首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The influence of soil application of carbofuran on the growth response of groundnut, and both mycorrhizal colonization and sporulation of Glomus clarum was studied in a pot culture experiment. Carbofuran application with or without mycorrhizal inoculation increased the height of the potted plants measured 8 weeks after sowing. Mycorrhizal plants were significantly taller than nonmycorrhizal plants at the final harvest time (14 weeks). Carbofuran, at the recommmended field dose of up to 2 kg/ha, greatly increased shoot dry matter and pod yield in mycorrhizal groundnut. Colonization and sporulation by this VAM fungus were also enhanced significantly at these dose levels. The application of carbofuran at 5 kg/ha inhibited both growth and mycorrhizal status of groundnut.  相似文献   

2.
Nutrient acquisition and growth of citronella Java (Cymbopogon winterianus Jowitt) was studied in a P-deficient sandy soil to determine the effects of mycorrhizal symbiosis and soil compaction. A pasteurized sandy loam soil was inoculated either with rhizosphere microorganisms excluding VAM fungi (non-mycorrhizal) or with the VAM fungus, Glomus intraradices Schenck and Smith (mycorrhizal) and supplied with 0, 50 or 100 mg P kg-1 soil. The soil was compacted to a bulk density of 1.2 and 1.4 Mg m-3 (dry soil basis). G. intraradices substantially increased root and shoot biomass, root length, nutrient (P, Zn and Cu) uptake per unit root length and nutrient concentrations in the plant, compared to inoculation with rhizosphere microorganisms when the soil was at the low bulk density and not amended with P. Little or no plant response to the VAM fungus was observed when the soil was supplied with 50 or 100 mg P kg-1 soil and/or compacted to the highest bulk density. At higher soil compaction and P supply the VAM fungus significantly reduced root length. Non-mycorrhizal plants at higher soil compaction produced relatively thinner roots and had higher concentrations and uptake of P, Zn and Cu than at lower soil compaction, particularly under conditions of P deficiency. The quality of citronella Java oil measured in terms citronellal and d-citronellol concentration did not vary appreciably due to various soil treatments.  相似文献   

3.
Inoculation of finger millet (Eleusine coracana Gaertn.) plants with one of six different vesicular, arbuscular, mycorrhizal (VAM) fungi increased plant biomass, height, leaf area and absolute growth rate; however, effectiveness of the various VAM fungi varied significantly. Maximum root colonization and mycorrhizal efficacy was observed with plants inoculated with Glomus caledonicum. Among five host genotypes tested for mycorrhizal dependency against G. caledonicum, genotype HR-374 gave the highest plant biomass, mycorrhizal efficacy and root colonization, the inoculation resulting in increased mineral (phosphate, nitrogen, Zn2+ and Cu2+) content and uptake in shoots.  相似文献   

4.
The effects of three soil temperatures on growth of spring barleys (Hordeum vulgare L.) and on their root colonization by vesicular arbuscular mycorrhizal (VAM) fungi from agricultural soils in Montana (USA) or Syria at different inoculum concentrations were tested in soil incubators in the greenhouse. The number of mycorrhizal plants as well as the proportion and intensity of roots colonized increased with higher soil temperatures. VAM fungi from Montana, primarily Glomus macrocarpum, were cold tolerant at 11°C while those from Syria, primarily G. hoi, were heat tolerant at 26°C. Inoculum potential of Montana VAM fungi was higher than Syrian VAM fungi in cool soils. Harmal, selected from Syrian barley land races, had the highest colonization by mycorrhizal fungi of the cultivars tested.Journal Series Paper: J-2532 Montana Agricultural Experiment Station.  相似文献   

5.
The inoculation of Pistacia terebinthus with vesicular-arbuscular mycorrhizal (VAM) fungi and the spread of the infection were studied using a mixed cropping system, under glasshouse conditions, with Salvia officinalis, Lavandula officinalis and Thymus vulgaris colonized by Glomus mosseae as an inoculation method. This method was compared with soil inoculum placed under the seed or distributed evenly in the soil. Indirect inoculation with all the aromatic plants tested significantly increased VAM root colonization of P. terebinthus compared with the use of soil inoculum, although the effect on plant growth was different for each one of the aromatic species used as inoculum source. Inoculation with L. officinalis and T. vulgaris were the best treatments resulting in high VAM colonization and growth enhancement of P. terebinthus.  相似文献   

