首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Summary The complete nucleotide sequences of the 1.5 kb regions of ColE2 and ColE3 plasmids containing the segments sufficient for autonomous replication have been determined. They are quite homologous (greater than 90%), indicating that these two plasmids share common mechanisms of initiation of replication and its regulation. An open reading frame with a coding capacity for a protein of about 300 amino acids is present in both ColE2 and ColE3 and it actually specifies the Rep (for replication) protein, which is the plasmid specific trans-acting factor required for autonomous replication. The amino acid sequences of the Rep proteins of ColE2 and ColE3 are quite homologous (greater than 90%). The cis-acting sites (origins) where replication initiates in the presence of the trans-acting factors consist of 32 bp for ColE2 and 33 bp for ColE3. They are the smallest of all the prokaryotic replication origins so far reported. They are nonhomologous only at two positions, one of which, a deletion of a single nucleotide in ColE2 (or an insertion in ColE3), determines the plasmid specificity in interaction of the origins with the Rep proteins. Both plasmids carry a region with an identical nucleotide sequence and the one in ColE2, the IncA region, has been shown to express incompatibility against both ColE2 and ColE3. These results indicate that these plasmids share a common IncA determinant. A possibility that a small antisense RNA is involved in copy number control and incompatibility (IncA function) was suggested.  相似文献   

2.
The plasmid ColE2-P9 Rep protein specifically binds to the cognate replication origin to initiate DNA replication. The replicons of the plasmids ColE2-P9 and ColE3-CA38 are closely related, although the actions of the Rep proteins on the origins are specific to the plasmids. The previous chimera analysis identified two regions, regions A and B, in the Rep proteins and two sites, alpha and beta, in the origins as specificity determinants and showed that when each component of the region A-site alpha pair and the region B-site beta pair is derived from the same plasmid, plasmid DNA replication is efficient. It is also indicated that the replication specificity is mainly determined by region A and site alpha. By using an electrophoretic mobility shift assay, we demonstrated that region B and site beta play a critical role for stable Rep protein-origin binding and, furthermore, that 284-Thr in this region of the ColE2 Rep protein and the corresponding 293-Trp of the ColE3 Rep protein mainly determine the Rep-origin binding specificity. On the other hand, region A and site alpha were involved in the efficient unwinding of several nucleotide residues around site alpha, although they were not involved in the stable binding of the Rep protein to the origin. Finally, we discussed how the action of the Rep protein on the origin involving these specificity determinants leads to the plasmid-specific replication initiation.  相似文献   

3.
The whole nucleotide sequence of pT3.2I, the smallest plasmid of the acidophilic bacterium Thiobacillus T3.2, has been determined. pT3.2I is 15,390 bp long with a 53.7% GC content. Different regions can be defined in it: one 2569-bp putative insertion sequence similar to other insertion sequences of some Agrobacterium Ti plasmids; and a longer sequence, which occurs in two almost identical copies, differing only in a 1-bp deletion (6406 and 6405 bp). Several open reading frames and some smaller sequences were found in this duplicated region: ORFA and ORFG, encoding a putative polyol dehydrogenase and a putative RepA replication protein, respectively, an 83-bp sequence which could code for an antisense RNA, and a 36-bp region highly homologous to ori sequences of ColE2- and ColE3-related plasmids. Another putative gene, ORFH, is only present in the longer copy of this region (it is deleted in the short copy) and might encode a 90-amino-acid polypeptide which could act as a second replication protein, RepB. Based on sequence comparisons, pT3. 2I can be related to plasmids in the pColE2-CA42 incB incompatibility group.  相似文献   

4.
Summary We have identified and localized two incompatibility determinants (IncA and IncB) within a 1.3 kb segment of ColE2 sufficient for autonomous replication. The IncA determinant is localized in a region shorter than 250 bp and expresses incompatibility against both ColE2 and ColE3. The region which determines sensitivity to the IncA determinant seems to overlap with the region specifying the IncA determinant. The expression of the trans-acting factor(s) specifically required for replication of ColE2 interferes with expression of the IncA determinant against ColE2 but not against ColE3. The IncA determinant might be at least partly responsible for the copy number control of the plasmid. The IncB determinant is localized in a 50 bp region (origin) which is sufficient for initiation of replication in the presence of the trans-acting factor(s). The IncB determinant is specific for ColE2 and seems to be due to titration of the trans-acting essential replication factor(s) by binding.  相似文献   

