首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Radiotherapy is the primary treatment for nasopharyngeal carcinoma (NPC), but radioresistance severely reduces NPC radiocurability. Here, we have established a radio-resistant NPC cell line, CNE-2R, and investigate the role of miRNAs in radioresistance. The miRNAs microarray assay reveals that miRNAs are differentially expressed between CNE-2R and its parental cell line CNE-2. We find that miR-205 is elevated in CNE-2R. A target prediction algorithm suggests that miR-205 regulates expression of PTEN, a tumor-suppressor. Introducing miR-205 into CNE-2 cells suppresses PTEN protein expression, followed by activation of AKT, increased number of foci formation and reduction of cell apoptosis post-irradiation. On the other hand, knocking down miR-205 in CNE-2R cells compromises the inhibition of PTEN and increases cell apoptosis. Significantly, immunohistochemistry studies demonstrate that PTEN is downregulated at late stages of NPC, and that miR-205 is significantly elevated followed the radiotherapy. Our data conclude that miR-205 contributes to radioresistance of NPC by directly targeting PTEN. Both miR-205 and PTEN are potential predictive biomarkers for radiosensitivity of NPC and may serve as targets for achieve successful radiotherapy in NPC.Key words: nasopharyngeal carcinoma, PTEN, miRNA, miR-205, radioresistance  相似文献   

2.
Radiotherapy is the primary treatment for nasopharyngeal carcinoma (NPC), but radioresistance severely reduces NPC radiocurability. Here, we have established a radio-resistant NPC cell line, CNE-2R, and investigate the role of miRNAs in radioresistance. The miRNAs microarray assay reveals that miRNAs are differentially expressed between CNE-2R and its parental cell line CNE-2. We find that miR-205 is elevated in CNE-2R. A target prediction algorithm suggests that miR?205 regulates expression of PTE N, a tumor-suppressor. Introducing miR-205 into CNE-2 cells suppresses PTE N protein expression, followed by activation of AKT, increased number of foci formation and reduction of cell apoptosis postirradiation. On the other hand, knocking down miR-205 in CNE-2R cells compromises the inhibition of PTE N and increases cell apoptosis. Significantly, immunohistochemistry studies demonstrate that PTE N is downregulated at late stages of NPC, and that miR-205 is significantly elevated followed the radiotherapy. Our data conclude that miR-205 contributes to radioresistance of NPC by directly targeting PTE N. Both miR-205 and PTE N are potential predictive biomarkers for radiosensitivity of NPC and may serve as targets for achieve successful radiotherapy in NPC.  相似文献   

3.
Long non-coding RNAs (lncRNAs) have been highlighted as attractive markers for diagnosis and prognosis as well as new therapeutic targets in multiple cancers, including nasopharyngeal carcinoma (NPC). Here, we attempted to investigate the underlying regulatory role of the lncRNA maternally expressed gene 3 (MEG3) in NPC development. As determined by RT-qPCR, MEG3 expression was down-regulated in NPC cells. Online RNA crosstalk analysis predicted the binding of miR-21 to MEG3 and PTEN, respectively. MEG3 was validated to bind to miR-21 while PTEN was identified as a target of miR-21 by dual-luciferase reporter gene assay. Exogenous transfection was done to change the levels of MEG3, miR-21 and PTEN in HK-1 cells to investigate their effects on the autophagy and apoptosis of NPC cells. The results suggested that MEG3 overexpression in HK-1 cells up-regulated PTEN and down-regulated miR-21, by which MEG3 further inhibited autophagy and apoptosis ability of NPC cells. The tumour formation ability was tested after injecting the HK-1 cells into nude, mice and tumour growth was monitored. Consistently, MEG3 overexpression inhibited the tumour formation in vivo. Collectively, MEG3 promotes the autophagy and apoptosis of NPC cells via enhancing PTEN expression by binding to miR-21.  相似文献   

4.

