首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
芝麻(Sesamum indicum)核雄性不育系ms86-1姊妹交后代表现为可育、部分不育(即微粉)及完全不育(简称不育)3种类型。不同育性类型的花药及花粉粒形态差异明显。Alexander染色实验显示微粉植株花粉粒外壁为蓝绿色, 内部为不均一洋红色, 与可育株及不育株花粉粒的染色特征均不相同。为探明芝麻微粉发生机理, 在电子显微镜下比较观察了可育、微粉、不育类型的小孢子发育过程。结果表明, 可育株小孢子母细胞减数分裂时期代谢旺盛, 胞质中出现大量脂质小球; 四分体时期绒毡层细胞开始降解, 单核小孢子时期开始出现乌氏体, 成熟花粉时期花粉囊腔内及花粉粒周围分布着大量乌氏体, 花粉粒外壁有11–13个棱状凸起, 表面存在大量基粒棒, 形成紧密的覆盖层。不育株小孢子发育异常显现于减数分裂时期, 此时胞质中无脂质小球出现, 细胞壁开始积累胼胝质; 四分体时期绒毡层细胞未见降解; 单核小孢子时期无乌氏体出现; 成熟花粉时期花粉囊腔中未发现正常的乌氏体, 存在大量空瘪的败育小孢子, 外壁积累胼胝质, 缺乏基粒棒。微粉株小孢子在减数分裂时期可见胞质内有大量脂质小球, 四分体时期部分绒毡层发生变形, 单核小孢子时期有部分绒毡层开始降解; 绒毡层细胞降解滞后为少量发育进程迟缓的小孢子提供了营养物质, 部分小孢子发育为正常花粉粒; 这些花粉粒比较饱满, 表面有少量颗粒状突起, 但未能形成覆盖层, 花粉囊腔中及小孢子周围存在少量的乌氏体。小孢子形成的育性类型与绒毡层降解是否正常有关。  相似文献   

2.
Summary Phenylcinnoline carboxylate compounds SC-1058 and SC-1271 cause complete male sterility in wheat when applied at suitable dosages at the pre-meiotic stage of anther development. Anthers from treated and untreated plants were compared using light and electron microscopy from the pre-meiotic stage through the formation of nearly mature pollen. Overall anther development is gradually slowed in treated plants and pollen development is generally arrested in the late prevacuolate or early vacuolate microspore stage, although the first pollen mitosis does sometimes occur. The sporopollenin-containing exine walls are thinner, and show abnormally developed foot and tectum layers with sparse connecting baculi. Microspore cytoplasm degenerates and the cells eventually collapse. At the early, prevacuolate, free microspore stage treated tapetal cells hypertrophy, expanding into the locule. They contain abnormally large vacuoles that appear to form from the fusion of secretory vesicles, and some vacuoles contain electrondense deposits. The sporopollenin-containing orbicular wall and Ubisch bodies are retarded in their development and are structurally deformed. Acetolysis of whole anthers and of thick sections shows that the sporopollen-in-containing structures of treated materials are greatly reduced in thickness and are less rigid than in the control. We conclude that application of these compounds causes interference with the secretory function of tapetal cells which supplies sporopollenin cell-wall polymers to the exine of the microspores and to the tapetal orbicular wall and associated Ubisch bodies. Interference with the tapetal secretion of other nutrients required for microspore development is strongly suggested.  相似文献   