5.
The plasmid ColE2-P9 origin is a 32-bp region which is specifically recognized by the plasmid-specified Rep protein to initiate DNA replication. We analyzed the structural and functional organization of the ColE2 origin by using various derivatives carrying deletions and single-base-pair substitutions. The origin may be divided into three subregions: subregion I, which is important for stable binding of the Rep protein; subregion II, which is important for binding of the Rep protein and for initiation of DNA replication; and subregion III, which is important for DNA replication but apparently not for binding of the Rep protein. The Rep protein might recognize three specific DNA elements in subregions I and II. The relative transformation frequency of the autonomously replicating plasmids carrying deletions in subregion I is lower, and nevertheless the copy numbers of these plasmids in host bacteria are higher than those of the wild-type plasmid. Efficient and stable binding of the Rep protein to the origin might be important for the replication efficiency to be at the normal (low) level. Subregion II might be essential for interaction with the catalytic domain of the Rep protein for primer RNA synthesis. The 8-bp sequence across the border of subregions II and III, including the primer sequence, is conserved in the (putative) origins of many plasmids, the putative Rep proteins of which are related to the ColE2-P9 Rep protein. Subregion III might be required for a step that is necessary after Rep protein binding has taken place.  相似文献   

6.
Robert Watson  Louis P. Visentin   《Gene》1980,10(4):307-318
Using single and double restriction-endonuclease digestions, 16 and 17 cleavage sites have been mapped for the ColE2-P9 and ColE3-CA38 plasmids, respectively. One or more sites for AvaI, BglI, EcoRI, HincII, PvuI, PvuII, SmaI and XhoI endonucleases were found in both plasmids, two BglII sites were found only in ColE2-P9, and one KpnI site was unique to ColE3-CA38. ColE2-P9 was found to be slightly smaller than ColE3-CA38,4.4 Md compared to 4.6 Md. Eleven restriction sites are common to both plasmids in that they are identically placed relative to each other. These sites define a continuous DNA segment equal to over 60% of each plasmid. The remaining portions of the plasmids, which contain the non-homologous regions identified by Inselburg and Johns (1975) have no restriction sites in common, and differ in size by about 0.2 Md.  相似文献   

7.
Thirteen ColE plasmids representing the E2-E7 types have been compared by restriction mapping. Over 80% of their restriction sites were found to be similarly positioned, indicating that these plasmids share a common structure. Three variants are ColE2-CA42 and ColE7-K317, both of which contain 1.8-kb DNA segments in place of a 2.5-kb segment common to the other plasmids, and ColE6-CT14, which has an additional 5.0-kb DNA segment compared to the other plasmids. The colicin (col), immunity (imm), and colicin release (hic) genes of these plasmids have been localized to regions corresponding to those known for ColE3-CA38 and ColE2-P9, with the imm and hic genes adjacent to the 3' end of the col gene. Active colicin is produced from hybrid col genes containing 5' and 3' ends from different E-type plasmids. The 3'-termini of the fused col genes specify the colicin type.  相似文献   

8.
The plasmid ColE2-P9 (ColE2) origin (32bp) is specifically recognized by the plasmid-specified Rep protein that initiates DNA replication. The ColE2 origin is divided into at least three functional subregions (I, II, and III), and three sites (a, b, and c) found in subregions I and II play important roles in Rep protein binding. We performed SELEX experiments of plasmid ColE2 to determine the optimal sequences for specific binding of the Rep protein. From these experiments, we obtained a common 16-bp sequence (5'-TGAGACCANATAAGCC-3'), which corresponds to about one half of the minimal ColE2 origin and contains sites a and b. Gel mobility shift assays using single-point mutant origins and the Rep protein further indicated that high affinity sequence-specific recognition by the Rep protein requires sites a, b, and c, but that mutations in site c were less disruptive to this recognition than those in sites a and b.  相似文献   

9.
Plasmids ColE2-CA42 (6.1 kilobases) and ColE2-P9 (6.8 kilobases) were found to have homologous (4.3-kilobase) DNA segments which contain their colicin and immunity genes. The relatedness of their immunity proteins was verified by determining their amino acid compositions and N-terminal sequences. These characteristics were compared with those of ColE3-CA38.  相似文献   