Background

Based on our recent microarray analysis, we found that miR-145 was obviously downregulated in nasopharyngeal carcinoma (NPC) tissues. However, little is known about its function and mechanism involving in NPC development and progression.

Methods

Quantitative RT-PCR was used to detect miR-145 expression in NPC cell lines and clinical samples. Wound healing, Transwell migration and invasion, three-dimension spheroid invasion assays, and lung metastasis model were performed to test the migratory, invasive, and metastatic ability of NPC cells. Luciferase reporter assay, quantitative RT-PCR, and Western blotting were used to verify the target of miR-145.

Results

MiR-145 was obviously decreased in NPC cell lines and clinical samples (P<0.01). Ectopic overexpression of miR-145 significantly inhibited the migratory and invasive ability of SUNE-1 and CNE-2 cells. In addition, stably overexpressing of miR-145 in SUNE-1 cells could remarkably restrain the formation of metastatic nodes in the lungs of mice. Furthermore, fascin actin-bundling protein 1 (FSCN1) was verified as a target of miR-145, and silencing FSCN1 with small RNA interfering RNA could suppress NPC cell migration and invasion.

Conclusions

Our findings demonstrated that miR-145 function as a tumor suppressor in NPC development and progression via targeting FSCN1, which could sever as a potential novel therapeutic target for patients with NPC.  相似文献   

5.
6.
The radioresistance of tumor cells remains a major cause of treatment failure in nasopharyngeal carcinoma (NPC). Recently, several reports have highlighted the importance of epigenetic changes in radiation-induced responses. Here, we investigated whether the demethylating agent 5-azacytidine (5-azaC) enhances the radiosensitivity of NPC cells. The NPC cell lines CNE2 and SUNE1 were treated with 1 μmol/L 5-azaC for 24 h before irradiation (IR); clonogenic survival was then assessed. Tumor growth was investigated in a mouse xenograft model in vivo. The apoptosis, cell cycle progression and DNA damage repair were examined using flow cytometry, immunofluorescent staining and western blotting. Promoter methylation and the expression of four genes epigenetically silenced during the development of NPC were evaluated by pyrosequencing and real-time PCR. We found that pretreatment with 5-azaC significantly decreased clonogenic survival after IR compared to IR alone; the sensitivity-enhancement ratio of 5-azaC was 1.4 and 1.2 for CNE2 and SUNE1 cells, respectively. The combined administration of 5-azaC and IR significantly inhibited tumor growth in the mouse xenograft model, and enhanced radiation-induced apoptosis in vitro compared to 5-azaC alone or IR alone. 5-AzaC also decreased promoter methylation and upregulated the expression of genes which are epigenetically silenced both in vitro and in vivo in NPC. Thus, 5-azaC enhance the radiosensitivity of both the CNE2 and SUNE1 cell lines, possibly by altering DNA methylation levels and increasing the ability of irradiated cells to undergo apoptosis. The use of 5-azaC combined with IR maybe represent an attractive strategy for the treatment of NPC.  相似文献   

7.

Background

miR-23b is located on chromosome number 9 and plays different roles in different organs especially with regards to cancer development. However, the functional significance of miR-23b-3p in renal cell carcinoma (RCC) has not been reported.

Methods and Results

We measured miR-23b-3p levels in 29 pairs of renal cell carcinoma and their normal matched tissues using real-time PCR. The expression level of miR-23b-3p was correlated with the 5 year survival rate of renal cancer patients. In 15 cases (52%), miR-23b-3p expression was found to be high. All patients with moderate to low miR-23b-3p expression survived 5 years, while those with high miR-23b-3p expression, only 50% survived. After knocking down miRNA-23b-3p expression in RCC cell lines, there was an induction of apoptosis and reduced invasive capabilities. MiR-23b-3p was shown to directly target PTEN gene through 3′UTR reporter assays. Inhibition of miR-23b-3p induces PTEN gene expression with a concomitant reduction in PI3-kinase, total Akt and IL-32. Immunohistochemistry showed the lack of PTEN protein expression in cancerous regions of tissue samples where the expression of miR-23b-3p was high. We studied the in vitro effects of the dietary chemo preventive agent genistein on miR-23b-3p expression and found that it inhibited expression of miR-23b-3p in RCC cell lines.