3.
The exine of the pollen wall shows an intricate pattern, primarily comprising sporopollenin, a polymer of fatty acids and phenolic compounds. A series of enzymes synthesize sporopollenin precursors in tapetal cells, and the precursors are transported from the tapetum to the pollen surface. However, the mechanisms underlying the transport of sporopollenin precursors remain elusive. Here, we provide evidence that strongly suggests that the Arabidopsis ABC transporter ABCG26/WBC27 is involved in the transport of sporopollenin precursors. Two independent mutations at ABCG26 coding region caused drastic decrease in seed production. This defect was complemented by expression of ABCG26 driven by its native promoter. The severely reduced fertility of the abcg26 mutants was caused by a failure to produce mature pollen, observed initially as a defect in pollen-wall development. The reticulate pattern of the exine of wild-type microspores was absent in abcg26 microspores at the vacuolate stage, and the vast majority of the mutant pollen degenerated thereafter. ABCG26 was expressed specifically in tapetal cells at the early vacuolate stage of pollen development. It showed high co-expression with genes encoding enzymes required for sporopollenin precursor synthesis, i.e. CYP704B1, ACOS5, MS2 and CYP703A2. Similar to two other mutants with defects in pollen-wall deposition, abcg26 tapetal cells accumulated numerous vesicles and granules. Taken together, these results suggest that ABCG26 plays a crucial role in the transfer of sporopollenin lipid precursors from tapetal cells to anther locules, facilitating exine formation on the pollen surface.  相似文献   

4.
地黄绒毡层二型性的超微结构研究   总被引:2,自引:0,他引:2  
地黄的花药绒毡层具二型性,来源于初生壁细胞的p-绒毡层,细胞较小,为分泌型绒毡层,在小孢子阶段产生乌氏体,于两细胞花粉阶段解体,来源于药隔的c-绒毡层细胞较大,解体的时间早于p-绒毡层,不同药室的c-绒毡层解体的起始时间不一致,可始于小孢母细胞减数分裂,四分体或小孢子阶段,其径向壁面向药室的壁也较早地开始解体,细胞质碎片与细胞器流入药室,分散在小孢子之间,较早解体的c-绒毡层细胞不产生原乌氏体与乌  相似文献   

5.
The development of microspores/pollen grains and tapetum was studied in fertile Rosmarinus officinalis L. (Lamiaceae). Most parts of the cell walls of the secretory anther tapetum undergo modifications before and during meiosis: the inner tangential and radial cell walls, and often also the outer tangential and radial wall, acquire a fibrous appearance; these walls become later transformed into a thin poly-saccharidic film, which is finally dissolved after microspore mitosis. Electron opaque granules found within the fibrous/lamellated tapetal walls consist of sporopollenin-like material, but cannot be interpreted as Ubisch bodies. The middle lamella and the primary wall of the outer tangential and radial tapetal walls remain unmodified, but get covered by an electron opaque, sporopollenin-like layer. Pollenkitt is formed only by lipid droplets from the ground plasma and/or ER profiles, the plastids do not form pollenkitt precursor lipids. Tapetum maturation (“degeneration”) does not take place before late vacuolate stage.

The apertures are determined during meiosis by vesicles or membrane stacks on the surface of the plasma membrane. The procolumellae are conical, but at maturity the columellae are more cylindrical in shape. The columellar bases often fuse, but a genuine foot layer is lacking. The formation of the endexine starts with sporopollenin-accumulating white lines adjacent to the columellar bases. Later, the endexine grows more irregularly by the accumulation of sporopollenin globules. In mature pollen the intine is clearly bilayered.

Generative cells (GCs) and sperm cells contain a comparatively large amount of cytoplasm, and organelles like mitochondria, dictyosomes, ER, and multi-vesicular bodies, but no plastids; GCs and sperms are separated from the vegetative cell only by two plasma membranes.  相似文献   

