首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background  

It has been suggested that combined effect of natural products may improve the treatment effectiveness in combating proliferation of cancer cells. The present study was undertaken to evaluate the possibility that the combination of xanthorrhizol and curcumin might show synergistic growth inhibitory effect towards MDA-MB-231 human breast cancer cells via apoptosis induction. The effective dose that produced 50% growth inhibition (GI50) was calculated from the log dose-response curve of fixed-combinations of xanthorrhizol and curcumin generated from the sulforhodamine B (SRB) assay. The experimental GI50 value was used to determine the synergistic activity of the combination treatment by isobolographic analysis and combination-index method. Further investigation of mode of cell death induced by the combination treatment was conducted in the present study.  相似文献   

2.
Triple-negative breast cancer is associated with poor prognosis because of a high rate of tumor recurrence and metastasis. Previous studies demonstrated that the synthetic triterpenoid, CDDO-Imidazolide (CDDO-Im) induced cell cycle arrest and apoptosis in triple-negative breast cancer. Since a small subpopulation of cancer stem cells has been suggested to be responsible for drug resistance and metastasis of tumors, our present study determined whether the effects of CDDO-Im in triple-negative breast cancer are due to the inhibition of a cancer stem cell subpopulation. CDDO-Im treatment markedly induced cell cycle arrest at G2/M-phase and apoptosis in the triple-negative breast cancer cell lines, SUM159 and MDA-MB-231. Because SUM159 cells were more sensitive to CDDO-Im than MDA-MB-231 cells, the effects of CDDO-Im on the cancer stem cell subpopulation were further investigated in SUM159 cells. SUM159 cells formed tumorspheres in culture, and the cancer stem cell subpopulation, CD24−/EpCAM+ cells, was markedly enriched in SUM159 tumorspheres. The CD24−/EpCAM+ cells in SUM159 tumorspheres were significantly inhibited by CDDO-Im treatment. CDDO-Im also significantly decreased sphere forming efficiency and tumorsphere size in both primary and secondary sphere cultures. PCR array of stem cell signaling genes showed that expression levels of many key molecules in the stem cell signaling pathways, such as Notch, TGF-β/Smad, Hedgehog and Wnt, were significantly down-regulated by CDDO-Im in SUM159 tumorspheres. Protein levels of Notch receptors (c-Notch1, Notch1 and Notch3), TGF-β/Smad (pSmad2/3) and Hedgehog downstream effectors (GLI1) also were markedly reduced by CDDO-Im. In conclusion, the present study demonstrates that the synthetic triterpenoid, CDDO-Im, is a potent anti-cancer agent against triple-negative breast cancer cells by targeting the cancer stem cell subpopulation.  相似文献   

3.
Alepterolic acid is a natural diterpenoid isolated from Aleuritopteris argentea with potential anti-cancer activity. In this study, alepterolic acid was modified to construct a series of arylformyl piperazinyl derivatives ( 3a – 3p ). The synthesized derivatives were fully characterized with HRMS, NMR, and IR. Four compounds with inhibition rate higher than 30 % at 10 μM ( 3f , 3n , 3g and 3k ) were further measured to obtain the IC50 values against four cancer cell lines, including hepatoma cell lines HepG2, lung cancer cell lines A549, estrogen receptor-positive cell lines MCF7, and triple-negative breast cancer (TNBC) cell lines MDA-MB-231 by MTT assay. It was found that these compounds were more effective to HepG2 and MDA-MB-231 cells, while less toxic to A549 and MCF7 cells, and compound 3n as the most toxic derivatve against MDA-MB-231 cell lines, with IC50 value of 5.55±0.56 μM. Trypan blue staining and colony formation assay showed that compound 3n inhibited the growth of MDA-MB-231 cells and prevented colony formation. Hoechst staining, flow cytometry and western blot analysis revealed that compound 3n induced caspase-dependent apoptosis in MDA-MB-231 cells. Conclusively, compound 3n was demonstrated to be a potential anti-cancer lead compound for further investigation.  相似文献   

