首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Glycosylation is one of the most important post-translational modifications of proteins, known to be involved in pathogen recognition, innate immune response and protection of epithelial membranes. However, when compared to the tools and databases available for the processing of high-throughput proteomic data, the glycomic domain is severely lacking. While tools to assist the analysis of mass spectrometry (MS) and HPLC are continuously improving, there are few resources available to support liquid chromatography (LC)-MS/MS techniques for glycan structure profiling. Here, we present a platform for presenting oligosaccharide structures and fragment data characterized by LC-MS/MS strategies. The database is annotated with high-quality datasets and is designed to extend and reinforce those standards and ontologies developed by existing glycomics databases. AVAILABILITY: http://www.unicarb-db.org  相似文献   

2.
Glycosylation is one of the most prominent and extensively studied protein post-translational modifications. However, traditional proteomic studies at the peptide level (bottom-up) rarely characterize intact glycopeptides (glycosylated peptides without removing glycans), so no glycoprotein heterogeneity information is retained. Intact glycopeptide characterization, on the other hand, provides opportunities to simultaneously elucidate the glycan structure and the glycosylation site needed to reveal the actual biological function of protein glycosylation. Recently, significant improvements have been made in the characterization of intact glycopeptides, ranging from enrichment and separation, mass spectroscopy (MS) detection, to bioinformatics analysis. In this review, we recapitulated currently available intact glycopeptide characterization methods with respect to their advantages and limitations as well as their potential applications.  相似文献   

3.
Introduction: Glycosylation at different hydroxyl groups of flavonoids and acylation of sugar moieties are ubiquitous modifications observed in plants. These modifications give rise to simultaneous presence of numerous isomeric and isobaric compounds in tissues and extracts thereof. Objective: To develop UPLC‐MS method capable for resolution of isomeric malonylated glycoconjugates of flavonoids and recognition of structural differences. Methodology: Flavonoid glycoconjugates were extracted from leaves of blue lupin (Lupinus angustifolius L.) plants with 80% methanol. Extracts were analysed using ultraperformance liquid chromatography (UPLC) combined with tandem (quadrupole–time of flight, QToF) mass spectrometry. Results: Differentiation of malonylated glycosides of isoflavones and flavones is demonstrated in this paper. The use of UPLC‐MS/MS enabled 38 flavonoid conjugates to be distinguished, including the discrimination of five different isomers of a single 3′‐O‐methylluteolin glycoside. Additionally, pseudo MS3 experiments (CID spectra registered at high cone voltages) enabled confirmation of the aglycone structures by comparison of their spectra with those obtained from aglycone standards. Conclusions: Application of UPLC‐MS/MS allows separation and identification numerous positional isomers of malonylated glycosides of flavonoids and isoflavonoids in plant material. Provided there is strict control of the MS ionisation parameters, this method may be useful for preparation of a flavonoids spectra database, enabling the inter‐laboratory comparison of analytical results. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

4.
Glycosylation modifies the physicochemical properties and protein binding functions of glycoconjugates. These modifications are biosynthesized in the endoplasmic reticulum and Golgi apparatus by a series of enzymatic transformations that are under complex control. As a result, mature glycans on a given site are heterogeneous mixtures of glycoforms. This gives rise to a spectrum of adhesive properties that strongly influences interactions with binding partners and resultant biological effects. In order to understand the roles glycosylation plays in normal and disease processes, efficient structural analysis tools are necessary. In the field of glycomics, liquid chromatography/mass spectrometry (LC/MS) is used to profile the glycans present in a given sample. This technology enables comparison of glycan compositions and abundances among different biological samples, i.e. normal versus disease, normal versus mutant, etc. Manual analysis of the glycan profiling LC/MS data is extremely time-consuming and efficient software tools are needed to eliminate this bottleneck. In this work, we have developed a tool to computationally model LC/MS data to enable efficient profiling of glycans. Using LC/MS data deconvoluted by Decon2LS/DeconTools, we built a list of unique neutral masses corresponding to candidate glycan compositions summarized over their various charge states, adducts and range of elution times. Our work aims to provide confident identification of true compounds in complex data sets that are not amenable to manual interpretation. This capability is an essential part of glycomics work flows. We demonstrate this tool, GlycReSoft, using an LC/MS dataset on tissue derived heparan sulfate oligosaccharides. The software, code and a test data set are publically archived under an open source license.  相似文献   

