (DON) in rainfall, throughfall, litter leachate, mineral soil solutions (0.15?C0.30 m depths) and stream water in a montane forest in Ecuador during four consecutive quarters and used the natural 15N abundance in NO3 ? during the passage of rain water through the ecosystem and bulk ??15N values in soil to detect N transformations. Depletion of 15N in NO3 ? and increased NO3 ??CN fluxes during the passage through the canopy and the organic layer indicated nitrification in these compartments. During leaching from the organic layer to mineral soil and stream, NO3 ? concentrations progressively decreased and were enriched in 15N but did not reach the ??15N values of solid phase organic matter (??15N = 5.6?C6.7??). This suggested a combination of nitrification and denitrification in mineral soil. In the wettest quarter, the ??15N value of NO3 ? in litter leachate was smaller (??15N = ?1.58??) than in the other quarters (??15N = ?9.38 ± SE 0.46??) probably because of reduced mineralization and associated fractionation against 15N. Nitrogen isotope fractionation of NO3 ? between litter leachate and stream water was smaller in the wettest period than in the other periods probably because of a higher rate of denitrification and continuous dilution by isotopically lighter NO3 ??CN from throughfall and nitrification in the organic layer during the wettest period. The stable N isotope composition of NO3 ? gave valuable indications of N transformations during the passage of water through the forest ecosystem from rainfall to the stream.  相似文献   

20.
We quantified the role of a main food resource, sedimenting organic matter (SOM), relative to oxygen (DO) and temperature (TEMP) in structuring profundal macroinvertebrate assemblages in boreal lakes. SOM from 26 basins of 11 Finnish lakes was analysed for quantity (sedimentation rates), quality (C:N:P stoichiometry) and origin (carbon stable isotopes, δ13C). Hypolimnetic oxygen and temperature were measured from each site during summer stratification. Partial canonical correspondence analysis (CCA) and partial regression analyses were used to quantify contributions of SOM, DO and TEMP to community composition and three macroinvertebrate metrics. The results suggested a major contribution of SOM in regulating the community composition and total biomass. Oxygen best explained the Shannon diversity, whereas TEMP had largest contribution to the variation of Benthic Quality Index. Community composition was most strongly related to δ13C of SOM. Based on additional δ13C and stoichiometric analyses of chironomid taxa, marked differences were apparent in their utilization of SOM and body stoichiometry; taxa characteristic of oligotrophic conditions exhibited higher C:N ratios and lower C:P and N:P ratios compared to the species typical of eutrophic lakes. The results highlight the role of SOM in regulating benthic communities and the distributions of individual species, particularly in oligotrophic systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号