首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
The CD44hi compartment in human breast cancer is enriched in tumor-initiating cells; however, the functional heterogeneity within this subpopulation remains poorly defined. We used a triple-negative breast cancer cell line with a known bilineage phenotype to isolate and clone CD44hi single cells that exhibited mesenchymal/basal B and luminal/basal A features, respectively. Herein, we demonstrate in this and other triple-negative breast cancer cell lines that, rather than CD44hi/CD24 mesenchymal-like basal B cells, the CD44hi/CD24lo epithelioid basal A cells retained classic cancer stem cell features, such as tumor-initiating capacity in vivo, mammosphere formation and resistance to standard chemotherapy. These results complement previous findings using oncogene-transformed normal mammary cells showing that only cell clones with a mesenchymal phenotype exhibit cancer stem cell features. Further, we performed comparative quantitative proteomic and gene array analyses of these cells and identified potential novel markers of breast cancer cells with tumor-initiating features, such as lipolysis-stimulated lipoprotein receptor (LSR), RAB25, S100A14 and mucin 1 (MUC1), as well as a novel 31-gene signature capable of predicting distant metastasis in cohorts of estrogen receptor–negative human breast cancers. These findings strongly favor functional heterogeneity in the breast cancer cell compartment and hold promise for further refinements of prognostic marker profiling. Our work confirms that, in addition to cancer stem cells with mesenchymal-like morphology, those tumor-initiating cells with epithelial-like morphology should also be the focus of drug development.  相似文献   

4.
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive disease with a high rate of metastasis. Recent studies have indicated that the Notch signalling pathway is important in PDAC initiation and maintenance, although the specific cell biological roles of the pathway remain to be established. Here we sought to examine this question in established pancreatic cancer cell lines using the γ-secretase inhibitor IX (GSI IX) to inactivate Notch. Based on the known roles of Notch in development and stem cell biology, we focused on effects on epithelial mesenchymal transition (EMT) and on pancreatic tumor initiating CD44+/EpCAM+ cells. We analyzed the effect of the GSI IX on growth and epithelial plasticity of human pancreatic cancer cell lines, and on the tumorigenicity of pancreatic tumor initiating CD44+/EpCAM+ cells. Notably, apoptosis was induced after GSI IX treatment and EMT markers were selectively targeted. Furthermore, under GSI IX treatment, decline in the growth of pancreatic tumor initiating CD44+/EpCAM+ cells was observed in vitro and in a xenograft mouse model. This study demonstrates a central role of Notch signalling pathway in pancreatic cancer pathogenesis and identifies an effective approach to inhibit selectively EMT and suppress tumorigenesis by eliminating pancreatic tumor initiating CD44+/EpCAM+ cells.  相似文献   

5.
Our previous data illustrated that activation of the canonical Wnt signaling pathway was enriched in triple-negative breast cancer and associated with reduced overall survival in all patients. To determine whether Wnt signaling may be a promising therapeutic target for triple-negative breast cancer, we investigated whether β-catenin was necessary for tumorigenic behaviors in vivo and in vitro. β-catenin expression level was significantly reduced in two human triple-negative breast cancer cell lines, MDA-MB-231 and HCC38, using lentiviral delivery of β-catenin-specific small hairpin RNAs (shRNAs). Upon implantation of the cells in the mammary fat pad of immunocompromised mice, we found that β-catenin shRNA HCC38 cells formed markedly smaller tumors than control cells and grew much more slowly. In in vitro assays, β-catenin silencing significantly reduced the percentage of Aldefluor-positive cells, a read-out of the stem-like cell population, as well as the expression of stem cell-related target genes including Bmi-1 and c-Myc. β-catenin-knockdown cells were also significantly impaired in their ability to migrate in wound-filling assays and form anchorage-independent colonies in soft agar. β-catenin-knockdown cells were more sensitive to chemotherapeutic agents doxorubicin and cisplatin. Collectively, these data suggest that β-catenin is required for triple-negative breast cancer development by controlling numerous tumor-associated properties, such as migration, stemness, anchorage-independent growth and chemosensitivity.  相似文献   