6.
Summary The effect of soil acidity on spore germination, germ tube growth and root colonization of vesicular-arbuscular mycorrhizal (VAM) fungi was examined using a Florida Ultisol. Soil samples were treated with 0, 4, 8 and 12 meq Ca/MgCO3/100 g soil and each lime level received 0, 240, and 720 ppm P as superphosphate. Corn (Zea mays L.) was planted in the soil treatments, inoculated with eitherGlomus mosseae orGigaspora margarita spores and grown for 31 days. Acid soil inhibits mycorrhizal formation byG. mosseae through its strong fungistatic effect against the spores. The dolomitic lime increased mycorrhizal formation by both fungal species.G. margarita is much less sensitive to acidic conditions thanG. mosseae. Al ions are a very important component of the fungistatic property against the VAM symbiosis. VAM fungus adaptation may be important for plants growing on infertile acid soils if soil inoculation with these fungi is to contribute significantly to low-input technology for tropical agricultural systems.  相似文献   

7.
 This paper reports a 6-year field study of the effects of mycorrhizal pre-colonization of coffee seedlings on initial crop development and coffee bean yield in a low-fertility Oxisol amended with superphosphate (P) at planting. The experiment included five P rates (0, 20, 40, 80 and 160 g plant–1 P2O5) combined with seven fungal treatments [non-mycorrhizal control, pre-colonization with a mix of Glomus clarum and Gigaspora margarita (CM) and with five isolates of Glomus etunicatum]. Inoculated and non-inoculated outplants were raised under glasshouse conditions, transplanted into the field in January 1989 and monitored until July 1995. Plant height and stem diameter were greatly enhanced by P application and were higher in mycorrhizal seedlings than in controls up to 19 months after transplanting (MAT) but were not different at 26 MAT. Inoculation effects on tree canopy diameter were significant up to 26 MAT, at which time mycorrhizal colonization was high (43–55%), but did not differ amongst plants, regardless of whether or not the plants had been pre-colonized at the nursery stage. Root colonization and spore number in the soil were reduced by high P rates at 26 MAT. The first bean yield (1991) was highly enhanced by P and all pre-colonization treatments (38% increment over control) and these factors showed a significant interaction. Three isolates of G. etunicatum showed yield enhancements above 50%. The P rate for maximal yield was 207 g plant–1 P2O5 for non-pre-colonized and approximately 100 g plant–1 for pre-colonized plants. For this harvest, the mycorrhizal biofertilizer effect was equal to 254 kg ha–1 P2O5. In subsequent years, pre-colonization effects were reduced and inconsistent. In 1992, 1993 and 1995, yield was affected by P but not by mycorrhizal inoculation. In 1994 there was a P versus mycorrhiza interaction and CM and G. etunicatum-Var gave higher yields than non-precolonized plants. Considering accumulated yield for this 5-year period, P application resulted in high yield increment in all treatments, whereas pre-colonization effects were extremely diminished. However, despite inconsistency amongst mycorrhizal treatments, pre-colonization effects were detected at the fifth harvest in some fungal treatments. Based on the total yield of five harvests, maximal productivity was achieved with CM at 20 g plant–1 P2O5 and with CM and G. etunicatum-Var at the highest P rate. Diminishing mycorrhizal effects over time are related to colonization of non-precolonized seedlings by the indigenous fungi and to the reduced external P requirement of the mature crop. If adequate phosphorus is applied at planting, pre-colonization of outplants with selected arbuscular mycorrhizal fungi enhances early crop development and productivity of coffee in low-fertility soils of Brazil. Accepted: 3 October 1997  相似文献   

8.
Vesicular-arbuscular mycorrhizal (VAM) associations often vary according to the abundance of available soil phosphorus (P). Therefore, understanding the response of crop plants to colonization by VAM fungi necessitates the study of the response of colonized and noncolonized plants, from a range of cultivars, to differing levels of P. Cowpea is grown throughout the world, often on impoverished soils in which it can benefit from formation of mycorrhizae. The present study was conducted to determine the response of four cultivars of cowpea (Vigna unguiculata (L.) Walp.), varying in nitrogen fixation capacity, to inoculation withGlomus fasciculatum at four levels of added P in the rooting medium. In a greenhouse experiment, four cowpea cultivars, Mississippi Silver, Brown Crowder, Six Week Browneye and MI 35, were grown with and without the mycorrhizal fungus at four levels of added P, 0, 10, 20 and 30 ppm. Root colonization (%) was negatively correlated with P content of the growth medium and shoot P concentration. Intraspecific variability was shown for shoot dry weight and leaf area in response to inoculation withG. fasciculatum at different P levels. The range of P required in the growth medium which allowed benefit fromG. fasciculatum was identified for individual cultivars using shoot dry weight and leaf area, and collectively across cultivars for other parameters.  相似文献   