4.
Because of poor prognosis, clinical treatment of triple-negative (TN) breast cancer remains the most challenging factor in cancer treatment. Extensive research into alternative cancer therapies includes studying the naturopathic effects of the medicinal herb ginseng. This study investigates the anti-neoplastic properties of ginseng sapogenins and the derivatives: (1) (20(S)-protopanaxadiol (PPD), (2) 20(S)-protopanaxatriol), (3) (20(S)-dihydroprotopanaxadiol, and (4) 20(S)-dihydroprotopanaxatriol). These compounds were found to prevent the proliferation of MDA-MB-231 human breast cancer cells. PPD was the most potent inhibitor, exhibiting an IC50 (5.87 μM) comparable to that of the chemotherapeutic drug taxol. Furthermore, PPD induced dose-dependent cleavage of caspase-8, caspase-3, and PARP in MDA-MB-231 cells. Thus, we propose that PPD acts as anti-cancer agent by stimulating caspase-dependent apoptosis in breast cancer cells.  相似文献   

5.
We have previously shown that Δ2-Troglitazone (Δ2-TGZ) displayed anticancer effects on breast cancer cell lines grown in low serum conditions (1% fetal calf serum (FCS)). The present study was performed in order to characterize the effects of Δ2-TGZ in high serum containing medium and to determine if starvation could influence the response of breast cancer cells to this compound, keeping in mind the potential interest for breast cancer therapy. We observed that in high serum conditions (10% FCS), a 48 h treatment with Δ2-TGZ induced a decrease in cell numbers in MDA-MB-231 and MCF-7 breast cancer cell lines. The IC50 values were higher than in low serum conditions. Furthermore, in contrast to our previous results obtained in 1% FCS conditions, we observed that in 10% FCS-containing medium, MCF-7 cells were more sensitive to Δ2-TGZ than MDA-MB-231 cells. Δ2-TGZ also induced endoplasmic reticulum (ER) stress mainly in MDA-MB-231 cells. Besides, in high serum conditions, Δ2-TGZ induced a G0/G1 cell cycle arrest, an inhibition of BrdU incorporation and a reduced level of cyclin D1. We observed a limited cleavage of PARP and a limited proportion of cells in sub-G1 phase. Thus, in high serum conditions, Δ2-TGZ displayed cytostatic effects rather than apoptosis as previously reported in 1% FCS-containing medium. Our results are in accordance with studies suggesting that serum starvation could potentiate the action of diverse anti-cancer agents.  相似文献   

6.
Missense mutations in TP53 resulting in the expression of p53-R175H, p53-R273H, or p53-R280K are frequently detected in human breast cancer. Currently, the role of mutant p53-R280K in breast cancer is relatively unknown, and therefore, the present study analyzed the function of mutant p53-R280K in breast cancer cell growth. To this end, we used small interfering RNA to study the role of mutant p53-R280K in MDA-MB-231 cells, which endogenously express the mutant protein. We found that curcumin induced apoptosis in MDA-MB-231 cells and downregulated mutant p53-R280K. We also observed that knockdown of mutant p53 by small interfering RNA induced apoptosis in MDA-MB-231 cells. Curcumin-induced apoptosis was further enhanced by the overexpression of wild-type p53, but was decreased by mutant p53-R280K overexpression. Our findings indicate that mutant p53-R280K has an important role in mediating the survival of triple-negative breast cancer MDA-MB-231 cells. Furthermore, this study suggests mutant p53-R280K could be used as a therapeutic target for breast cancer cells harboring this TP53 missense mutation.  相似文献   

7.
It has been recently found that metallothionein-3 (MT3) enhances the invasiveness and tumorigenesis of prostate cancer cells. This finding is in contrast to those of earlier studies, which indicated that overexpression of MT3 in breast cancer and prostate cancer cell lines inhibits their growth in vitro. Therefore, to clarify the role of MT3 in breast cancer progression, we analyzed the effect of MT3-overexpression on proliferation, invasiveness, migration, and tumorigenesis of breast cancer MDA-MB-231/BO2 cells. It was found that MDA-MB-231/BO2 cells overexpressing MT3 were characterized by increased invasiveness in vitro, compared to the control cells. Interestingly, this increased invasiveness correlated with a highly increased concentration of MMP3 in the culture supernatants (p<0.0001). Our data suggest that MT3 may regulate breast cancer cell invasiveness by modulating the expression of MMP3. These experimental results, obtained using triple-negative MDA-MB-231/BO2 cells, were further supported by clinical data. It was found that, in triple-negative breast cancer (TNBC), nuclear MT3 immunoreactivity in cancer cells tended to be associated with patients’ shorter disease-specific survival, suggesting that nuclear MT3 expression may be a potential marker of poor prognosis of triple-negative TNBC cases.  相似文献   