10.
M Toba  H Masaki    T Ohta 《Journal of bacteriology》1988,170(7):3237-3242
Colicin E8-J and its immunity protein were characterized with regard to their activities and gene structures. Colicin E8 is a complex of proteins A and B; protein A (the naked E8) exhibits an apparently nonspecific DNase activity that is inhibited by protein B (the immunity protein), as in the case of colicin E2. The nucleotide sequence of the downstream half of the colicin operon of ColE8-J was determined to be highly homologous to that of ColE2-P9, with the exception of the hot spot region of the 3'-terminal segment of the colicin gene and the adjacent immunity gene. The immE2-like gene of ColE3-CA38 was, as assumed previously, extensively homologous to the immE8 gene of ColE8-J, and thus, ColE8-J was shown to be situated between ColE2-P9 and ColE3-CA38 in the evolution of the E-group Col plasmids.  相似文献   

11.
Two cryptic plasmids of two environmental strains of the soil Bacillus mycoides were cloned and sequenced. They are of a small size (3377 and 3476 bp) and carry regions homologous to double- and single-strand origins of replication of rolling-circle replication modules. In addition, both plasmids have ORFs with homologies with Mob and Rep proteins, in the same relative position and orientation. While dso- and sso-like sequences are similar in pBMY1 and pBMYdx, the putative Mob and Rep proteins are not homologous between the two but show similarity with Mob and Rep proteins of different bacterial plasmids.  相似文献   

12.
Structure and expression of the ColE2-P9 immunity gene.   总被引:4,自引:0,他引:4       下载免费PDF全文
H Masaki  M Toba    T Ohta 《Nucleic acids research》1985,13(5):1623-1635
  相似文献   

13.
Two cryptic plasmids of two environmental strains of the soil Bacillus mycoides were cloned and sequenced. They are of a small size (3377 and 3476 bp) and carry regions homologous to double- and single-strand origins of replication of rolling-circle replication modules. In addition, both plasmids have ORFs with homologies with Mob and Rep proteins, in the same relative position and orientation. While dso- and sso-like sequences are similar in pBMY1 and pBMYdx, the putative Mob and Rep proteins are not homologous between the two but show similarity with Mob and Rep proteins of different bacterial plasmids.  相似文献   

14.
Primary structures of the ColE2-P9 and ColE3-CA38 lysis genes   总被引:8,自引:0,他引:8  
The lysis genes of plasmids ColE2-P9 and ColE3-CA38 were identified by DNA sequencing and electrophoretic analysis of the products of both wild type and artificially introduced ochre mutant genes. The E2 and E3 lysis genes had identical primary structures and were shown to encode 47 amino acids with a calculated molecular weight of 4,861, which is much smaller than that proposed previously for the ColE3-CA38 lysis protein. They are homologous with ColDF13 gene H, except in their 3'-portions. The nine C-terminal amino acids of the E2 and E3 lysis proteins proved to be non-essential for the lysis phenotype.  相似文献   

15.
Incompatibility between E colicin plasmids   总被引:1,自引:0,他引:1  
We have tested the ability of pairs of colicin E plasmids to replicate stably in the same cell line. Although many of the pairs of E colicin plasmids were compatible, plasmids ColE3-CA38, ColE7-K317 and ColE8-J were mutually incompatible, as were ColE5-099, ColE6-CT14 and ColE9-J. Incompatibility between ColE6-CT14 and ColE5-099 or ColE9-J was asymmetrical, whereas incompatibility between the other plasmid pairs was symmetrical.  相似文献   