9.
 The growth responses of lentil (Lens esculenta L. cv. Laird) and two wheat cultivars (Triticum aestivum L. cv. Laura and Neepawa) to Glomus clarum NT4 in soil containing indigenous arbuscular mycorrhizal fungi (AMF) and fertilized with phosphorus at different (0, 5, 10, 20 ppm) levels was studied in a growth chamber. Soil was inoculated with a monospecific culture of G. clarum NT4 to provide an inoculant:indigenous AMF ratio of ca. 1 : 100. The shoot and root growth, and AMF colonization levels of NT4-inoculated lentil were significantly (P≤0.05) greater than the appropriate control plants in the unfertilized soil at 48 days after planting (DAP). At 95 DAP, NT4 inoculation had significantly increased the shoot dry weight (P≤0.08) and AMF colonization (P≤0.05) of lentil plants receiving 5 mg P kg–1 soil, whereas 20 mg P kg–1 soil reduced the shoot growth of NT4-inoculated plants. The NT4 inoculant had no effect (P≤0.05) on shoot P content, but increased (P≤0.08) the P-use efficiency of lentil plants receiving 5 mg P kg–1 soil. In contrast to the inoculant's effect on lentil, NT4 generally had no positive effect on any of the parameters assessed for wheat cv. Laura at any P level at 48 or 95 DAP. Similarly, there was no positive effect of NT4 on shoot or root growth, or AMF colonization of wheat cv. Neepawa plants at any P level at 48 DAP. However, NT4 inoculation increased the grain yield of Neepawa by 20% (P≤0.05) when fertilized with 20 mg P kg–1 soil. This yield increase was associated with a significant (P≤0.05) reduction in root biomass and a significant (P≤0.05) increase in the grain P content of inoculated plants. Thus, NT4 appears to have a preference for the Neepawa cultivar. Our results show that lentil was more dependent on mycorrhizae than wheat and responded to an AMF inoculant even in soil containing high levels of indigenous AMF. It might, therefore, be possible to develop mixed inoculants containing rhizobia and AMF for field production of legumes. Accepted: 22 February 1997  相似文献   

10.
Summary Genotypes of pearl millet (Pennisetum americanum L. Leeke) were examined for differences in vesicular-arbuscular mycorrhizal (VAM) colonization and response to inoculation. For thirty genotypes tested across three field locations there was a range of mycorrhizal colonization intensity between 25 and 56%. In another experiment with two male-sterile lines, restorer lines and their derived crosses, grown in pots filled with non-sterilized soil there were significant differences between genotypes for colonization by mycorrhiza. This showed hostgenotype dependence for mycorrhizal colonization.Root growth rates, mycorrhizal root length, percentage root colonization and plant growth and P uptake were studied in ten genotypes. A set of 3 genotypes with similar root lengths varied significantly with regard to mycorrhizal root length and the percentage colonization. This supports the suggestion that VAM colonization and spread is dependent on the host genotype. The growth responses differed significantly between the genotypes and they also differed in their responses to P uptake and VAM inoculation. The utility of host-genotype dependent differences in VAM symbiosis in plant breeding is discussed.Journal Article No. 453  相似文献   

11.
Summary The effects of vesicular-arbuscular mycorrhiza (VAM) on the growth and phosphorus uptake of cocoa seedlings (Theobroma cacao L.) grown for 100 days in polythene bags, were studied at five levels of phosphorus fertilization in both steamed and unsterile Bungor Series soil (a fine clayey, kaolinitic isohyperthermic Typic Paleudult). The cocoa seedlings responded well to phosphorus fertilization and mycorrhizal treatments. Plants inoculated with VAM fungi (Gigaspora spp.) gave the most vigorous growth and higher phosphorus in the leaf tissues in unsterile soil compared to plants grown in steamed soil. However, the mycorrhizal effect was significantly more pronounced (P<0.01) in plants grown in steamed than in unsterile soil. High levels of phosphorus application depressed mycorrhizal development. Phosphorus fertilizer applied at the rates of 250 and 500 ug g−1 soil gave maximum root colonization and spore counts in both soil types used.  相似文献   