8.
Puerariae radix (PR) is a popular natural herb and a traditional food in Asia, which has antithrombotic and anti-allergic properties and stimulates estrogenic activity. In the present study, we investigated the effects of the PR isoflavones puerarin, daidzein, and genistein on the growth of breast cancer cells. Our data revealed that after treatment with PR isoflavones, a dose-dependent inhibition of cell growth occurred in HS578T, MDA-MB-231, and MCF-7 cell lines. Results from cell cycle distribution and apoptosis assays revealed that PR isoflavones induced cell apoptosis through a caspase-3-dependent pathway and mediated cell cycle arrest in the G2/M phase. Furthermore, we observed that the serum metabolites of PR (daidzein sulfates/glucuronides) inhibited proliferation of the breast cancer cells at a 50% cell growth inhibition (GI50) concentration of 2.35 μM. These results indicate that the daidzein constituent of PR can be metabolized to daidzein sulfates or daidzein glucuronides that exhibit anticancer activities. The protein expression levels of the active forms of caspase-9 and Bax in breast cancer cells were significantly increased by treatment with PR metabolites. These metabolites also increased the protein expression levels of p53 and p21. We therefore suggest that PR may act as a chemopreventive and/or chemotherapeutic agent against breast cancer by reducing cell viability and inducing apoptosis.  相似文献   

9.
Qi Y  Fu X  Xiong Z  Zhang H  Hill SM  Rowan BG  Dong Y 《PloS one》2012,7(2):e31539
A major challenge in breast cancer therapy is the lack of an effective therapeutic option for a particularly aggressive subtype of breast cancer, triple-negative breast cancer. Here we provide the first preclinical evidence that a second-generation selenium compound, methylseleninic acid, significantly enhances the anticancer efficacy of paclitaxel in triple-negative breast cancer. Through combination-index value calculation, we demonstrated that methylseleninic acid synergistically enhanced the growth inhibitory effect of paclitaxel in triple-negative breast cancer cells. The synergism was attributable to more pronounced induction of caspase-mediated apoptosis, arrest of cell cycle progression at the G2/M checkpoint, and inhibition of cell proliferation. Treatment of SCID mice bearing MDA-MB-231 triple-negative breast cancer xenografts for four weeks with methylseleninic acid (4.5 mg/kg/day, orally) and paclitaxel (10 mg/kg/week, through intraperitoneal injection) resulted in a more pronounced inhibition of tumor growth compared with either agent alone. The attenuated tumor growth correlated with a decrease in tumor cell proliferation and an induction of apoptosis. The in vivo study also indicated the safety of using methylseleninic acid in the combination regime. Our findings thus provide strong justification for the further development of methylseleninic acid and paclitaxel combination therapy for the treatment of triple-negative breast cancer.  相似文献   

10.
Carbazole derivatives show anti-cancer activity and are of great interest for drug development. In this study, we synthesized and analyzed several new alkylamide derivatives of racemocin B, a natural indolo[3,2-a]carbazole molecule originally isolated from the green alga Caulerpa racemose. Several alkylamide derivatives were found to exhibit moderate to strong growth inhibition against human breast cancer cell lines. They induced G2/M cell cycle arrest and apoptosis in the aggressive triple-negative breast cancer cell line MDA-MB-231. Among these derivatives, compound 25 with the lowest IC50 induced cell death by suppressing autophagy. This was accompanied by inhibition of autophagic flux and accumulation of autophagy protein 1 light chain 3, LC3II, and p62. The novel alkylamide derivative offers a potential new treatment for human breast cancer.  相似文献   