Conclusions

The current study shows that miR-23b-3p is an oncogenic miRNA and inhibits PTEN tumor suppressor gene in RCC. Therefore, inhibition of miR-23b-3p may be a useful therapeutic target for the treatment of renal cell carcinoma.  相似文献   

8.
STAT3 and STAT5 are constitutively activated and nuclear in nasopharyngeal carcinoma (NPC) cells. In normal signaling, STATs are only transiently activated. To investigate whether Epstein-Barr virus (EBV), and in particular the protein LMP1, contributes to sustained STAT phosphorylation and activation in epithelial cells, we examined STAT activity in two sets of paired cell lines, HeLa, an EBV-converted HeLa cell line, HeLa-Bx1, the NPC-derived cell line CNE2-LNSX, and an LMP1-expressing derivative, CNE2-LMP1. EBV infection was associated with a significant increase in the tyrosine-phosphorylated forms of STAT3 and STAT5 in HeLa-Bx1 cells. This effect correlated with LMP1 expression, since phosphorylated STAT3 and STAT5 levels were also increased in CNE2-LMP1 cells relative to the control CNE2-LNSX cells. No change was observed in STAT1 or STAT6 phosphorylation in these cell lines, nor was there a significant change in the levels of total STAT3, STAT5, STAT1, or STAT6 protein. Tyrosine phosphorylation allows the normally cytoplasmic STAT proteins to enter the nucleus and bind to their recognition sequences in responsive promoters. The ability of LMP1 to activate STAT3 was further established by immunofluorescence assays in which coexpression of LMP1 in transfected cells was sufficient to mediate nuclear relocalization of Flag-STAT3 and by an electrophoretic mobility shift assay which showed that LMP1 expression in CNE2-LNSX cells was associated with increased endogenous STAT3 DNA binding activity. In addition, the activity of a downstream target of STAT3, c-Myc, was upregulated in HeLa-Bx1 and CNE2-LMP1 cells. A linkage was established between interleukin-6 (IL-6)- and LMP1-mediated STAT3 activation. Treatment with IL-6 increased phosphorylated STAT3 levels in CNE2-LNSX cells, and conversely, treatment of CNE2-LMP1 cells with IL-6 neutralizing antibody ablated STAT3 activation and c-Myc upregulation. The previous observation that STAT3 activated the LMP1 terminal repeat promoter in reporter assays was extended to show upregulated expression of endogenous LMP1 mRNA and protein in HeLa-Bx1 cells transfected with a constitutively activated STAT3. A model is proposed in which EBV infection of an epithelial cell containing activated STATs would permit LMP1 expression. This in turn would establish a positive feedback loop of IL-6-induced STAT activation, LMP1 and Qp-EBNA1 expression, and viral genome persistence.  相似文献   