6.
Summary The process of microsporogenesis and microgametogenesis was studied at the ultrastructural level in wild-typeArabidopsis thaliana ecotype Wassilewskija to provide a basis for comparison with nuclear male-sterile mutants of the same ecotype. From the earliest stage studied to mature pollen just prior to anther dehiscence, microsporocyte/microspore/pollen development follows the general pattern seen in most angiosperms. The tapetum is of the secretory type with loss of the tapetal cell walls beginning at about the time of microsporocyte meiosis. Wall loss exhibits polarity with the tapetal protoplasts becoming located at a distance from the inner tangential walls first, followed by an increase in distance from the radial walls beginning at the interior edge and progressing outward. The inner tangential and radial tapetal walls are completely degenerated by the microspore tetrad stage. Unlike other members of the Brassicaceae that have been studied, the tapetal cells ofA. thaliana Wassilewskija also lose their outer tangential walls, and secretion occurs from all sides of the cells. Exine wall precursors are secreted from the tapetal cells in a process that appears to involve dilation of individual endoplasmic reticulum cisternae that fuse with the tapetal cell membrane and release their contents into the locule. Following completion of the exine, the tapetal cell plastids develop membranebound inclusions with osmiophilic and electron-transparent regions. The plastids undergo ultrastructural changes that suggest breakdown of the inclusion membranes followed by release of their contents into the locule prior to the complete degeneration of the tapetal cells.  相似文献   

7.
Prior to meiosis tapetal cells become binucleate, and callose deposition separates spore mother cells from each other. No cytomictic channels are present during meiosis. Cytokinesis is simultaneous, by furrowing. The primexine and a rudimentary exine are laid down while the microspores are still in tetrads. After callose dissolution the released microspores gradually become vacuolate and the exine becomes more complex and massive. During the tetrad stage tapetal walls are gradually lost and orbicules are deposited outside the plasmalemma. This continues after microspore release. Later, at the vacuolate microspore stage, the tapetal cells become amoeboid and intrude among the microspores. Tapetal dissolution occurs just prior to the appearance of large amounts of starch and lipids in the microspores.  相似文献   

8.
莴苣花药发育过程中钙的分布特征   总被引:4,自引:0,他引:4  
减数分裂前,莴苣花药中的钙颗粒很少。减数分裂后,花药绒毡层细胞中的钙颗粒明显增加。同时在花药药室基质中也出现许多细小的钙颗粒。刚从四分体中释放出的小孢子内钙颗粒很少。伴随着花粉外壁物质在小孢子表面的沉积,钙颗粒开始积累在花粉壁部位。随后。小孢子中开始出现钙颗粒。当小孢子开始形成液泡后,钙颗粒向其中聚集,伴随着小液泡融合成大液泡。体积较大的钙颗粒主要集中在液泡中,而细胞质基质中的钙颗粒很少。随着二胞花粉中的大液泡消失,花粉细胞质中的钙颗粒变得很少。在以后的发育中,只有花粉壁中积累较多的钙颗粒。在莴苣花药发育过程中,钙与绒毡层细胞的退化和小孢子液泡形成以及二胞花粉中大液泡的消失有关。而花粉外壁表面积累丰富的钙与以后花粉的萌发有关。  相似文献   

9.
Guan YF  Huang XY  Zhu J  Gao JF  Zhang HX  Yang ZN 《Plant physiology》2008,147(2):852-863
During microsporogenesis, the microsporocyte (or microspore) plasma membrane plays multiple roles in pollen wall development, including callose secretion, primexine deposition, and exine pattern determination. However, plasma membrane proteins that participate in these processes are still not well known. Here, we report that a new gene, RUPTURED POLLEN GRAIN1 (RPG1), encodes a plasma membrane protein and is required for exine pattern formation of microspores in Arabidopsis (Arabidopsis thaliana). The rpg1 mutant exhibits severely reduced male fertility with an otherwise normal phenotype, which is largely due to the postmeiotic abortion of microspores. Scanning electron microscopy examination showed that exine pattern formation in the mutant is impaired, as sporopollenin is randomly deposited on the pollen surface. Transmission electron microscopy examination further revealed that the primexine formation of mutant microspores is aberrant at the tetrad stage, which leads to defective sporopollenin deposition on microspores and the locule wall. In addition, microspore rupture and cytoplasmic leakage were evident in the rpg1 mutant, which indicates impaired cell integrity of the mutant microspores. RPG1 encodes an MtN3/saliva family protein that is integral to the plasma membrane. In situ hybridization analysis revealed that RPG1 is strongly expressed in microsporocyte (or microspores) and tapetum during male meiosis. The possible role of RPG1 in microsporogenesis is discussed.  相似文献   