5.
Glycosylation is one of the most important posttranslational modifications of proteins and plays essential roles in various biological processes. Aberration in the glycan moieties of glycoproteins is associated with many diseases. It is especially critical to develop the rapid and sensitive methods for analysis of aberrant glycoproteins associated with diseases. Mass spectrometry (MS) has become a powerful tool for glycoprotein analysis. Especially, tandem mass spectrometry can provide highly informative fragments for structural identification of glycoproteins. This review provides an overview of the development of MS technologies and their applications in identification of abnormal glycoproteins and glycans in human serum to screen cancer biomarkers in recent years.  相似文献   

6.
Glycosylation, the attachment of carbohydrates to proteins and lipids, influences many biological processes. Despite detailed characterization of the cellular components that carry out glycosylation, a complete picture of a cell's glycoconjugates remains elusive because of the challenges inherent in characterizing complex carbohydrates. This article reviews large-scale techniques for accelerating progress in glycobiology.  相似文献   

7.
Formalin-fixed, paraffin-embedded (FFPE) tissue banks represent an invaluable resource for biomarker discovery. Recently, the combination of full-length protein extraction, GeLC-MS/MS analysis, and spectral counting quantification has been successfully applied to mine proteomic information from these tissues. However, several sources of variability affect these samples; among these, the duration of the fixation process is one of the most important and most easily controllable ones. To assess its influence on quality of GeLC-MS/MS data, the impact of fixation time on efficiency of full-length protein extraction efficiency and on quality of label-free quantitative data was evaluated. As a result, although proteins were successfully extracted from FFPE liver samples fixed for up to eight days, fixation time appeared to negatively influence both protein extraction yield and GeLC-MS/MS quantitative proteomic data. Particularly, MS identification efficiency decreased with increasing fixation times. Moreover, amino acid modifications putatively induced by formaldehyde were detected and characterized. These results demonstrate that proteomic information can be achieved also from tissue samples fixed for relatively long times, but suggest that variations in fixation time need to be carefully taken into account when performing proteomic biomarker discovery studies on fixed tissue archives.  相似文献   

8.
Summary The distribution of glycoconjugates in differentiating rat testis was investigated by fluorescein labeled lectins during embryogenesis and postnatal development. Double immunofluorescence with rhodamine coupled laminin antibodies was used to delineate testicular cords from the interstitium in embryonic testes. Rat testis was found to be rich in various glycoconjugates, with distinct differentiation-related changes in their distribution. All types of germ cells contained carbohydrate rich compounds in their cytoplasm. Glycosylation in the embryonic testis was different from that in the adult rat. At an early stage of testicular differentiation, the labeling of germ cells and other testicular cells was almost identical. The lectin binding patterns of embryonic germ cells and somatic cells were related to the developmental age of the animal, with a graded disappearance of galactose containing glycoconjugates in embryonal spermatogonia. Spermatogenic cell differentiation was characterized by striking changes in lectin binding patterns of germ cells, particularly in the acrosomes of developing spermatids, in relation to their functional activation and the emergence of adult type of glycosylation during the postnatal maturation of the testis. As the knowledge of regular glycosylation throughout tissue differentiation is of significance for the analysis of aberrant glycosylations occurring in pathologic disorders, our findings suggest the usefulness of lectin histochemistry for the studies on germ cell differentiation.  相似文献   