12.
Summary Six mycorrhizal fungi were tested as inoculants for pearl millet (Pennisetum americanum Leeke) grown in pots maintained in a greenhouse. VAM fungi varied in their ability to stimulate plant growth and phosphorus uptake. Inoculation withGigaspora margarita, G. calospora andGlomus fasciculatum increased shoot drymatter 1.3 fold over uninoculated control. In another pot trial, inoculation withGigaspora calospora andGlomus fasciculatum resulted in dry matter and phosphorus uptake equivalent to that produced by adding phosphorus at 8 kg/ha.The influence of inoculatingGigaspora calospora on pearl millet at different levels of phosphorus fertilizer (0 to 60 kg P/ha) as triple superphosphate in sterile and unsterile alfisol soil was also studied. In sterile soil, mycorrhizal inoculation increased dry matter and phosphorus uptake at levels less than 20 kg/ha. At higher P levels the mycorrhizal effect was decreased. These studies performed in sterilized soil suggest that inoculation of pearl millet with efficient VAM fungi could be extremely useful in P deficient soils. However, its practical utility depends on screening and isolation of fungal strains which perform efficiently in natural (unsterilized) field conditions.  相似文献   

13.
To test the hypothesis that high levels of soluble phosphate applied in combination with VAM fungi, to citrus plants, can cause growth depression even in the absence of other limiting factors, and also to test if rock phosphate, under these conditions, may be a satisfactory P source, a greenhouse experiment was conducted using sterilized soil with four levels of phosphate (0, 50, 100 and 200 ppm P) supplied either as soluble P or as rock phosphate. Citrus seedlings were either inoculated with the vesicular-arbuscular mycorrhizal (VAM) fungus Glomus etunicatum or left uninoculated. Six months after the start of the experiment, the plants were harvested and shoot dry weight, P and K uptake, root colonization and the number of spores in 50 cm3 of soil were determined. Significant increases were found in dry matter yields and in P and K contents, due to VAM fungus inoculation, at the zero and 50 ppm soluble P levels and at all rock phosphate levels. At 100 ppm soluble P, the development of VAM plants was equilvalent to that of non-VAM plants, and at 200 ppm, growth was significantly less than that of non-VAM plants. Root colonization and sporulation were reduced at higher P levels. The absolute growth depression of VAM plants at the higher P level was likely due to P toxicity. In addition, high leaf P and K concentrations may have interfered with carbohydrate distribution and utilization in these symbioses. Rock phosphate may be used with VAM citrus to substitute for medium amounts of soluble phosphate.  相似文献   

14.
Phosphorus effect on phosphatase activity in endomycorrhizal maize   总被引:3,自引:0,他引:3  
Success of a mycorrhizal symbiosis is influenced by the availability of phosphorus (P) in the soil. Maize ( Zea mays L. cv. Great Lakes 586) plants were grown under five different levels of soil P, either in the presence or absence of formononetin or the vesicular‐arbuscular mycorrhizal (VAM) fungus Glomus intraradices Schenck and Smith. We detected physiological differences in mycorrhizal roots very early in the development of symbiosis, before the onset of nutrient‐dependent responses. Under low P levels, VAM roots accumulated a greater shoot dry weight (13%), root P concentration (15%) and protein concentration (30%) than non-VAM roots, although root growth was not statistically significantly different. At higher P levels, mycorrhizal roots weighed less than non-VAM roots (10%) without a concomitant host alteration of growth or root P concentration. Mycorrhizal colonization decreased as soil P increased. Formononetin-treatment enhanced colonization of the root by G. intraradices and partially overcame inhibition of VAM colonization by high soil P concentrations. This is the first report that formononetin improves root colonization under high levels of soil P. Acid phosphatase (ACP) and alkaline phosphatase (ALP) activities were closely related to the level of fungal colonization in corn roots. ACP activity in corn roots responded more to soil P availability than did ALP activity (38% more). These results suggest that ACP was involved in the increased uptake of P from the soil, while ALP may be linked to active phosphate assimilation or transport in mycorrhizal roots. Thus, soil P directly affected a number of enzymes essential in host-endophyte interplay, while formononetin enhanced fungal colonization.  相似文献   