6.
7.
Epithelial–mesenchymal transition (EMT) is a normal cell differentiation event during development and contributes pathologically to carcinoma and fibrosis progression. EMT often associates with increased transforming growth factor-β (TGF-β) signaling, and TGF-β drives EMT, in part through Smad-mediated reprogramming of gene expression. TGF-β also activates the Erk MAPK pathway through recruitment and Tyr phosphorylation of the adaptor protein ShcA by the activated TGF-β type I receptor. We found that ShcA protects the epithelial integrity of nontransformed cells against EMT by repressing TGF-β-induced, Smad-mediated gene expression. p52ShcA competed with Smad3 for TGF-β receptor binding, and down-regulation of ShcA expression enhanced autocrine TGF-β/Smad signaling and target gene expression, whereas increased p52ShcA expression resulted in decreased Smad3 binding to the TGF-β receptor, decreased Smad3 activation, and increased Erk MAPK and Akt signaling. Furthermore, p52ShcA sequestered TGF-β receptor complexes to caveolin-associated membrane compartments, and reducing ShcA expression enhanced the receptor localization in clathrin-associated membrane compartments that enable Smad activation. Consequently, silencing ShcA expression induced EMT, with increased cell migration, invasion, and dissemination, and increased stem cell generation and mammosphere formation, dependent upon autocrine TGF-β signaling. These findings position ShcA as a determinant of the epithelial phenotype by repressing TGF-β-induced Smad activation through differential partitioning of receptor complexes at the cell surface.  相似文献   

8.
We previously identified a gene signature predicted to regulate the epithelial-mesenchymal transition (EMT) in both epithelial tissue stem cells and breast cancer cells. A phenotypic RNA interference (RNAi) screen identified the genes within this 140-gene signature that promoted the conversion of mesenchymal epithelial cell adhesion molecule-negative (EpCAM) breast cancer cells to an epithelial EpCAM+/high phenotype. The screen identified 10 of the 140 genes whose individual knockdown was sufficient to promote EpCAM and E-cadherin expression. Among these 10 genes, RNAi silencing of the SWI/SNF chromatin-remodeling factor Smarcd3/Baf60c in EpCAM breast cancer cells gave the most robust transition from the mesenchymal to epithelial phenotype. Conversely, expression of Smarcd3/Baf60c in immortalized human mammary epithelial cells induced an EMT. The mesenchymal-like phenotype promoted by Smarcd3/Baf60c expression resulted in gene expression changes in human mammary epithelial cells similar to that of claudin-low triple-negative breast cancer cells. These mammary epithelial cells expressing Smarcd3/Baf60c had upregulated Wnt5a expression. Inhibition of Wnt5a by either RNAi knockdown or blocking antibody reversed Smarcd3/Baf60c-induced EMT. Thus, Smarcd3/Baf60c epigenetically regulates EMT by activating WNT signaling pathways.  相似文献   

9.
10.
11.
Pathways involved in DCIS stem and progenitor signalling are poorly understood yet are critical to understand DCIS biology and to develop new therapies. Notch and ErbB1/2 receptor signalling cross talk has been demonstrated in invasive breast cancer, but their role in DCIS stem and progenitor cells has not been investigated. We have utilised 2 DCIS cell lines, MCF10DCIS.com (ErbB2-normal) and SUM225 (ErbB2-overexpressing) and 7 human primary DCIS samples were cultured in 3D matrigel and as mammospheres in the presence, absence or combination of the Notch inhibitor, DAPT, and ErbB1/2 inhibitors, lapatinib or gefitinib. Western blotting was applied to assess downstream signalling. In this study we demonstrate that DAPT reduced acini size and mammosphere formation in MCF10DCIS.com whereas there was no effect in SUM225. Lapatinb reduced acini size and mammosphere formation in SUM225, whereas mammosphere formation and Notch1 activity were increased in MCF10DCIS.com. Combined DAPT/lapatinib treatment was more effective at reducing acini size in both DCIS cell lines. Mammosphere formation in cell lines and human primary DCIS was reduced further by DAPT/lapatinib or DAPT/gefitinib regardless of ErbB2 receptor status. Our pre-clinical human models of DCIS demonstrate that Notch and ErbB1/2 both play a role in DCIS acini growth and stem cell activity. We report for the first time that cross talk between the two pathways in DCIS occurs regardless of ErbB2 receptor status and inhibition of Notch and ErbB1/2 was more efficacious than either alone. These data provide further understanding of DCIS biology and suggest treatment strategies combining Notch and ErbB1/2 inhibitors should be investigated regardless of ErbB2 receptor status.  相似文献   

