首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
We present a fully automatic structural classification of supersecondary structure units, consisting of two hydrogen-bonded β strands, preceded or followed by an α helix. The classification is performed on the spatial arrangement of the secondary structure elements, irrespective of the length and conformation of the intervening loops. The similarity of the arrangements is estimated by a structure alignment procedure that uses as similarity measure the root mean square deviation of superimposed backbone atoms. Applied to a set of 141 well-resolved nonhomologous protein structures, the classification yields 11 families of recurrent arrangements. In addition, fragments that are structurally intermediate between the families are found; they reveal the continuity of the classification. The analysis of the families shows that the α helix and β hairpin axes can adopt virtually all relative orientations, with, however, some preferable orientations; moreover, according to the orientation, preferences in the left/right handedness of the α–β connection are observed. These preferences can be explained by favorable side by side packing of the α helix and the β hairpin, local interactions in the region of the α–β connection or stabilizing environments in the parent protein. Furthermore, fold recognition procedures and structure prediction algorithms coupled to database-derived potentials suggest that the preferable nature of these arrangements does not imply their intrinsic stability. They usually accommodate a large number of sequences, of which only a subset is predicted to stabilize the motif. The motifs predicted as stable could correspond to nuclei formed at the very beginning of the folding process. Proteins 30:193–212, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

2.
In anterior pituitaries from male rats, it appeared that 5α-androstane-3β, 17β-diol was quickly metabolized into 5α-androstane-3β,6α-17β-triol and 5α-androstane-3β,7α, 17β-triol by action of 6α- and 7α-hydroxylases. Hydroxysteroid hydroxylases were located in endoplasmic reticulum and were dependent on NADPH+. Their optimum pH was 8.0, optima temperature, 37°C, and their apparent Km was 2.7 μM. Hydroxylative reactions were not reversible and not modified by gonadectomy. Hydroxylation seemed an efficient control of the pituitary level of 5α-andros-tane-3β, 17β-diol.  相似文献   

3.
Tuberculosis is still affecting millions of people worldwide, and new resistant strains of Mycobacterium tuberculosis are being found. It is therefore necessary to find new compounds for treatment. In this paper, we report the synthesis and in vitro testing of peptidyl β‐aminoboronic acids and β‐aminoboronates with anti‐tubercular activity. Copyright © 2013 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

4.
5.
Two γ-aminobutyric acidA (GABAA) receptor chimeras were designed in order to elucidate the structural requirements for GABAA receptor desensitization and assembly. The (α1/γ2) and (γ2/α1) chimeric subunits representing the extracellular N-terminal domain of α1 or γ2 and the remainder of the γ2 or α1 subunits, respectively, were expressed with β2 and β2γ2 in Spodoptera frugiperda (Sf-9) cells using the baculovirus expression system. The (α1/γ2)β2 and (α1/γ2)β2γ2 but not the (γ2/α1)β2 and (γ2/α1)β2γ2 subunit combinations formed functional receptor complexes as shown by whole-cell patch–clamp recordings and [3H]muscimol and [3H]flunitrazepam binding. Moreover, the surface immunofluorescence staining of Sf-9 cells expressing the (α1/γ2)-containing receptors was pronounced, as opposed to the staining of the (γ2/α1)-containing receptors, which was only slightly higher than background. To explain this, the (α1/γ2) and (γ2/α1) chimeras may act like α1 and γ2 subunits, respectively, indicating that the extracellular N-terminal segment is important for assembly. However, the (α1/γ2) chimeric subunit had characteristics different from the α1 subunit, since the (α1/γ2) chimera gave rise to no desensitization after GABA stimulation in whole-cell patch–clamp recordings, which was independent of whether the chimera was expressed in combination with β2 or β2γ2. Surprisingly, the (α1/γ2)(γ2/α1)β2 subunit combination did desensitize, indicating that the C-terminal segment of the α1 subunit may be important for desensitization. Moreover, desensitization was observed for the (α1/γ2)β2γ2 receptor with respect to the direct activation by pentobarbital. This suggests differences in the mechanism of channel activation for pentobarbital and GABA.  相似文献   