9.
The distribution of glycoconjugates in differentiating rat testis was investigated by fluorescein labeled lectins during embryogenesis and postnatal development. Double immunofluorescence with rhodamine coupled laminin antibodies was used to delineate testicular cords from the interstitium in embryonic testes. Rat testis was found to be rich in various glycoconjugates, with distinct differentiation-related changes in their distribution. All types of germ cells contained carbohydrate rich compounds in their cytoplasm. Glycosylation in the embryonic testis was different from that in the adult rat. At an early stage of testicular differentiation, the labeling of germ cells and other testicular cells was almost identical. The lectin binding patterns of embryonic germ cells and somatic cells were related to the developmental age of the animal, with a graded disappearance of galactose containing glycoconjugates in embryonal spermatogonia. Spermatogenic cell differentiation was characterized by striking changes in lectin binding patterns of germ cells, particularly in the acrosomes of developing spermatids, in relation to their functional activation and the emergence of adult type of glycosylation during the postnatal maturation of the testis. As the knowledge of regular glycosylation throughout tissue differentiation is of significance for the analysis of aberrant glycosylations occurring in pathologic disorders, our findings suggest the usefulness of lectin histochemistry for the studies on germ cell differentiation.  相似文献   

10.
Quantitative proteome profiling using stable isotope protein tagging and automated tandem mass spectrometry (MS/MS) is an emerging technology with great potential for the functional analysis of biological systems and for the detection of clinical diagnostic or prognostic marker proteins. Owing to the enormous complexity of proteomes, their comprehensive analysis is an as-yet-unresolved technical challenge. However, biologically or clinically important information can be obtained if specific, information-rich protein classes, or sub-proteomes, are isolated and analyzed. Glycosylation is the most common post-translational modification. Here we describe a method for the selective isolation, identification and quantification of peptides that contain N-linked carbohydrates. It is based on the conjugation of glycoproteins to a solid support using hydrazide chemistry, stable isotope labeling of glycopeptides and the specific release of formerly N-linked glycosylated peptides via peptide- N-glycosidase F (PNGase F). The recovered peptides are then identified and quantified by MS/MS. We applied the approach to the analysis of plasma membrane proteins and proteins contained in human blood serum.  相似文献   

11.
糖基化修饰是生物体内最常见、最重要的蛋白质翻译后修饰之一.哺乳动物体内超过50%的蛋白质都会发生糖基化修饰.糖蛋白广泛分布于各种组织的细胞膜表面,执行着重要的生物学功能.随着高通量、高灵敏度和高分辨率的蛋白质组学时代的来临,许多基于串级质谱技术解析糖链结构的生物数据库和分析软件也亦应运而生.本文综述了目前文献中最常用的糖类生物信息学资源,包括各种糖蛋白的数据库以及质谱解析糖类的相关工具和新技术、新方法.  相似文献   

12.
Pasa-Tolić L  Masselon C  Barry RC  Shen Y  Smith RD 《BioTechniques》2004,37(4):621-4, 626-33, 636 passim
An accurate mass and time (AMT) tag approach for proteomic analyses has been developed over the past several years to facilitate comprehensive high-throughput proteomic measurements. An AMT tag database for an organism, tissue, or cell line is established by initially performing standard shotgun proteomic analysis and, most importantly, by validating peptide identifications using the mass measurement accuracy of Fourier transform ion cyclotron resonance (FTICR) mass spectrometry (MS) and liquid chromatography (LC) elution time constraint. Creation of an AMT tag database largely obviates the need for subsequent MS/MS analyses, and thus facilitates high-throughput analyses. The strength of this technology resides in the ability to achieve highly efficient and reproducible one-dimensional reversed-phased LC separations in conjunction with highly accurate mass measurements using FTICR MS. Recent improvements allow for the analysis of as little as picrogram amounts of proteome samples by minimizing sample handling and maximizing peptide recovery. The nanoproteomics platform has also demonstrated the ability to detect >10(6) differences in protein abundances and identify more abundant proteins from subpicogram amounts of samples. The AMT tag approach is poised to become a new standard technique for the in-depth and high-throughput analysis of complex organisms and clinical samples, with the potential to extend the analysis to a single mammalian cell.  相似文献   

13.
The proximal convoluted tubule is the primary site of renal fluid, electrolyte, and nutrient reabsorption, processes that consume large amounts of adenosine‐5′‐triphosphate. Previous proteomic studies have profiled the adaptions that occur in this segment of the nephron in response to the onset of metabolic acidosis. To extend this analysis, a proteomic workflow was developed to characterize the proteome of the mitochondrial inner membrane of the rat renal proximal convoluted tubule. Separation by LC coupled with analysis by MS/MS (LC‐MS/MS) confidently identified 206 proteins in the combined samples. Further proteomic analysis identified 14 peptides that contain an N‐?‐acetyl‐lysine, seven of which are novel sites. This study provides the first proteomic profile of the mitochondrial inner membrane proteome of this segment of the rat renal nephron. The MS data have been deposited in the ProteomeXchange with the identifier PXD000121.  相似文献   