11.
BackgroundPrevious studies showed that suppression of pyruvate carboxylase (PC) expression in highly invasive breast cancer cell line, MDA-MB-231 inhibits cell growth as a consequence of the impaired cellular biosynthesis. However, the precise cellular mechanism underlying this growth restriction is unknown.MethodsWe generated the PC knockdown (PCKD) MDA-MB-231 cells and assessed their phenotypic changes by fluorescence microscopy, proliferation, apoptotic, cell cycle assays and proteomics.ResultsPC knockdown MDA-MB-231 cells had a low percentage of cell viability in association with accumulation of abnormal cells with large or multi-nuclei. Flow cytometric analysis of annexin V-7-AAD positive cells showed that depletion of PC expression triggers apoptosis with the highest rate at day 4. The increased rate of apoptosis is consistent with increased cleavage of procaspase 3 and poly (ADP-Ribose) polymerase. Cell cycle analysis showed that the apoptotic cell death was associated with G2/M arrest, in parallel with marked reduction of cyclin B levels. Proteomic analysis of PCKD cells identified 9 proteins whose expression changes were correlated with the degree of apoptosis and G2/M cell cycle arrest in the PCKD cells. STITCH analysis indicated 3 of 9 candidate proteins, CCT3, CABIN1 and HECTD3, that form interactions with apoptotic and cell cycle signaling networks linking to PC via MgATP.ConclusionsSuppression of PC in MDA-MB-231 cells induces G2/M arrest, leading to apoptosis. Proteomic analysis supports the potential involvement of PC expression in the aberrant cell cycle and apoptosis, and identifies candidate proteins responsible for the PC-mediated cell cycle arrest and apoptosis in breast cancer cells.General significanceOur results highlight the possibility of the use of PC as an anti-cancer drug target.  相似文献   

12.
《Translational oncology》2020,13(6):100775
Breast cancer patients presenting with symptomatic brain metastases have poor prognosis, and current chemotherapeutic agents are largely ineffective. In this study, we evaluated the hypomethylating agent azacitidine (AZA) for its potential as a novel therapeutic in preclinical models of brain metastasis of breast cancer. We used the parental triple-negative breast cancer MDA-MB-231 (231) cells and their brain colonizing counterpart (231Br) to ascertain phenotypic differences in response to AZA. We observed that 231Br cells have higher metastatic potential compared to 231 cells. With regard to therapeutic value, the AZA IC50 value in 231Br cells is significantly lower than that in parental cells (P < .01). AZA treatment increased apoptosis and inhibited the Wnt signaling transduction pathway, angiogenesis, and cell metastatic capacity to a significantly higher extent in the 231Br line. AZA treatment in mice with experimental brain metastases significantly reduced tumor burden (P = .0112) and increased survival (P = .0026) compared to vehicle. Lastly, we observed a decreased expression of keratin 18 (an epithelial maker) in 231Br cells due to hypermethylation, elucidating a potential mechanism of action of AZA in treating brain metastases from breast cancer.  相似文献   

13.

Introduction

The androgen receptor (AR) is the most highly expressed steroid receptor in breast cancer with 75–95% of estrogen receptor (ER)-positive and 40–70% of ER-negative breast cancers expressing AR. Though historically breast cancers were treated with steroidal androgens, their use fell from favor because of their virilizing side effects and the emergence of tamoxifen. Nonsteroidal, tissue selective androgen receptor modulators (SARMs) may provide a novel targeted approach to exploit the therapeutic benefits of androgen therapy in breast cancer.

Materials and Methods

Since MDA-MB-453 triple-negative breast cancer cells express mutated AR, PTEN, and p53, MDA-MB-231 triple-negative breast cancer cells stably expressing wildtype AR (MDA-MB-231-AR) were used to evaluate the in vitro and in vivo anti-proliferative effects of SARMs. Microarray analysis and epithelial:mesenchymal stem cell (MSC) co-culture signaling studies were performed to understand the mechanisms of action.