9.
MicroRNAs (miRNAs) regulate gene expression by binding to target sites and initiating translational repression and/or mRNA degradation. In our previous study, we have shown that expression of serum microRNA (miR)-21 is correlated with TNM stage and lymph node metastasis and might be an independent prognostic factor for NSCLC patients. However, the roles of miR-21 overexpression in NSCLC development are still unclear. The purpose of this study is to investigate the effect of miR-21 and determine whether miR-21 can be a therapeutic target for human NSCLC. Taqman real-time quantitative RT-PCR assay was performed to detect miR-21 expression in NSCLC cell lines and tissues. Next, the effects of miR-21 expression on NSCLC cell characteristics including growth, invasion, and chemo- or radioresistance were also determined. Results showed that miR-21 is commonly upregulated in NSCLC cell lines and tissues with important functional consequences. In addition, we found that anti-miR-21 could significantly inhibit growth, migration and invasion, and reverse chemo- or radioresistance of NSCLC cells, while miR-21 mimics could increase growth, promote migration and invasion, and enhance chemo- or radioresistance of NSCLC cells. Meanwhile, miR-21 mimics could inhibit expression of PTEN mRNA and protein and the luciferase activity of a PTEN 3??-untranslated region (UTR)-based reporter construct in A549 cells, while anti-miR-21 could increase expression of PTEN mRNA and protein and the luciferase activity of a PTEN 3??-UTR-based reporter construct in A549 cells. Furthermore, overexpression of PTEN could mimic the same effects of anti-miR-21 in NSCLC cells, and siRNA-mediated downregulation of PTEN could rescue the effects on NSCLC cells induced by anti-miR-21. Taken together, these results provide evidence to show the promotion role of miR-21 in NSCLC development through modulation of the PTEN signaling pathway.  相似文献   

10.
Exosomes derived from differentiated P12 cells and MSCs were proved to suppress apoptosis of neuron cells, and phosphatase and tensin homolog pseudogene 1 (PTENP1) was reported to inhibit cell proliferation. In this study, we aimed to investigate the role of PTENP1 in the process of post-spinal cord injury (SCI) recovery, so as to evaluate the therapeutic effects of exosomes derived from MSCs transfected with PTENP1 short hairpin RNA (shRNA), as a type of novel biomarkers in the treatment of SCI. Electron microscopy was used to observe the morphology of different exosomes. Real-time polymerase chain reaction and western blot, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays, flow cytometry, Nissl staining, immunohistochemistry assay, and terminal deoxynucleotidyl transferase dUTP nick end labeling assay were conducted to investigate and validate the underlying molecular signaling pathway. PTENP1-shRNA downregulated PTENP1 and PTEN while upregulating miR-21 and miR-19b. PTENP1-shRNA also accelerated cell apoptosis and reduced cell viability. In addition, PTENP1 reduced the miR-21 and miR-19b expression by directly targeting miR-21 and miR-19b. Meanwhile, both miR-21 and miR-19b reduced the expression of PTEN by directly targeting the 3′-untranslated region of PTEN. Furthermore, PTEN level and apoptosis index of neuron cells was the highest in the SCI group, while the treatment with exosomes+PTENP1-shRNA reduced the PTEN expression to a level similar to that in the sham group. Finally, PTENP1 inhibited miR-21 and miR-19b expression but upregulated PTEN expression. The upregulation of miR-21/miR-19b also suppressed the apoptosis of neuron cells by downregulating the PTEN expression. PTENP1 is involved in the recovery of SCI by regulating the expression of miR-19b and miR-21, and exosomes from PTENP1-shRNA-transfected cells may be used as a novel biomarker in SCI treatment.  相似文献   

11.
12.
MicroRNA-214 (MiR-214) is aberrantly expressed in several human tumors such as ovarian cancer and breast cancer. However, the role of miR-214 in nasopharyngeal carcinoma (NPC) is still unknown. In this study, we report that miR-214 was overexpressed in NPC cell lines and tissues. Silencing of miR-214 by LNA-antimiR-214 in NPC cells resulted in promoting apoptosis and suppressing cell proliferation in vitro, and suppressed tumor growth in nude mice in vivo. Luciferase reporter assay was performed to identify Bim as a direct target of miR-214. Furthermore, this study showed that low Bim expression in NPC tissues correlated with poor survival of NPC patients. Taken together, our findings suggest that miR-214 plays an important role in NPC carcinogenesis.  相似文献   