14.
Separation of proteins by two-dimensional electrophoresis and following mass spectrometry (MS) is now a conventional technique for proteomic analysis. For proteomic analysis of a certain tissue with a limited information of primary structures of proteins, we have developed an analytical system for peptide mass fingerprinting in gene products in the testis of the ascidian Ciona intestinalis. Ciona sperm proteins were separated by two-dimensional gel electrophoresis and the tryptic fragments were subjected to MALDI-TOF/MS. The mass pattern was searched against on-line databases but resulted in less identification of these proteins. We have constructed a MS database from Ciona testis ESTs and the genome draft sequence, along with a newly devised, perl-based search program PerMS for peptide mass fingerprinting. This system could identify more than 80% of Ciona sperm proteins, suggesting that it could be widely applied for proteomic analysis for a limited tissue with less genomic information.  相似文献   

15.
Fourier transform tandem mass spectrometry (MS/MS) provides high mass accuracy, high sensitivity, and analytical versatility and has therefore emerged as an indispensable tool for structural elucidation of biomolecules. Glycosylation is one of the most common posttranslational modifications, occurring in ~50% of proteins. However, due to the structural diversity of carbohydrates, arising from non-template driven biosynthesis, achievement of detailed structural insight is highly challenging. This review briefly discusses carbohydrate sample preparation and ionization methods, and highlights recent developments in alternative high-resolution MS/MS strategies, including infrared multiphoton dissociation (IRMPD), electron capture dissociation (ECD), and electron detachment dissociation (EDD), for carbohydrates with a focus on glycans and proteoglycans from mammalian glycoproteins.  相似文献   

16.
Single-cell analysis is essential for understanding the processes of cell differentiation and metabolic specialisation in rare cell types. The amount of single proteins in single cells can be as low as one copy per cell and is for most proteins in the attomole range or below; usually considered as insufficient for proteomic analysis. The development of modern mass spectrometers possessing increased sensitivity and mass accuracy in combination with nano-LC–MS/MS now enables the analysis of single-cell contents. In Arabidopsis thaliana, we have successfully identified nine unique proteins in a single-cell sample and 56 proteins from a pool of 15 single-cell samples from glucosinolate-rich S-cells by nanoLC–MS/MS proteomic analysis, thus establishing the proof-of-concept for true single-cell proteomic analysis. Dehydrin (ERD14_ARATH), two myrosinases (BGL37_ARATH and BGL38_ARATH), annexin (ANXD1_ARATH), vegetative storage proteins (VSP1_ARATH and VSP2_ARATH) and four proteins belonging to the S-adenosyl-l-methionine cycle (METE_ARATH, SAHH1_ARATH, METK4_ARATH and METK1/3_ARATH) with associated adenosine kinase (ADK1_ARATH), were amongst the proteins identified in these single-S-cell samples. Comparison of the functional groups of proteins identified in S-cells with epidermal/cortical cells and whole tissue provided a unique insight into the metabolism of S-cells. We conclude that S-cells are metabolically active and contain the machinery for de novo biosynthesis of methionine, a precursor for the most abundant glucosinolate glucoraphanine in these cells. Moreover, since abundant TGG2 and TGG1 peptides were consistently found in single-S-cell samples, previously shown to have high amounts of glucosinolates, we suggest that both myrosinases and glucosinolates can be localised in the same cells, but in separate subcellular compartments. The complex membrane structure of S-cells was reflected by the presence of a number of proteins involved in membrane maintenance and cellular organisation.  相似文献   