Results

Dihydrotestosterone and SARMs, but not bicalutamide, inhibited the proliferation of MDA-MB-231-AR. The SARMs reduced the MDA-MB-231-AR tumor growth and tumor weight by greater than 90%, compared to vehicle-treated tumors. SARM treatment inhibited the intratumoral expression of genes and pathways that promote breast cancer development through its actions on the AR. SARM treatment also inhibited the metastasis-promoting paracrine factors, IL6 and MMP13, and subsequent migration and invasion of epithelial:MSC co-cultures.

Conclusion

1. AR stimulation inhibits paracrine factors that are important for MSC interactions and breast cancer invasion and metastasis. 2. SARMs may provide promise as novel targeted therapies to treat AR-positive triple-negative breast cancer.  相似文献   

14.
A novel synthetic protocol has been developed for the synthesis of 1,4-benzoxazinone-acetylphenylallyl quinazolin-4(3H)-one hybrids 7an by employing Pd-catalyzed CH arylation in presence of 5–10% phosphine ligand in good to excellent yields and evaluated for their anti-proliferative activity against three cancer cell lines such as A549 (lung), HeLa (cervical), MDA-MB-231 (breast). Compounds 7d, 7f, 7l and 7n exhibited promising anti-proliferative activity with GI50 values ranging from 0.37 to 2.73?µM respectively against A549, HeLa, and MDA-MB-231, while compound 7f showed significant activity against MDA-MB-231 with GI50 value 0.58?µM, 7j showed significant activity against A549 with GI50 value 0.32?µM and 7l showed significant activity against HeLa with GI50 value 0.37?µM. This is the first report on the synthesis and in vitro anti-proliferative evaluation of 1,4-benzoxazinone-acetylphenylallyl quinazolin-4(3H)-one hybrids.  相似文献   

15.
Antony ML  Kim SH  Singh SV 《PloS one》2012,7(2):e32267
Benzyl isothiocyanate (BITC), a constituent of edible cruciferous vegetables, decreases viability of cancer cells by causing apoptosis but the mechanism of cell death is not fully understood. The present study was undertaken to determine the role of Bcl-2 family proteins in BITC-induced apoptosis using MDA-MB-231 (breast), MCF-7 (breast), and HCT-116 (colon) human cancer cells. The B-cell lymphoma 2 interacting mediator of cell death (Bim) protein was dispensable for proapoptotic response to BITC in MCF-7 and MDA-MB-231 cells as judged by RNA interference studies. Instead, the BITC-treated MCF-7 and MDA-MB-231 cells exhibited upregulation of p53 upregulated modulator of apoptosis (PUMA) protein. The BITC-mediated induction of PUMA was relatively more pronounced in MCF-7 cells due to the presence of wild-type p53 compared with MDA-MB-231 with mutant p53. The BITC-induced apoptosis was partially but significantly attenuated by RNA interference of PUMA in MCF-7 cells. The PUMA knockout variant of HCT-116 cells exhibited significant resistance towards BITC-induced apoptosis compared with wild-type HCT-116 cells. Attenuation of BITC-induced apoptosis in PUMA knockout HCT-116 cells was accompanied by enhanced G2/M phase cell cycle arrest due to induction of p21 and down regulation of cyclin-dependent kinase 1 protein. The BITC treatment caused a decrease in protein levels of Bcl-xL (MCF-7 and MDA-MB-231 cells) and Bcl-2 (MCF-7 cells). Ectopic expression of Bcl-xL in MCF-7 and MDA-MB-231 cells and that of Bcl-2 in MCF-7 cells conferred protection against proapoptotic response to BITC. Interestingly, the BITC-treated MDA-MB-231 cells exhibited induction of Bcl-2 protein expression, and RNA interference of Bcl-2 in this cell line resulted in augmentation of BITC-induced apoptosis. The BITC-mediated inhibition of MDA-MB-231 xenograft growth in vivo was associated with the induction of PUMA protein in the tumor. In conclusion, the results of the present study indicate that Bim-independent apoptosis by BITC in cancer cells is mediated by PUMA.  相似文献   