10.
Tapetum of Pulsatilla chinensis is of secretory type. Its development proceeds rapidly in following sequence: (1) The stage of initiation-differentiation. At this stage cytological and histochemical features have been described in detail in this paper. (2) The stage of growth- synthesis: This stage appears to be the most important anabolic phase during the development of the tapetum. The salient features are that the tapetal cells become relatively enlarged and form two polyploid nuclei or aberrent polyploid nuclei resulting in synthetizing maximum proteins, fluorescing substances and maximum fluorescent Pro-Ubisch bodies in the tapetal cytoplasm. (3) The stage of secretion-disorganization: After the disintegration of the tapetal wall the enlarged naked cells appear at once. This is an important secretion period in which Pro-Ubisch bodies as well as all other fluorescing substances, carbohydrate or some enzymes are released into anther loculus. The naked cell layer becomes disorgnized until the beginning divition of the pollen grains into two ceils. As to peritapetal membrane of P. chinensis, mainly based on the membrane being on the outer side of the tapetum enclosing both the pollen, tapetal cytoplasm and Ubisch bodies, and the cellular configurations facing the pollen, Authors postulate that peritapetal membrane might be survival of the cytoplasmic membrane of tapetal cells. However, the peritapetal membrane of P. chinensis is similar to that of plasmodial, tapetum reported in certain Compositae and that of secretory tapetum reported in Pinus banksiana. Heslop-Harrison and Gupta et al. had conceded that the tapetal and peritapetal membrane belong to the general class of sporopollenin. On the contrary in P. chinensis the sporopollenin property of peritapetal membrane is only confined to its inner surface. But the thin mem- brane itself with the reticulate sporopollenin attched on its inner side appears negative staining reactions for sporopollenin though it has an ability to resist the acetolysis as well. In P. chinensis the Ubisch body is short necked flask shaped and their size is very similar. Ubisch body is either single or 2–5 in a group, resulting in compound bodies. When the Pro-Ubisch body is still within the tapetal cell it shows positive fluorescent reaction, while it eomletely unstains with Teluidine blue O. So Authors infer that the sporopollenin precur- sors may have permeated through Pro-Ubisch bodies. Finally, How sporopollenin precursor is synthesized in the tapetal cells, transported to pollen locula and polymerized into the sporopollenin on pollen, Ubisch body and peritapetal membrane? Future works along these problems may yield fruitful results.  相似文献   

11.
Following the diffuse stage, the progression of meiosis in Pinus sylvestris unlike that earlier in meiosis, was conspicuously asynchronous. During the diffuse stage of meiosis tapetal cells dedifferentiated. Plasmodesmata were formed, the cells developed a uniform, meristematic appearance and the nuclei underwent mitosis. Throughout the stages covered by this report tapetal cells redifferentiated, again becoming hypersecretory cells, and Ubisch bodies (orbicules) formed. In angio-sperms Ubisch bodies apparently form only once whereas in Pinus they are produced several or many times with a different and characteristic form each time. The future Ubisch bodies are filled from connections with cisternae of the endoplasmic reticu-lum, then coated by plasma membrane and its glycocalyx. The plasma membrane and glycocalyx coating are likely to be responsible for the specific exine form of Ubisch bodies. Cytokinesis after meiosis was typical of plant cells, but no cell wall formed. Thus deep invasions of callose between microspores give an appearance of furrowing, as was often suggested in classical literature.  相似文献   