17.
Bacterial cell surface layers, referred to simply as S-layers, have been described for all major phylogenetic groups of bacteria, which may indicate their pivotal role for a bacterium in its natural habitat. They have the unique ability to assemble into two-dimensional crystalline arrays that completely cover the bacterial cells. Glycosylation represents the most frequent modification of S-layer proteins. S-layer glycoproteins constitute a class of glycoconjugates first isolated in the mid-1970s, but S-layer glycoprotein research is still being regarded as an "exotic field of glycobiology," possibly because of its "noneukaryotic" character. Extensive work over the past 30 years provided evidence of an enormous diversity of S-layer glycoproteins that have been created in nature over 3 billion years of prokaryotic evolution. These glycoconjugates are substantially different from eukaryotic glycoproteins, with regard to both composition and structure; nevertheless, some general structural concepts may be deduced. The awareness of the high application potential of S-layer glycoproteins, especially in combination with their intrinsic cell surface display feature, in the field of modern nanobiotechnology as a base for glycoengineering has recently led to the investigation of the S-layer protein glycosylation process at the molecular level, which has lagged behind the structural studies due to the lack of suitable molecular tools. From that work an even more interesting picture of this class of glycoconjugates is emerging. The availability of purified enzymes from S-layer glycan biosynthesis pathways exhibiting increased stabilities and/or rare sugar specificities in conjunction with preliminary genomic data on S-layer glycan biosynthesis clusters will pave the way for the rational design of S-layer neoglycoproteins.  相似文献   

18.
Glycosylation, which represents the most complex posttranslational modification (PTM) event during protein maturation, has a vital role in biological processes. Glycan biosynthesis is orchestrated by numerous glycosyltransferases, each displaying different selectivities for multiple reaction sites. The precise specificities of these enzymes have been difficult to study because of the lack of available substrates of defined structure and problems associated with the analyses. Moreover, the analysis of glycans is extremely difficult owing to the structural complexity of the glycan chain. Here we describe a new strategy for the fine characterization of enzyme specificity using substrate isotopomer assemblies. Because isotopomer assemblies contain a sugar residue that is position-specifically labeled with a stable isotope, we can use tandem mass spectrometry (MS/MS) to assign the structure of positional isomers generated by glycosylation. We demonstrated the analysis of substrate specificities of five beta4-galactosyltransferases (beta4GalT-I, -II, -III, -IV and -V) using our strategy.  相似文献   

19.
Recently, dramatic progress has been achieved in expanding the sensitivity, resolution, mass accuracy, and scan rate of mass spectrometers able to fragment and identify peptides through MS/MS. Unfortunately, this enhanced ability to acquire proteomic data has not been accompanied by a concomitant increase in the availability of flexible tools allowing users to rapidly assimilate, explore, and analyze this data and adapt to various experimental workflows with minimal user intervention. Here we fill this critical gap by providing a flexible relational database called PeptideDepot for organization of expansive proteomic data sets, collation of proteomic data with available protein information resources, and visual comparison of multiple quantitative proteomic experiments. Our software design, built upon the synergistic combination of a MySQL database for safe warehousing of proteomic data with a FileMaker‐driven graphical user interface for flexible adaptation to diverse workflows, enables proteomic end‐users to directly tailor the presentation of proteomic data to the unique analysis requirements of the individual proteomics lab. PeptideDepot may be deployed as an independent software tool or integrated directly with our high throughput autonomous proteomic pipeline used in the automated acquisition and post‐acquisition analysis of proteomic data.  相似文献   

20.
Though the rhesus monkey is one of the most valuable non-human primate animal models for various human diseases because of its manageable size and genetic and proteomic similarities with humans, proteomic research using rhesus monkeys still remains challenging due to the lack of a complete protein sequence database and effective strategy. To investigate the most effective and high-throughput proteomic strategy, comparative data analysis was performed employing various protein databases and search engines. The UniProt databases of monkey, human, bovine, rat and mouse were used for the comparative analysis and also a universal database with all protein sequences from all available species was tested. At the same time, de novo sequencing was compared to the SEQUEST search algorithm to identify an optimal work flow for monkey proteomics. Employing the most effective strategy, proteomic profiling of monkey organs identified 3,481 proteins at 0.5% FDR from 9 male and 10 female tissues in an automated, high-throughput manner. Data are available via ProteomeXchange with identifier PXD001972. Based on the success of this alternative interpretation of MS data, the list of proteins identified from 12 organs of male and female subjects will benefit future rhesus monkey proteome research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号