6.
Antiphospholipid syndrome (APS) is characterized by thrombosis and the presence of antiphospholipid antibodies (aPL) that directly recognizes plasma β2‐glycoprotein I (β2GPI). Tissue factor (TF), the major initiator of the extrinsic coagulation system, is induced on monocytes by aPL in vitro, explaining in part the pathophysiology in APS. We previously reported that the mitogen‐activated protein kinase (MAPK) pathway plays an important role in aPL‐induced TF expression on monocytes. In this study, we identified plasma gelsolin as a protein associated with β2GPI by using immunoaffinity chromatography and mass spectrometric analysis. An in vivo binding assay showed that endogenous β2GPI interacts with plasma gelsolin, which binds to integrin a5β1 through fibronectin. The tethering of β2GPI to monoclonal anti‐β2GPI autoantibody on the cell surface was enhanced in the presence of plasma gelsolin. Immunoblot analysis demonstrated that p38 MAPK protein was phosphorylated by monoclonal anti‐β2GPI antibody treatment, and its phosphorylation was attenuated in the presence of anti‐integrin a5β1 antibody. Furthermore, focal adhesion kinase, a downstream molecule of the fibronectin‐integrin signalling pathway, was phosphorylated by anti‐β2GPI antibody treatment. These results indicate that molecules including gelsolin and integrin are involved in the anti‐β2GPI antibody‐induced MAPK pathway on monocytes and that integrin is a possible therapeutic target to modify a prothrombotic state in patients with APS.  相似文献   

7.
8.
There is a critical need for compounds that target cell surface integrin receptors for applications in cancer therapy and diagnosis. We used directed evolution to engineer the Ecballium elaterium trypsin inhibitor (EETI‐II), a knottin peptide from the squash family of protease inhibitors, as a new class of integrin‐binding agents. We generated yeast‐displayed libraries of EETI‐II by substituting its 6‐amino acid trypsin binding loop with 11‐amino acid loops containing the Arg‐Gly‐Asp integrin binding motif and randomized flanking residues. These libraries were screened in a high‐throughput manner by fluorescence‐activated cell sorting to identify mutants that bound to αvβ3 integrin. Select peptides were synthesized and were shown to compete for natural ligand binding to integrin receptors expressed on the surface of U87MG glioblastoma cells with half‐maximal inhibitory concentration values of 10–30 nM. Receptor specificity assays demonstrated that engineered knottin peptides bind to both αvβ3 and αvβ5 integrins with high affinity. Interestingly, we also discovered a peptide that binds with high affinity to αvβ3, αvβ5, and α5β1 integrins. This finding has important clinical implications because all three of these receptors can be coexpressed on tumors. In addition, we showed that engineered knottin peptides inhibit tumor cell adhesion to the extracellular matrix protein vitronectin, and in some cases fibronectin, depending on their integrin binding specificity. Collectively, these data validate EETI‐II as a scaffold for protein engineering, and highlight the development of unique integrin‐binding peptides with potential for translational applications in cancer. Proteins 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

9.
The past two decades have seen great progress in understanding the mechanisms of ecosystem stability in local ecological systems. There is, however, an urgent need to extend existing knowledge to larger spatial scales to match the scale of management and conservation. Here, we develop a general theoretical framework to study the stability and variability of ecosystems at multiple scales. Analogously to the partitioning of biodiversity, we propose the concepts of alpha, beta and gamma variability. Gamma variability at regional (metacommunity) scale can be partitioned into local alpha variability and spatial beta variability, either multiplicatively or additively. On average, variability decreases from local to regional scales, which creates a negative variability–area relationship. Our partitioning framework suggests that mechanisms of regional ecosystem stability can be understood by investigating the influence of ecological factors on alpha and beta variability. Diversity can provide insurance effects at the various levels of variability, thus generating alpha, beta and gamma diversity–stability relationships. As a consequence, the loss of biodiversity and habitat impairs ecosystem stability at the regional scale. Overall, our framework enables a synthetic understanding of ecosystem stability at multiple scales and has practical implications for landscape management.  相似文献   

10.
One of the hallmarks of cells undergoing mitotic division is their rounded morphology and reduced adhesion to the substratum. We have studied and compared the attachment of interphase and mitotic cells to substrata coated with fibronectin and vitronectin. We have found that adhesion of mitotic cells, as compared to interphase cells, is significantly reduced to fibronectin, but is higher to vitronectin. These results correlate well with the expression of α5β1 and αVβ3 integrins, the respective receptors for fibronectin and vitronectin, on the cell surface. Mitotic cells show higher levels of αVβ3 and very low levels of α5β1 proteins on the cell surface as compared to interphase cells. This difference in the levels of these integrins also reflects in the total amounts of fibronectin and vitronectin present on the cell surface of these cells. We have further shown, by flow cytometry, that binding of vitronectin, or the synthetic peptide-GRGDSP-, causes an increase in the intracellular levels of Ca2− in mitotic cells, but no change is seen in the interphase cells. Binding of fibronectin to either of these cells fails to elicit any response. One interesting feature of our results is that the levels of total, i.e., cytoplasmic plus membrane bound, α5β1 and αVβ3 integrins of mitotic and interphase cells remain the same, thus implying an alteration in the distribution of integrin chains between the plasma membrane and the cytoplasm during the conversion of interphase cells into the mitotic phase. © 1996 Wiley-Liss, Inc.  相似文献   