12.
13.
14.
Disruption of the transforming growth factor-β (TGF-β) pathway is observed in the majority of cancers. To further understand TGF-β pathway inactivation in cancer, we stably expressed the v-ErbA oncoprotein in TGF-β responsive cells. v-ErbA participates in erythroleukemic transformation of cells induced by the avian erythroblastosis virus (AEV). Here we demonstrate that expression of v-ErbA was sufficient to antagonize TGF-β–induced cell growth inhibition and that dysregulation of TGF-β signaling required that v-ErbA associate with the Smad4 which sequesters Smad4 in the cytoplasm. We also show that AEV-transformed erythroleukemia cells were resistant to TGF-β–induced growth inhibition and that TGF-β sensitivity could be recovered by reducing v-ErbA expression. Our results reveal a novel mechanism for oncogenic disruption of TGF-β signaling and provide a mechanistic explanation of v-ErbA activity in AEV-induced erythroleukemia.  相似文献   

15.
Embryonic stem (ES) cells present an excellent system for addressing the relevance of our current knowledge about how cell fate is determined and how cells integrate multiple signals into a single outcome as a function of time. Many of the factors that mediate these phenomena have been discovered through classical embryological experiments and are organized into several major signal transduction pathways including TGF-β/BMP, Jak-STAT, Hedgehog, Wnt, Notch and FGF/MAPK.1 This review will summarize the current understanding of TGF-β signaling in ES and focus on early embryological roles of the TGF-β member, GDF-3. GDF-3 is associated with the undifferentiated state of ES cells and two recent and contradictory reports examined the function and mechanism of GDF-3 in the context of both stem cells and early embryonic differentiations. While Levine and Brivanlou found that GDF-3 inhibits its own subfamily members (the BMPs), Chen and colleagues found that GDF-3 acts as a nodal-like TGF-β ligand. These combined findings raise the intriguing possibility that GDF-3 acts as a bi-functional protein, to regulate the balance between the two modes of TGF-β signaling.  相似文献   

16.
Estrogen signaling plays a critical role in the pathogenesis of breast cancer. Because the majority of breast carcinomas express the estrogen receptor ERα, endocrine therapy that impedes estrogen-ER signaling reduces breast cancer mortality and has become a mainstay of breast cancer treatment. However, patients remain at continued risk of relapse for many years after endocrine treatment. It has been proposed that cancer recurrence may be attributed to cancer stem cells (CSCs)/tumor-initiating cells (TICs). Previous studies in breast cancer have shown that such cells can be enriched and propagated in vitro by culturing the cells in suspension as mammospheres/tumorspheres. Here we established tumorspheres from ERα-positive human breast cancer cell line MCF7 and investigated their response to antiestrogens Tamoxifen and Fulvestrant. The tumorsphere cells express lower levels of ERα and are more tumorigenic in xenograft assays than the parental cells. Both 4-hydroxytamoxifen (4-OHT) and Fulvestrant attenuate tumorsphere cell proliferation, but only 4-OHT at high concentrations interferes with sphere formation. However, treated tumorsphere cells retain the self-renewal capacity. Upon withdrawal of antiestrogens, the treated cells resume tumorsphere formation and their tumorigenic potential remains undamaged. Depletion of ERα shows that ERα is dispensable for tumorsphere formation and xenograft tumor growth in mice. Surprisingly, ERα-depleted tumorspheres display heightened sensitivity to 4-OHT and their sphere-forming capacity is diminished after the drug is removed. These results imply that 4-OHT may inhibit cellular targets besides ERα that are essential for tumorsphere growth, and provide a potential strategy to sensitize tumorspheres to endocrine treatment.  相似文献   

17.

Introduction

Normal and malignant breast tissue contains a rare population of multi-potent cells with the capacity to self-renew, referred to as stem cells, or tumor initiating cells (TIC). These cells can be enriched by growth as “mammospheres” in three-dimensional cultures.

Objective

We tested the hypothesis that human bone-marrow derived mesenchymal stem cells (MSC), which are known to support tumor growth and metastasis, increase mammosphere formation.

Results

We found that MSC increased human mammary epithelial cell (HMEC) mammosphere formation in a dose-dependent manner. A similar increase in sphere formation was seen in human inflammatory (SUM149) and non-inflammatory breast cancer cell lines (MCF-7) but not in primary inflammatory breast cancer cells (MDA-IBC-3). We determined that increased mammosphere formation can be mediated by secreted factors as MSC conditioned media from MSC spheroids significantly increased HMEC, MCF-7 and SUM149 mammosphere formation by 6.4 to 21-fold. Mammospheres grown in MSC conditioned media had lower levels of the cell adhesion protein, E-cadherin, and increased expression of N-cadherin in SUM149 and HMEC cells, characteristic of a pro-invasive mesenchymal phenotype. Co-injection with MSC in vivo resulted in a reduced latency time to develop detectable MCF-7 and MDA-IBC-3 tumors and increased the growth of MDA-IBC-3 tumors. Furthermore, E-cadherin expression was decreased in MDA-IBC-3 xenografts with co-injection of MSC.