12.
莴苣花药发育过程中钙的分布特征   总被引:1,自引:0,他引:1  
减数分裂前,莴苣花药中的钙颗粒很少。减数分裂后,花药绒毡层细胞中的钙颗粒明显增加, 同时在花药药室基质中也出现许多细小的钙颗粒。刚从四分体中释放出的小孢子内钙颗粒很少,伴随着花粉外壁物质在小孢子表面的沉积,钙颗粒开始积累在花粉壁部位。随后,小孢子中开始出现钙颗粒。当小孢子开始形成液泡后,钙颗粒向其中聚集,伴随着小液泡融合成大液泡,体积较大的钙颗粒主要集中在液泡中,而细胞质基质中的钙颗粒很少。随着二胞花粉中的大液泡消失,花粉细胞质中的钙颗粒变得很少。在以后的发育中,只有花粉壁中积累较多的钙颗粒。在莴苣花药发育过程中,钙与绒毡层细胞的退化和小孢子液泡形成以及二胞花粉中大波泡的消失有关。而花粉外壁表面积累丰富的钙与以后花粉的萌发有关。  相似文献   

13.
Anther and pollen development in male-fertile and male-sterile green onions was studied. In the male-fertile line, both meiotic microspore mother ceils and tetrads have a callose wall. Mature pollen grains are 2-celled. The elongated generative cell with two bended ends displays a PAS positive cell wall. The tapetum has the character of both secretory and invasive types. From microspore stage onwards, many oil bodies or masses accumulate in the cytoplasm of the tapetal cells. The tapetum degenerates at middle 2-celled pollen stage. In male-sterile line, meiosis in microspore mother cells proceeds normally to form the tetrads. Pollen abortion occurs at microspore with vacuole stage. Two types of pollen abortion were observed. In type I, the protoplasts of the microspores contract and gradually disintegrate. At the same time the cytoplasm of microspores accumulates oil bodies which remain in the empty pollen. The tapetal cells behave normally up to the microspore stage and early stage of microspore abortion, but contain fewer oil bodies or masses than those in the male-fertilt line. At late stage of microspore abortion, three forms of the tapetal ceils can be observed: (1) the tapetal cells with degenerating protoplasts become flattened, (2) the tapetal cells enlarge but protoplasts retractor, (3) the cells break down and tile middle layer enlarges. In type Ⅱ, the cytoplasm degenerates earlier than the nucleus of the microspores and no protoplast is found in the anther locule. There are fibrous thickenings iii the endothecium of both types. It is difficult to verify whether the tapetum behavior and pollen abortion is the cause or the effect.  相似文献   

14.
Pollen grains are encased by a multilayered, multifunctional wall. The sporopollenin and pollen coat constituents of the outer pollen wall (exine) are contributed by surrounding sporophytic tapetal cells. Because the biosynthesis and development of the exine occurs in the innermost cell layers of the anther, direct observations of this process are difficult. The objective of this study was to investigate the transport and assembly of exine components from tapetal cells to microspores in the intact anthers of Arabidopsis thaliana. Intrinsically fluorescent components of developing tapetum and microspores were imaged in intact, live anthers using two-photon microscopy. Mutants of ABCG26, which encodes an ATP binding cassette transporter required for exine formation, accumulated large fluorescent vacuoles in tapetal cells, with corresponding loss of fluorescence on microspores. These vacuolar inclusions were not observed in tapetal cells of double mutants of abcg26 and genes encoding the proposed sporopollenin polyketide biosynthetic metabolon (ACYL COENZYME A SYNTHETASE5, POLYKETIDE SYNTHASE A [PKSA], PKSB, and TETRAKETIDE α-PYRONE REDUCTASE1), providing a genetic link between transport by ABCG26 and polyketide biosynthesis. Genetic analysis also showed that hydroxycinnamoyl spermidines, known components of the pollen coat, were exported from tapeta prior to programmed cell death in the absence of polyketides, raising the possibility that they are incorporated into the exine prior to pollen coat deposition. We propose a model where ABCG26-exported polyketides traffic from tapetal cells to form the sporopollenin backbone, in coordination with the trafficking of additional constituents, prior to tapetum programmed cell death.  相似文献   