16.
The effects of norcantharidin (NCTD) on the growth of highly-metastatic human breast cancer cells were investigated by in vitro and ex vivo assays. Our results indicated that norcantharidin inhibited the in vitro growth of human breast cancer MDA-MB-231 cell line in dose- and time-dependent manners after the cancer cells were treated with norcantharidin at the concentrations of 6, 30 and 60 μmol/L for 24, 48 and 72 h. Moreover, the sera from the NCTD-treated rabbits after intravenous injection of NCTD at 15 and 30 min significantly suppressed the growth of the cancer cells ex vivo. The analyses by Hoechst 33258 staining and flow cytometry showed that the typical apoptotic morphological changes appeared and cell cycles arrested at G2/M phase in MDA-MB-231 cells after the cells were treated for 48 h with NCTD. In addition, NCTD down-regulated the expressions of anti-apoptotic protein Bcl-2 and up-regulated the expressions of pro-apoptotic protein Bax, eventually leading to the reduction of Bcl-2/Bax ratio in MDA-MB-231 cells. Furthermore, NCTD at concentrations of 6, 30 and 60 μmol/L dose-dependently reduced the phosphorylation of Akt and NF-κB expression in the breast cancer cell line. Induction of apoptosis and cell cycle arrest as well as reduction of Bcl-2/Bax ratio by NCTD may be the important mechanisms of action of NCTD suppressing the growth of MDA-MB-231 cells, which are associated with inhibition of the Akt and NF-κB signaling. Our findings suggest that norcantharidin may have a wide therapeutic and/or adjuvant therapeutic application in the treatment of human breast cancer.  相似文献   

17.
Veratric acid (VA) is plant-derived phenolic acid known for its therapeutic potential, but its anticancer effect on highly invasive triple-negative breast cancer (TNBC) is yet to be evaluated. Polydopamine nanoparticles (nPDAs) were chosen as the drug carrier to overcome VA's hydrophobic nature and ensure a sustained release of VA. We prepared pH-sensitive nano-formulations of VA-loaded nPDAs and subjected them to physicochemical characterization and in vitro drug release studies, followed by cell viability and apoptotic assays on TNBC cells (MDA-MB-231 cells). The SEM and zeta analysis revealed spherical nPDAs were uniform size distribution and good colloidal stability. In vitro drug release from VA-nPDAs was sustained, prolonged and pH-sensitive, which could benefit tumor cell targeting. MTT and cell viability assays showed that VA-nPDAs (IC50=17.6 μM) are more antiproliferative towards MDA-MB-231 cells than free VA (IC50=437.89 μM). The induction of early and late apoptosis by VA-nPDAs in the cancer cells was identified using annexin V and dead cell assay. Thus, the pH response and sustained release of VA from nPDAs showed the potential to enter the cell, inhibit cell proliferation, and induce apoptosis in human breast cancer cells, indicating the anticancer potential of VA.  相似文献   

18.
BackgroundCoumarins occurs naturally across plant kingdoms exhibits significant pharmacological properties and pharmacokinetic activity. The conventional, therapeutic agents are often associated with poor stability, absorption and increased side effects. Therefore, identification of a drug that has little or no-side effect on humans is consequential. Here, we investigated the antiproliferative activity of styrene substituted biscoumarin against various human breast cancer cell lines, such as MCF-7, (ER-) MDA-MB-231 and (AR+) MDA-MB-453. Styrene substituted biscoumarin induced cell death by apoptosis in MDA-MB-231 cell line was analyzed.MethodsAntiproliferative activity of Styrene substituted biscoumarin was performed by using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. Styrene substituted biscoumarin induced apoptosis was assessed by Hoechst staining, Annexin V-fluorescein isothiocyanate/propidium iodide (Annexin V-FITC/PI) staining and flow cytometric analysis. Migratory and proliferating characteristic of breast cancer cell line MDA-MB-231 was also analyzed by wound healing and colony formation assay. Furthermore, mRNA expression of BAX and BCL-2 were quantified using qRT-PCR and protein expression level analyzed by Western blot.ResultsThe inhibition concentration (IC50) of styrene substituted biscoumarin was assayed against three breast cancer cell lines. The inhibition concentration (IC50) value of styrene substituted biscoumarin toward MDA-MB-231, MDA-MB-453 and MCF-7 cell lines was 5.63, 7.30 and 10.84 μg/ml respectively. Styrene substituted biscoumarin induced apoptosis was detected by Hoechst staining, DAPI/PI analysis and flow-cytometric analysis. The migration and proliferative efficiency of MDA-MB-231 cells were completely arrested upon styrene substituted biscoumarin treatment. Also, mRNA gene expression and protein expression of pro-apoptotic (BAX) and anti-apoptotic (BCL-2) genes were analyzed by qRT-PCR and western blot analysis upon styrene substituted biscoumarin treatment to MDA-MB-231 cells. Our results showed that styrene substituted biscoumarin downregulated BCL-2 gene expression and upregulated BAX gene expression to trigger apoptotic process.ConclusionStyrene substituted biscoumarin could induce apoptosis through intrinsic mitochondrial pathway in breast cancer cell lines, particularly in MDA-MB-231. Our data suggest that styrene substituted biscoumarin may act as a potential chemotherapeutic agent against breast cancer.  相似文献   