Conclusions

MSC increase the efficiency of primary mammosphere formation in normal and malignant breast cells and decrease E-cadherin expression, a biologic event associated with breast cancer progression and resistance to therapy.  相似文献   

18.
Background: There is an unmet need to identify biomarkers that directly reflect response to adjuvant radiotherapy (RT). Circulating epithelial tumor cells (CETCs) represent the liquid component of solid tumors and are responsible for metastatic relapse. CETC subsets with cancer stem cell characteristics, circulating cancer stem cells (cCSCs), play a pivotal role in the metastatic cascade. Monitoring the most aggressive subpopulation of CETCs could reflect the aggressiveness of the remaining tumor burden. There is limited data on the detection and monitoring changes in CETC and cCSC numbers during RT in early breast cancer.Methods: CETC numbers were analyzed prior to, at midterm and at the end of RT in 52 primary non-metastatic breast cancer patients. Hormone receptor status was determined in CETCs prior to and at the end of RT. For the identification of cCSCs cell suspensions from the peripheral blood of patients were cultured in vitro under conditions favoring growth of tumorspheres.Results: Hormone receptor status in CETCs before RT was comparable to that in primary tumor tissue. Prior to RT numbers of CETCs correlated with aggressiveness of primary tumors. cCSCs could be successfully identified and monitored during RT. Prior to RT patients treated with neoadjuvant chemotherapy had significantly higher numbers of CETCs and tumorspheres compared to patients after adjuvant chemotherapy. During RT, the number of CETCs decreased continuously in patients after neoadjuvant chemotherapy but not after adjuvant chemotherapy.Conclusion: Monitoring the number of CETCs and the CETC subset with cancer stem cell properties during RT may provide additional clinically useful prognostic information.  相似文献   

19.
The emergence of cancer stem cell theory has profound implications for cancer chemoprevention and therapy. Cancer stem cells give rise to the tumor bulk through continuous self-renewal and differentiation. Understanding the mechanisms that regulate self-renewal is of greatest importance for discovery of anticancer drugs targeting cancer stem cells. Naturally occurring dietary compounds have received increasing attention in cancer chemoprevention. The anticancer effects of many dietary components have been reported for both in vitro and in vivo studies. Recently, a number of studies have found that several dietary compounds can directly or indirectly affect cancer stem cell self-renewal pathways. Herein we review the current knowledge of most common natural dietary compounds for their impact on self-renewal pathways and potential effect against cancer stem cells. Three pathways (Wnt/β-catenin, Hedgehog and Notch) are summarized for their functions in self-renewal of cancer stem cells. The dietary compounds, including curcumin, sulforaphane, soy isoflavone, epigallocatechin-3-gallate, resveratrol, lycopene, piperine and vitamin D3, are discussed for their direct or indirect effect on these self-renewal pathways. Curcumin and piperine have been demonstrated to target breast cancer stem cells. Sulforaphane has been reported to inhibit pancreatic tumor-initiating cells and breast cancer stem cells. These studies provide a basis for preclinical and clinical evaluation of dietary compounds for chemoprevention of cancer stem cells. This may enable us to discover more preventive strategies for cancer management by reducing cancer resistance and recurrence and improving patient survival.  相似文献   

20.
We have examined whether the development of embryonic muscle fiber type is regulated by competing influences between Hedgehog and TGF-β signals, as previously shown for development of neuronal cell identity in the neural tube. We found that ectopic expression of Hedgehogs or inhibition of protein kinase A in zebrafish embryos induces slow muscle precursors throughout the somite but muscle pioneer cells only in the middle of the somite. Ectopic expression in the notochord of Dorsalin-1, a member of the TGF-β superfamily, inhibits the formation of muscle pioneer cells, demonstrating that TGF-β signals can antagonize the induction of muscle pioneer cells by Hedgehog. We propose that a Hedgehog signal first induces the formation of slow muscle precursor cells, and subsequent Hedgehog and TGF-β signals exert competing positive and negative influences on the development of muscle pioneer cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号