15.
麦冬花药绒毡层和乌氏体的细微结构   总被引:2,自引:0,他引:2  
麦冬(Ophiopogon japonicus)的绒毡层发育为分泌型。在小孢子母细胞时期,绒毡层细胞达到了发育的高峰。此时,绒毡层细胞中细胞器非常丰富,具大量线粒体、高尔基体和质体,尤以肉质网含量最多;原乌氏体出现较早,在小孢子母细胞时期绒毡层细胞中就已出现;四分体时期,大量原乌氏体被排入内切向面的质膜和纤维素壁之间;到了小孢子早期,绒毡层细胞失去细胞壁,原乌氏体分布在质膜的凹陷处,孢粉素物质在其上沉积,发育为乌氏体,乌氏体有单个和复合两种类型;当花粉成熟时,绒毡层细胞完全解体。  相似文献   

16.
In safflower, the anther wall at maturity consists of a single epidermis, an endothecium, a middle layer and the tapetum. The tapetum consists mainly of a single layer of cells. However, this single-layer appearance is punctuated by loci having ‘two-celled’ groupings due to additional periclinal divisions in some tapetal cells. Meiotic division in microsporocytes gives rise to tetrads of microspores. The primexine is formed around the protoplasts of microspores while they are still enveloped within the callose wall. Just prior to microgametogenesis, the microspores enlarge through the process of vacuolation, and the exine wall pattern becomes established. Microgametogenesis results in the formation of 3-celled pollen grains. The two elongated sperm cells appear to be connected. The exine wall is highly sculptured with a distinct tectum, columellae, a foot layer, an endexine and a thin intine. Similar to other members of the Asteraceae family, the tapetum is of the invasive type. The most novel finding of this study is that in addition to the presence of invasive tapetal cells, a small population of ‘non-invasive’ tapetal cells is also present. The tapetal cells next to the anther locules in direct contact with the microspores become invasive and start to grow into the space between developing microspores. These tapetal cells synthesize tryphine and eventually degenerate at the time of gametogenesis releasing their content into the anther locules. A smaller population of non-invasive tapetal cells is formed as a result of periclinal divisions at the time of tapetum differentiation. These cells are not exposed to the anther locules until the degeneration of the invasive tapetal cells. The non-invasive tapetal cells have a different cell fate as they synthesize pollenkitt. This material is responsible for allowing some pollen grains to adhere to each other and to the anther wall after anther dehiscence. This observation explains the out-crossing ability of Carthamus species and varieties in nature.  相似文献   

17.
Summary The ultrastructure of the secretory, binucleate tapetum of Brassica oleracea in the micro spore mother cell (MMC) stage through to the mature pollen stage is reported. The tapetal cells differentiate as highly specialized cells whose development is involved in lipid accumulation in their final stage. They start breaking down just before anther dehiscence. Nuclei with dispersed chromatin, large nucleoli and many ribosomes in the cytoplasm characterize the tapetal cells. The wall-bearing tapetum phase ends at the tetrade stage. The dissolution of tapetal walls begins from the inner tangential wall oriented towards the loculus and proceeds gradually along the radial walls to the outer tangential one. The plasmodesmata transversing the radial walls between tapetal cells persist until the mature microspore, long after loss of the inner tangential wall. After wall dissolution, the tapetal protoplasts retain their integrity and position within the anther locule. The tapetal cell membrane is in direct contact with the exine of the microspores/pollen grains and forms tubular evaginations that increase its surface area and appear to be involved in the translocation of solutes from the tapetal cells to the microspores/ pollen grains. The tapetal cells exhibit a polarity expressed by spatial differentiation in the radial direction.  相似文献   