11.
The shear piezoelectricity was observed in oriented films of poly-β-hydroxybutyrate (PHB) and copolymers of β-hydroxybutyrate (HB) and β-hydroxyvalerate (HV). The piezoelectric stress constant 314 = e14ie14 (polarization/strain), the piezoelectric strain constant d14 = d14id14 (polarization/stress), the elastic constant c = c′ + ic″ and the dielectric constant = ′ − i″ were determined at a frequency of 10 Hz over a temperature range from −150° to +150°C. Piezoelectric relaxations as well as elastic and dielectric relaxations were clearly observed at the glass transition temperature of about 15°C. In order to evaluate the piezoelectric constants (e2 and d2) for the piezoelectric phase which consists of the crystalline region and the oriented non-crystalline region, a spherical dispersion two phase model was utilized. Assuming the appropriate fixed values for the elastic and dielectric constants in the piezoelectric phase, d2 and d2 were calculated as a function of temperature. For a PHB and a copolymer (17 HV/83 HB), e2 and d2 showed relaxations, leading to a conclusion that the instantaneous piezoelectric constant in the crystalline phase is constant independent of temperature but the piezoelectric constant in the oriented non-crystalline phase is relaxational and has the opposite sign. For a copolymer (25 HV/75 HB) and a chloroform treated copolymer (17 HV/83 HB), e2 and d2 were constant independent of temperature, indicating that the oriented non-crystalline phase has disappeared owing to the increased molecular flexibility due to copolymerization or annealing in chloroform vapour.  相似文献   

12.
α7β1 is the major integrin complex expressed in differentiated muscle cells where it functions as a laminin receptor. In this work we have expressed the α7 integrin subunit in CHO cells to investigate the functional properties of this receptor. After transfection with α7 CHO cells acquired the ability to adhere and spread on laminin 1 consistent with the laminin receptor activity of the α7β1. α7 transfectants, however, showed a 70% reduction in the ability to adhere to fibronectin and were unable to assemble a fibronectin matrix. The degree of reduction was inversely related to the level of α7 expression. To define the mechanisms underlying this adhesive defect we analyzed surface expression and functional properties of the α5β1 fibronectin receptor. Although cell surface expression of α5β1 was reduced by a factor of 20–25% in α7 transfectants compared to control untransfected cells, this slight reduction was not sufficient to explain the dramatic reduction in cell adhesion (70%) and matrix assembly (close to 100%). Binding studies showed that the affinity of125I-fibronectin for its surface receptor was decreased by 50% in α7 transfectants, indicating that the α5β1 integrin is partially inactivated in these cells. Inactivation can be reversed by Mn2+, a cation known to increase integrin affinity for their ligands. In fact, incubation of cells with Mn2+restored fibronectin binding affinity, adhesion to fibronectin, and assembly of fibronectin matrix in α7 transfectants. These data indicate that α7 expression leads to the functional down regulation of α5β1 integrin by decreasing ligand binding affinity and surface expression. In conclusion, the data reported establish the existence of anegative cooperativitybetween α7 and α5 integrins that may be important in determining functional regulation of integrins during myogenic differentiation.  相似文献   

13.
β‐dystroglycan (β‐DG) is a widely expressed transmembrane protein that plays important roles in connecting the extracellular matrix to the cytoskeleton, and thereby contributing to plasma membrane integrity and signal transduction. We previously observed nuclear localization of β‐DG in cultured cell lines, implying the existence of a nuclear targeting mechanism that directs it to the nucleus instead of the plasma membrane. In this study, we delineate the nuclear import pathway of β‐DG, characterizing a functional nuclear localization signal (NLS) in the β‐DG cytoplasmic domain, within amino acids 776–782. The NLS either alone or in the context of the whole β‐DG protein was able to target the heterologous GFP protein to the nucleus, with site‐directed mutagenesis indicating that amino acids R779 and K780 are critical for NLS functionality. The nuclear transport molecules Importin (Imp)α and Impβ bound with high affinity to the NLS of β‐DG and were found to be essential for NLS‐dependent nuclear import in an in vitro reconstituted nuclear transport assay; cotransfection experiments confirmed the dependence on Ran for nuclear accumulation. Intriguingly, experiments suggested that tyrosine phosphorylation of β‐DG may result in cytoplasmic retention, with Y892 playing a key role. β‐DG thus follows a conventional Impα/β‐dependent nuclear import pathway, with important implications for its potential function in the nucleus. J. Cell. Biochem. 110: 706–717, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