16.
Summary The nucleotide sequences of 1288 bp of plasmid ColE5-099, 1609 bp of ColE6-CT14 and 2099 bp of ColE9-J were determined. These sequences encompass the structural genes for the C-terminal receptor-binding and nuclease domains of colicins E5, E6 and E9, theircis- ortrans-acting immunity proteins and four lysis proteins including an atypical one of non-lipoprotein nature (Lys*) present in the ColE9-J plasmid. The ColE6 gene organisation, in the ordercol-imm-E8imm-lys, is identical to that found in the previously described double-immunity gene system of ColE3-CA38 (an RNase producer). The corresponding genes in the two plasmids are 87%–94% homologous. In ColE9-J, the genes are organised ascol-imm-lys *-E5imm-lys. The E9col-imm gene pair is homologous to the colicin E2-P9 type (a DNase producer). Downstream from E9imm is an E5imm (designated E5imm[E9]) which istrans-acting. Neither the predicted structures of E5Imm[E9] nor thecis-acting Imm resident in the ColE5-099 plasmid which differs by a single amino acid shows any resemblance to other immunity structures which have been sequenced. Furthermore, the E5col sequences differ from those predicted previously for other colicins except for the conservedbtuB-specified receptor-binding domain. A novel 205 nucleotide long insertion sequence is found in the ColE9-J plasmid. This insertion sequence, which we named ISE9, has features reminiscent of the degenerate transposon IS101 previously found in plasmid pSC101. One effect of ISE9 is the presence of the atypical lysis gene,lys *. The presence of a transposon-like element in the ColE9 plasmid exemplifies a new phenomenon relevant to the evolution of colicin E plasmids. Issued as NRCC publication no. 30065  相似文献   

17.
Nagase T  Nishio S  Itoh T 《Plasmid》2008,59(1):36-44
Translation initiation of mRNA encoding the plasmid-specified initiator protein (Rep) required for initiation of the ColE2 plasmid DNA replication is fairly efficient in Escherichia coli despite the absence of a canonical Shine-Dalgarno sequence. Although a GA cluster sequence exists upstream the initiation codon, its activity as the SD sequence has been shown to be very inefficient. Deletion analyses have shown that there are sequences important for the Rep translation in the regions upstream the GA cluster sequence and downstream the initiation codon. To further define regions important for translation of the Rep mRNA, a set of the ColE2 rep genes bearing single-base substitution mutations in the coding region near the initiation codon was generated and their translation activities examined. We showed that translation of the Rep mRNA was reduced by some of these mutations in a region ranging at least 70 nucleotides from the initiation codon in the coding region, indicating the presence of translation enhancer(s) outside the translation initiation region which is covered by the ribosome bound to the initiation codon. Some of them seem to be essential and specific for translation of the ColE2 Rep mRNA due to the absence of a canonical SD sequence.  相似文献   

18.
Restriction maps have been constructed for the colicinogenic plasmids (ColA, ColD, and ColK. Their regions of homology with the ColE1 plasmid and its deletion derivative pAO3 carrying the region responsible for autonomous replication of ColE1 plasmid were determined by means of blotting hybridization and heteroduplex analysis. The plasmids ColA, ColD, and ColK were shown to contain DNA fragments homologous to the region of ColE1 involved in the regulation of replication.  相似文献   

19.
In the family Enterobacteriaceae, plasmids have been classified according to 27 incompatibility (Inc) or replicon types that are based on the inability of different plasmids with the same replication mechanism to coexist in the same cell. Certain replicon types such as IncA/C are associated with multidrug resistance (MDR). We developed a microarray that contains 286 unique 70-mer oligonucleotide probes based on sequences from five IncA/C plasmids: pYR1 (Yersinia ruckeri), pPIP1202 (Yersinia pestis), pP99-018 (Photobacterium damselae), pSN254 (Salmonella enterica serovar Newport), and pP91278 (Photobacterium damselae). DNA from 59 Salmonella enterica isolates was hybridized to the microarray and analyzed for the presence or absence of genes. These isolates represented 17 serovars from 14 different animal hosts and from different geographical regions in the United States. Qualitative cluster analysis was performed using CLUSTER 3.0 to group microarray hybridization results. We found that IncA/C plasmids occurred in two lineages distinguished by a major insertion-deletion (indel) region that contains genes encoding mostly hypothetical proteins. The most variable genes were represented by transposon-associated genes as well as four antimicrobial resistance genes (aphA, merP, merA, and aadA). Sixteen mercury resistance genes were identified and highly conserved, suggesting that mercury ion-related exposure is a stronger pressure than anticipated. We used these data to construct a core IncA/C genome and an accessory genome. The results of our studies suggest that the transfer of antimicrobial resistance determinants by transfer of IncA/C plasmids is somewhat less common than exchange within the plasmids orchestrated by transposable elements, such as transposons, integrating and conjugative elements (ICEs), and insertion sequence common regions (ISCRs), and thus pose less opportunity for exchange of antimicrobial resistance.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号