15.
The effects of inoculation with vesicular-arbuscular mycorrhizal (VAM) fungus Glomusfasciculatum on the root colonization, growth, essential oil yield and nutrient acquisition of three cultivars of menthol mint (Mentha arvensis); Kalka, Shivalik and Gomti, were studied under field conditions. The VAM inoculation significantly increased the root colonization, plant height, fresh herbage and dry matter yield. oil content and oil yield as compared to non-inoculated cultivars. The effect of VAM inoculation on the root colonization, growth and yield of mint was more pronounced with the cv Shivalik than the cvs Kalka and Gomati, indicating Shivalik as a highly mycorrhizal dependent genotype. VAM inoculation significantly increased the uptake of N, P and K by shoot tissues of mint, but most markedly increased the uptake of P. The VAM-inoculated mint plants depleted the available N, P and K in the rhizosphere soil as compared to non-inoculated control plants, however the extent of nutrient depletion was greater for P than N and K. We conclude that the VAM inoculation could significantly increase the root colonization, growth, essential oil yield and nutrient acquisition of mint for obtaining economic production under field conditions.  相似文献   

16.
Field response of wheat to arbuscular mycorrhizal fungi and drought stress   总被引:3,自引:0,他引:3  
Al-Karaki G  McMichael B  Zak J 《Mycorrhiza》2004,14(4):263-269
Mycorrhizal plants often have greater tolerance to drought than nonmycorrhizal plants. This study was conducted to determine the effects of arbuscular mycorrhizal (AM) fungi inoculation on growth, grain yield and mineral acquisition of two winter wheat (Triticum aestivum L.) cultivars grown in the field under well-watered and water-stressed conditions. Wheat seeds were planted in furrows after treatment with or without the AM fungi Glomus mosseae or G. etunicatum. Roots were sampled at four growth stages (leaf, tillering, heading and grain-filling) to quantify AM fungi. There was negligible AM fungi colonization during winter months following seeding (leaf sampling in February), when soil temperature was low. During the spring, AM fungi colonization increased gradually. Mycorrhizal colonization was higher in well-watered plants colonized with AM fungi isolates than water-stressed plants. Plants inoculated with G. etunicatum generally had higher colonization than plants colonized with G. mosseae under both soil moisture conditions. Biomass and grain yields were higher in mycorrhizal than nonmycorrhizal plots irrespective of soil moisture, and G. etunicatum inoculated plants generally had higher biomass and grain yields than those colonized by G. mosseae under either soil moisture condition. The mycorrhizal plants had higher shoot P and Fe concentrations than nonmycorrhizal plants at all samplings regardless of soil moisture conditions. The improved growth, yield and nutrient uptake in wheat plants reported here demonstrate the potential of mycorrhizal inoculation to reduce the effects of drought stress on wheat grown under field conditions in semiarid areas of the world.  相似文献   

17.
Summary Greenhouse and field experiments were conducted on the effect of VA mycorrhiza (VAM) on the growth of cassava, various tropical grass and legume species, as well as beans, coffee and tea. A large number of VAM fungal species were evaluated for effectivity in increasing cassava growth and P uptake in acid low-P soils. The effectivity of VAM species and isolates was highly variable and dependent on soil pH and fertilizer applications, as well as on soil temperature and humidity. Two species,Glomus manihotis andEntrophospora colombiana were found to be most effective for a range of crops and pastures, at low pH and at a wide range of N, P, and K levels. At very low P levels nearly all crops and pasture species were highly mycorrhizal dependent, but at higher soil P levels cassava and several pasture legumes were more dependent than grass species. Mycorrhizal inoculation significantly increased cassava and bean yields in those soils with low or ineffective indigenous mycorrhizal populations. In these soils cassava root yields increased on the average 20–25% by VAM inoculation, both at the experiment station and in farmers’ fields. VAM inoculation of various pasture legumes and grasses, in combination with rock phosphate applications, increased their early growth and establishment. Agronomic practices such as fertilization, crop rotations, intercropping and pesticide applications were found to affect both the total VAM population as well as its species composition. While there is no doubt about the importance of VA mycorrhiza in enhancing P uptake and growth of many tropical crops and pastures grown on low-P soils, much more research is required to elucidate the complicated soil-plant-VAM interactions and to increase yields through improved mycorrhizal efficiency.  相似文献   