13.
14.
15.
16.
MicroRNAs (MiRs) are short noncoding RNAs that can regulate gene expression. It has been reported that miR-21 suppresses apoptosis in activated T cells, but the molecular mechanism remains undefined. Tumor suppressor Tipe2 (or tumor necrosis factor-α-induced protein 8 (TNFAIP8)-like 2 (TNFAIP8L2)) is a newly identified anti-inflammatory protein of the TNFAIP8 family that is essential for maintaining immune homeostasis. We report here that miR-21 is a direct target of nuclear factor-κB and could regulate Tipe2 expression in a Tipe2 coding region-dependent manner. In activated T cells and macrophages, Tipe2 expression was markedly downregulated, whereas miR-21 expression was upregulated. Importantly, Tipe2-deficient T cells were significantly less sensitive to apoptosis. Conversely, overexpression of Tipe2 in EL-4 T cells increased their susceptibility to activation-induced apoptosis. Therefore, Tipe2 provides a molecular bridge between miR-21 and cell apoptosis; miR-21 suppresses apoptosis in activated T cells at least in part through directly targeting tumor suppressor gene Tipe2.  相似文献   

17.
18.
Salinomycin (Sal) is a polyether ionophore antibiotic that has recently been shown to induce cell death in various human cancer cells. However, whether salinomycin plays a functional role in nasopharyngeal carcinoma (NPC) has not been determined to date. The present study investigated the chemotherapeutic efficacy of salinomycin and its molecular mechanisms of action in NPC cells. Salinomycin efficiently inhibited proliferation and invasion of 3 NPC cell lines (CNE-1, CNE-2, and CNE-2/DDP) and activated a extensive apoptotic process that is accompanied by activation of caspase-3 and caspase-9, and decreased mitochondrial membrane potential. Meanwhile, the protein expression level of the Wnt coreceptor lipoprotein receptor related protein 6 (LRP6) and β-catenin was down-regulated, which showed that the Wnt/β-catenin signaling was involved in salinomycin-induced apoptosis of NPC cells. In a nude mouse NPC xenograft model, the anti-tumor effect of salinomycin was associated with the downregulation of β-catenin expression. The present study demonstrated that salinomycin can effectively inhibit proliferation and invasion, and induce apoptosis of NPC cells in vitro and inhibit tumor growth in vivo, probably via the inhibition of Wnt/β-catenin signaling, suggesting salinomycin as a potential candidate for the chemotherapy of NPC.  相似文献   