14.
β‐Sheets are quite frequent in protein structures and are stabilized by regular main‐chain hydrogen bond patterns. Irregularities in β‐sheets, named β‐bulges, are distorted regions between two consecutive hydrogen bonds. They disrupt the classical alternation of side chain direction and can alter the directionality of β‐strands. They are implicated in protein‐protein interactions and are introduced to avoid β‐strand aggregation. Five different types of β‐bulges are defined. Previous studies on β‐bulges were performed on a limited number of protein structures or one specific family. These studies evoked a potential conservation during evolution. In this work, we analyze the β‐bulge distribution and conservation in terms of local backbone conformations and amino acid composition. Our dataset consists of 66 times more β‐bulges than the last systematic study (Chan et al. Protein Science 1993, 2:1574–1590). Novel amino acid preferences are underlined and local structure conformations are highlighted by the use of a structural alphabet. We observed that β‐bulges are preferably localized at the N‐ and C‐termini of β‐strands, but contrary to the earlier studies, no significant conservation of β‐bulges was observed among structural homologues. Displacement of β‐bulges along the sequence was also investigated by Molecular Dynamics simulations.  相似文献   

15.
Cyclic strain has been shown to modulate endothelial cell (EC) morphology, proliferation, and function. We have recently reported that the focal adhesion proteins focal adhesion kinase (pp125FAK) and paxillin, are tyrosine phosphorylated in EC exposed to strain and these events regulate the morphological change and migration induced by cyclic strain. Integrins are also localized on focal adhesion sites and have been reported to induce tyrosine phosphorylation of pp125FAK under a variety of stimuli. To study the involvement of different integrins in signaling induced by cyclic strain, we first observed the redistribution of α and β integrins in EC subjected to 4 h cyclic strain. Human umbilical vein endothelial cells (HUVEC) seeded on either fibronectin or collagen surfaces were subjected to 10% average strain at a frequency 60 cycles/min. Confocal microscopy revealed that β1 integrin reorganized in a linear pattern parallel with the long axis of the elongated cells creating a fusion of focal adhesion plaques in EC plated on either fibronectin (a ligand for α5β1) or collagen (a ligand for α2β1) coated plates after 4 h exposure to cyclic strain. β3 integrin, which is a vitronectin receptor, did not redistribute in EC exposed to cyclic strain. Cyclic strain also led to a reorganization of α5 and α2 integrins in a linear pattern in HUVEC seeded on fibronectin or collagen, respectively. The expression of integrins α5, α2, and β1 did not change even after 24 h exposure to strain when assessed by immunoprecipitation of these integrins. Cyclic strain-induced tyrosine phosphorylation of pp125FAK occurred concomitant with the reorganization of β1 integrin. We concluded that α5β1 and α2β1 integrins play an important role in transducing mechanical stimuli into intracellular signals. J. Cell. Biochem. 64:505–513. © 1997 Wiley-Liss, Inc.  相似文献   

16.
As the prevalence of osteoporosis is expected to increase over the next few decades, the development of novel therapeutic strategies to combat this disorder becomes clinically imperative. These efforts draw extensively from an expanding body of knowledge pertaining to the physiologic mechanisms of skeletal homeostasis. To this body of knowledge, we contribute that cells of hematopoietic lineage may play a crucial role in balancing osteoblastic bone formation against osteoclastic resorption. Specifically, our laboratory has previously demonstrated that megakaryocytes (MKs) can induce osteoblast (OB) proliferation in vitro, but do so only when direct cell‐to‐cell contact is permitted. To further investigate the nature of this interaction, we have effectively neutralized several adhesion molecules known to function in the analogous interaction of MKs with another cell type of mesenchymal origin—the fibroblast (FB). Our findings implicate the involvement of fibronectin/RGD‐binding integrins including α3β1 (VLA‐3) and α5β1 (VLA‐5) as well as glycoprotein (gp) IIb (CD41), all of which are known to be expressed on MK membranes. Furthermore, we demonstrate that interleukin (IL)‐3 can enhance MK‐induced OB activation in vitro, as demonstrated in the MK–FB model system. Taken together, these results suggest that although their physiologic and clinical implications are very different, these two models of hematopoietic–mesenchymal cell activation are mechanistically analogous in several ways. J. Cell. Biochem. 109: 927–932, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