19.
The sulfated polysaccharides (SPs) from Chlamydomonas reinhardtii (Cr) were isolated by hot water method using 80% alcohol and semi purified by anion-exchange column chromatography. The chemical analysis of the extract showed 78% carbohydrates, 18% reducing sugars, 60% non-reducing sugars, 2% protein, 33% sulfate, 39% uronic acid, and 4% ash. The elemental analysis of this C. reinhardtii sulfated polysaccharide-enriched extract (Cr-SPs) showed 53% carbon, 8% hydrogen, and 6% nitrogen. FTIR analysis of Cr-SPs showed characteristic bands of sulfated polysaccharides. Further, the Cr-SPs showed significant hydroxyl radical scavenging activity of 22.29–80.9% at 0.01–1 mg mL?1, 38–77% of DPPH radical scavenging activity at 0.01–1 mg mL?1, 9.8–81% ABTS radical scavenging activity, 34.5–67.6% of ferrous chelating ability, and 11.62–75% of total antioxidant capacity. Cr-SPs also showed efficient in vitro anticancer activity. Specifically, they inhibited triple-negative breast cancer cell (MDA-MB-231) proliferation with an IC50 of 172 μg mL?1. Concentration-dependent reduction in the number of colonies formed by MDA-MB-231 cells suggested their potential to inhibit the clonal expansion of the cancer cells. Higher concentrations of crude extract were found to disrupt the microtubule networks in these cells. The cells treated with Cr-SPs eventually underwent apoptosis as evidenced by the formation of characteristic DNA ladder. These results indicate that Cr-SPs find promising opportunities for cancer treatment.  相似文献   

20.
The aim of the study was to discover possible differential cytotoxicity of triptolide towards estrogen-sensitive MCF-7 versus estrogen-insensitive MDA-MB-231 human breast cancer cells. Considering that MCF-7 cells express functional Estrogen receptor α (ERα) and wild-type p53, whereas MDA-MB-231 cells which are ERα-negative express mutant p53, the anti-proliferation effect of triptolide on MCF-7 and MDA-MB-231 cells were examined, the apoptotic effect and cell cycle arrest caused by triptolide were investigated, ERα and p53 expression were also observed in this paper. The results showed that the anti-proliferation effects were induced by triptolide in both cell lines. But the value of IC50 in MCF-7 cells for its anti-proliferation effect was about one tenth of that in MDA-MB-231 cells, which indicated that the effect is more potent in MCF-7 cells. Condensed chromatin or fragmented nuclei could be found in MCF-7 cells treated with only 40 nM triptolide but in MDA-MB-231 cells they couldn’t be observed until the concentration reached to 400 nM. Triptolide induced significant S cell cycle arrest along with the presence of sub-G0/G1 peak in MDA-MB-231 cells, whereas there was only slightly S cell cycle arrest on cell cycle distribution in MCF-7 cells. The role of p53 in two breast cancer cells was examined, the results showed that the mutant p53 in MDA-MB-231 cells was suppressed and the wild-type p53 in MCF-7 was increased. Moreover, triptolide could down regulate the expression of ERα in MCF-7 cells. The results showed that triptolide is much more sensitive to ERα-positive MCF-7 cells than to ERα-negative MDA-MB-231 cells, and the sensitivity is significantly associated with the ERα and p53 status.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号