18.
Antunes PM  Deaville D  Goss MJ 《Mycorrhiza》2006,16(3):167-173
This study is the first in assessing the effect of soil disturbance on the contribution of arbuscular mycorrhizal fungi (AMF) with different life-history strategies to the tripartite symbiosis with soybeans and Bradyrhizobium japonicum (Kirchner) Jordan. We hypothesized that Gigaspora margarita Becker and Hall would be more affected by soil disturbance than Glomus clarum Nicol. and Schenck, and consequently, the tripartite symbiosis would develop more rapidly and lead to greater N2 fixation in the presence of the latter. Soil pasteurization allowed the establishment of treatments with individual AMF species and soil disturbance enabled the development of contrasting root colonization potentials. In contrast, the colonization potential of B. japonicum was kept the same in all treatments. Soil disturbance significantly reduced root colonization by both AMF, with Gi. margarita being considerably more affected than G. clarum. Furthermore, the tripartite symbiosis progressed faster with G. clarum, and at 10 days after plant emergence, there was 30% more nodules when G. clarum was present compared to that when the bacterial symbiont alone was present. At flowering, the absence of soil disturbance stimulated N2 fixation by 17% in mycorrhizal plants. However, this response was similar for both AMF.  相似文献   

19.
A factorial design 23 × 4 with two levels of Mussorie rockphosphate (RP) with or without vesicular-arbuscular mycorrhizal (VAM) fungi and Bradyrhizobium japonicum, and four treatments of phosphate-solubilizing microbes (PSM) Pseudomonas striata, Bacillus polymyxa, Aspergillus awamori was employed using Patharchatta sandy loam soil (Typic Hapludoll). The observations included mycorrhization, nodulation, grain and straw yield, N and P uptake, available soil P and the PSM population in the soil after crop harvest. Inoculation with endophytes alone caused about 70% root colonization. Addition of rockphosphate or inoculation with PSM, except B. polymyxa, stimulated root infection of native as well as introduced VAM endophytes. Application of RP or inoculation with Bradyrhizobium japonicum, mycorrhizal fungi or phosphate-solubilizing microorganisms significantly increased nodulation, N uptake, available soil P and the PSM population in the soil after the crop harvest. The grain and straw yields did not increase following RP addition or mycorrhizal inoculation but increased significantly after inoculation wit Bradyrhizobium or PSM. In general, the application of RP, Bradyrhizobium, VAM and PSM in combinations of any two or three resulted in significant increases in nodulation, plant growth, grain yield and uptake of N and P. Among the four factor interactions, rockphosphate, Bradyrhizobium and P. striata in the absence of VAM resulted in maximal nodulation, grain and straw yields and N uptake by soybean. The highest P uptake by soybean grain was recorded with Bradyrhizobium and A. awamori in the absence of rockphosphate and VAM. Generally, available soil P and PSM population after crop harvest were not significantly increased by the treatment combinations giving the maximal uptake of nutrients. However, they increased significantly in response to PSM, which produced no significant increase in total uptake of nutrients.Research paper no. 7498  相似文献   

20.
Commercially prepared, peat-based mycorrhizal inocula were studied for growth effects on asparagus grown under greenhouse and field (fumigated) conditions. The fungi tested were Glomus clarum (GC), G. intraradix (GI), G. monosporum (GM), G. versifomre (GVR) and G. vesiculiferum (GVS). GI significantly increased plant dry weight in the greenhouse and the field. Survival of mycorrhizal tissue-cultured transplants after 14 months in the field was increased by twofold over the control. In a second experiment asparagus was grown from seed in the greenhouse in peat inoculated with a G. fasciculatum-like fungus (GF), GI and GVR with applied P levels of 0, 50, 100 and 150 ppm and harvested after 13 and 17 weeks. Total dry weights of GI and GVR plants were significantly increased over those of the control and GF. Dry weight in this second experiment was positively correlated with root colonization. Root colonization at week 13 was slightly reduced with increasing levels of applied P, but not at week 17. The data suggest that the increased growth of mycorrhizal plants was not related to an increase in tissue P concentration, since there was no growth response to applied P and tissue P concentration in the mycorrhizal plants was lower than in the non-mycorrhizal plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号