17.
In the present paper we describe the synthesis, purification, single-crystal x-ray analysis, solution conformational characterization, and conformational energy calculations of the cyclic tetrapeptide cyclo- (β-Ala-L -Pro-β-Ala-L -Val). The peptide was synthesized by classical solution methods and the cyclization of the free tetrapeptide was accomplished in good yields in diluted methylene chloride solution using N,N-dicyclohexyl-carbodiimide. The compound crystallizes in the monoclinic space group P21 from ethanol with two independent molecules in the unit cell. All peptide bonds are trans. The nmr molecular conformation in the acetonitrile solution as well as that derived from the molecular dynamic simulation in vacuo is quite different from those observed in the solid state and is very similar to that previously observed for the parent compound cyclo-(β-Ala-L -Pro-β-Ala-L -Pro). © 1993 John Wiley & Sons, Inc.  相似文献   

18.
Prostaglandin F2α (PGF2α) is a potent adipose differentiation inhibitor for the adipogenic cell line 1246 and for adipocyte precursors in primary culture with an ED50 of 3×10−8 M. In this paper, we examined the effect of several prostaglandins which have structural similarities with PGF2α on the differentiation of 1246 cells and of adipocyte precursors in primary culture. The results show that only 9α,11β-PGF2α is as potent as PGF2α to inhibit differentiation of adipocyte precursors in primary culture and of the adipogenic cell line 1246. In the presence of 9α,11β-PGF2α, the cells remained fibroblast-like, typical of undifferentiated adipocyte precursors. Triglyceride accumulation and increase of specific activity for glycerol-3-phosphate dehydrogenase were inhibited. In addition, mRNA expression of early markers of differentiation such as lipoprotein lipase (LPL) and fatty acid binding protein (FAB) was decreased. The isomer 9β,11α-PGF2α and other PGF2α derivatives were inactive. These results provide new information on the biological activity of 9α,11β-PGF2α as an inhibitor of adipose differentiation and about the structural characteristics of prostaglandins required for maintenance of a high adipose differentiation inhibitory effect.  相似文献   

19.
β-Sitosterol-4-14C is metabolized to Δ4-β-sitosten-3-one by Cheiranthus cheiri leaf homogenates. Greater than 60% conversion occurs within 2 hr. Under identical conditions, leaf homogenates of Strophanthus kombé fail to metabolize β-sitosterol, while Digitalis purpurea leaf homogenates yield only very small amounts of the metabolite.  相似文献   

20.
During tissue morphogenesis and tumor invasion, epithelial cells must undergo intercellular rearrangement in which cells are repositioned with respect to one another and the surrounding mesenchymal extracellular matrix. Using three-dimensional aggregates of squamous epithelial cells, we show that such intercellular rearrangements can be triggered by activation of β1 integrins after their ligation with extracellular matrices. On nonadherent substrates, multicellular aggregates (MCAs) formed rapidly via E-cadherin junctional complexes and over time became compacted spheroids exhibiting a more epithelial phenotype. After MCAs were replated on culture substrates, the spheroids collapsed to yield tightly arranged cell monolayers. Cell–cell contact induced rapid elevation in E-cadherin levels, which was due to an increase in the metabolic stability of junctional receptors. During MCA remodeling of cell–cell adhesions, and monolayer formation, their E-cadherin levels fell rapidly. Similar behavior was obtained regardless of which ECM ligand—collagen type I, fibronectin, or laminin 1—MCAs were seeded on. In contrast, when seeded onto a matrix elaborated by squamous epithelial cells, cells in the MCA attached, spread, lost cell–cell junctions, and dispersed. Analysis identified laminin 5 as the active ECM ligand in this matrix, and MCA dispersion required functional β1 integrin and specifically α3β1. Furthermore, substrate-immobilized anti-integrin antibody effectively reproduced the epithelial–mesenchymal-like transition induced by the laminin 5 matrix. During the early stages of aggregate rearrangement and collapse, cells on laminin 5 substrates, but not those on collagen I substrates, exhibited intense cortical arrays of F-actin, microspikes, and fascin accumulation at their peripheral surfaces. These results suggest that engagement of specific integrin–ligand pairs regulates cadherin junctional adhesions during events common to epithelial morphogenesis and tumor invasion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号