18.
ROBERTSON  B. L. 《Annals of botany》1984,53(6):803-810
Rhigozum trichotomum is a perrenial woody shrub which is indigenousto the arid regions of southern Africa. Primexine developmentis initiated while the microspores are still enclosed by callose.This is followed by the appearance of probacula which give riseto the tectum, bacula and nexine. At the time of callose dissolution,the exine pattern is well established and intine developmenthas been initiated. During the tetrad stage, the protoplastsof the tapetal cells exhibit shrinkage while conspicuous stacksof rough endoplasmic reticulum become evident in their cytoplasm.These stacks produce numerous vesicles which are associatedwith lipid globules and which migrate to the tapetal/locularwall where, it is suggested, they give rise to the pro-orbicules.The pro-orbicules become coated with an osmiophilic substance,probably sporopollenin, and are released into the thecal fluidto become intimately bound to the exine, Here they are strippedof the osmiophilic layers which appear to be incorporated intothe sporoderm. Rhigozum trichotomum (Burch.), sporoderm, pollen wall, exine, orbicules, pro-orbicules, sporopollenin, tapetum  相似文献   

19.
John R. Rowley  Gunnar Erdtman 《Grana》2013,52(2-3):517-567
Four phenomena were observed in a study of Populus tremula and P. tremula f. gigas microspores from before microspore mitosis through mature pollen which may have general significance in the ontogeny of pollen grains: 1) The exine and orbicules (Ubisch bodies) were covered by membranes. 2) The exine and the tapetal surfaces where orbicules form were covered by a polysaccharide (PAS positive) coat until after microspore mitosis; subsequently the tapetum became plasmodial. 3) Material having the staining characteristics of the nexine 2 (endexine in the sense of Fægri) accumulated on membranes in microspores in the space between the exine and the plasma membrane. That material was almost completely gone from the wall in mature pollen. The membranes on which material had accumulated migrated through the exine. Following passage through the exine these membranes were seen as empty fusiform vesicles in micrographs of anthers prepared by commonly used methods. 4) At about microspore mitosis when the cellulosic intine begins to form, microtubules about 240 A in diameter occurred near the plasma membrane and generally parallel with it. Positive acid phosphatase reactions in tapetal cells together with the morphology of orbicules and other tapetal organelles suggest that the wall of orbicules, which is like the pollen exine, may form as a residual product of a lysosome system.

Sections of mature Salix humilis pollen were compared with Populus.  相似文献   

20.
Anther cuticle and pollen exine are the major protective barriers against various stresses. The proper functioning of genes expressed in the tapetum is vital for the development of pollen exine and anther cuticle. In this study, we report a tapetum‐specific gene, Abnormal Pollen Vacuolation1 (APV1), in maize that affects anther cuticle and pollen exine formation. The apv1 mutant was completely male sterile. Its microspores were swollen, less vacuolated, with a flat and empty anther locule. In the mutant, the anther epidermal surface was smooth, shiny, and plate‐shaped compared with the three‐dimensional crowded ridges and randomly formed wax crystals on the epidermal surface of the wild‐type. The wild‐type mature pollen had elaborate exine patterning, whereas the apv1 pollen surface was smooth. Only a few unevenly distributed Ubisch bodies were formed on the apv1 mutant, leading to a more apparent inner surface. A significant reduction in the cutin monomers was observed in the mutant. APV1 encodes a member of the P450 subfamily, CYP703A2‐Zm, which contains 530 amino acids. APV1 appeared to be widely expressed in the tapetum at the vacuolation stage, and its protein signal co‐localized with the endoplasmic reticulum (ER) signal. RNA‐Seq data revealed that most of the genes in the fatty acid metabolism pathway were differentially expressed in the apv1 mutant. Altogether, we suggest that APV1 functions in the fatty acid hydroxylation pathway which is involved in forming sporopollenin precursors and cutin monomers that are essential for the development of pollen exine and anther cuticle in maize.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号