19.
CNE1、CNE2鼻咽癌细胞株中ATM/PI3K区基因突变的检测   总被引:2,自引:0,他引:2  
  相似文献   

20.
J Ma  F Sun  C Li  Y Zhang  W Xiao  Z Li  Q Pan  H Zeng  G Xiao  K Yao  A Hong  J An 《Cell death & disease》2014,5(8):e1377
Nasopharyngeal carcinoma (NPC) is a major malignant tumor of the head and neck region in southern China. The understanding of its underlying etiology is essential for the development of novel effective therapies. We report for the first time that microRNA-940 (miR-940) significantly suppresses the proliferation of a variety of cancer cell lines, arrests cells cycle, induces caspase-3/7-dependent apoptosis and inhibits the formation of NPC xenograft tumors in mice. We further show that miR-940 directly binds to the 3′-untranslated regions of Nestin mRNA and promotes its degradation. Likewise, depletion of Nestin inhibits tumor cell proliferation, arrest cells at G2/M, induces apoptosis and suppresses xenograft tumor formation in vivo. These functions of miR-940 can be reversed by ectopic expression of Nestin, suggesting that miR-940 regulates cell proliferation and survival through Nestin. Notably, we observed reduced miR-940 and increased Nestin levels in NPC patient samples. Protein microarray revealed that knockdown of Nestin in 5-8F NPC cells alters the phosphorylation of proteins involved in the DNA damage response, suggesting a mechanism for the miR-940/Nestin axis. Consistently, depletion of Nestin induced spontaneous DNA damage accumulation, delayed the DNA damage repair process and increased the sensitivity to irradiation and the chemotherapeutic agent doxorubicin. Collectively, our findings indicate that Nestin, which is downregulated by miR-940, can promote tumorigenesis in NPC cells through involvement in the DNA damage response. The levels of microRNA-940 and Nestin may serve as indicators of cancer status and prognosis.Nasopharyngeal carcinoma (NPC), a major malignant tumor of the head and neck region, is endemic to Southeast Asia, southern China, the Arctic, the Middle East and North Africa.1 Low differentiation and high metastatic potential and recurrence rates are major pathologic features of NPC. The incidence of NPC in southern China has remained very high, with a 5-year overall survival rate of approximately 70%.2 Within 4 years after radiation therapy, about 30–40% of NPC patients develop distant metastasis, which is associated with poor prognosis.3 Therefore, an understanding of the underlying etiology is essential for the development of novel effective therapies for NPC.MicroRNAs (miRNAs), a class of small (∼22 nucleotides) noncoding RNAs, reduce mRNA stability and/or suppress translation by binding to the 3′-untranslated regions (3′-UTRs) or coding sequences of target mRNAs.4 As such, miRNAs are involved in the majority of basic biologic processes, including cell proliferation, apoptosis, differentiation and development.5 Cumulative evidence also suggests that miRNAs can function as potential oncogenes or tumor suppressor genes.6, 7 Abnormal expression of miRNAs and mutations of their genes have been documented in various types of tumors.8 Recently, a growing number of miRNAs have been implicated in the development of NPC. For instance, the decreased expression of miR-100 has been reported to cause Plk1 overexpression, which in turn contributes to NPC progression.9 MiR-200a upregulation in the undifferentiated cell line C666-1 inhibits cell growth, migration and invasion by targeting ZEB2 and CTNNB1.10 Inhibition of miR-141, which is upregulated in NPC specimens, may affect cell cycle, apoptosis, cell growth, migration and invasion through targeting of BRD3, UBAP1 and PTEN.11 In addition, reduced levels of let-7 in NPC might have a role in the proliferation through DNA methylation.12 In view of the roles of miRNAs in tumorigenesis, identification of key miRNAs and their targets that contribute to NPC progression may provide novel targets for NPC diagnosis and treatment.Nestin, a member of the type VI intermediate filament protein family, is widely expressed in mammalian nervous tissue, some immortalized mammalian stem cell lines13 and precursor cells of some tissues, for which expression is decreased with differentiation.14, 15, 16 As a stem cell/progenitor cell marker,17 Nestin is essential for mitogen-stimulated proliferation of neural progenitor cells,18 and loss of Nestin leads to apoptosis of neural progenitor cells in zebrafish.19 Recently, Nestin has been detected in various cell lines established from human solid tumors20 and has been associated with aggressive nervous system tumors.21 All of these findings suggest that Nestin is associated with tumorigenesis; however, the precise role of Nestin and the relationship between Nestin and NPC progression are still unknown.In this study, we screen 350 different miRNAs and determined that miR-940 inhibits the proliferation of the NPC cell lines 5-8F and CNE2. Furthermore, miR-940 expression induces G2/M arrest, promotes apoptosis and suppresses xenograft tumor growth. Bioinformatic and luciferase reporter assays revealed that miR-940 targets two putative binding sites in the Nestin 3′-UTR region. A physiologic role for miR-940 was suggested by its common downregulation in NPC tissues, whereas Nestin showed a converse pattern of upregulation. Knockdown of Nestin in 5-8F and CNE2 cells induces G2/M arrest and apoptosis and inhibits cell proliferation and xenograft tumor growth; conversely, ectopic expression of Nestin partially reverses the effects of miR-940 on cell proliferation, cell cycle and apoptosis. Interestingly, knockdown of Nestin induces spontaneous DNA damage accumulation, delays DNA damage repair and enhances sensitivity to ionizing radiation (IR) of 5-8F cells both in vitro and in vivo. These results elucidate a pathway by which miR-940 regulates tumor progression in NPC by targeting Nestin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号