首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Levels of unintegrated viral DNA made in Fv-1b/b (SIM.R, JLS-V9) and Fv-1n/n (NIH/3T3) cell lines after infection with N- or B-tropic murine leukemia virus (MuLV) have been measured. Different forms of viral DNA were sedimented on neutral sucrose or ethidium bromide-cesium chloride density gradients and detected by hybridization with complementary DNA. It was found that the major viral DNA species made in Fv-1 permissive or resistant cells was sedimenting at 20S on neutral sucrose gradient. Levels of this 20S viral DNA species were not significantly different in both systems. However levels of closed circular (form I) viral DNA separated on ethidium bromide-cesium chloride gradients were found to be decreased in Fv-1 resistant cells. Various species of viral DNA were also analyzed by the agarose gel-DNA transfer procedure of Southern. The major viral DNA species was found to migrate as a double-stranded linear DNA of 5.7 x 10(6) daltons. The molecular weight of linear viral DNA molecules extracted from Fv-1 permissive or resistant cells appeared to be the same. Levels of this linear viral DNA were almost identical in both systems except in B-tropic MuLV-infected resistant NIH/3T3 cells in which a moderate decrease has been measured. Two closed circular viral DNA species were observed by this technique. Their levels were markedly decreased in Fv-1 resistant cells. Our results indicate that the Fv-1 restriction does not grossly affect the formation of linear double-stranded viral DNA, but prevents the accumulation of closed circular viral DNA. Therefore the Fv-1 gene product could allow the synthesis of a normal linear viral DNA but interfere with the formation of supercoiled viral DNA. Alternatively, it could promote the synthesis of a faulty linear viral DNA whose defect (yet undetected) would prevent its circularization. In any case, the Fv-1 restriction mechanism appears to occur before the integration event itself.  相似文献   

2.
3.
We have investigated the titration patterns of murine leukemia viruses on mouse embryo cultures derived from a pair of congenic strains differing at the Fv-1 locus. XC plaque and infectious center assays carried out with N- and B-tropic viruses on both SIM (Fv-1nn) and SIM.R(Fv-1bb) host cells yielded results that were best approximated by Poisson one-hit curves. Titration curves of N-tropic virus by direct XC plaque assay were linear and parallel on the different hosts, with titers 1.8 to 2.7 log10 lower on SIM.R and on (SIM X SIM.R)F1 than on SIM cells; similar linear and parallel curves were found for B-tropic virus, with titers 1.4 to 2.0 log10 lower on SIM and (SIM XSIM-R)F1 than on SIM-R cells. In the infectious center assays, the proportion of infected cells was linearly related to multiplicity of infection on both permissive (N- on SIM and B- on SIM.R) restrictive (B- on SIM and N- on SIM.R) genotypes at multiplicities of infection below 0.5; the line relating the variables was about 1 log10 lower in the restrictive than in the permissive situations. At multiplicities of infection where the proportion of infected cells reached a plateau, differences between the results on permissive and restrictive genotypes were considerably reduced. This appeared to be due to the action of non-Fv-1 factors in permissive host. We conclude that the major action of the restrictive allele at the Fv-1 locus in this system is to reduce the probability of successful murine leukemia virus infection without a change in hitness.  相似文献   

4.
The murine gene Fv-1 exerts a major control over the replication of Friend murine leukemia virus (F-MuLV). An effect of the gene product has been determined to be at the level of accumulation and integration of viral DNA. Aphidicolin, an inhibitor of eucaryotic DNA polymerase alpha, was studied in murine cells infected either permissively or nonpermissively with regard to the Fv-1 genotype. Results indicated that inhibition of DNA polymerase alpha did not affect the accumulation of form III viral DNA in either permissive or nonpermissive cells. However, the normal accumulation of circular form I DNA in permissive cells was inhibited. The block in the accumulation of form I DNA resembled that occurring in some F-MuLV Fv-1-nonpermissive infections. Additionally, aphidicolin treatment resulted in the accumulation of novel low-molecular-weight viral DNA species, normally detectable in a nonpermissive infection of NIH cells with B-tropic F-MuLV. These data suggest that the Fv-1 gene product may interact with host DNA polymerase alpha to prevent viral replication.  相似文献   

5.
Supercoiled plasmid molecules sensitive to nicking by RNase or alkali have been shown to accumulate during replication of colicinogenic factor E1 (ColE1) in Escherichia coli in the presence of chloramphenicol. The possibility that this sensitivity is due to the covalent integration of RNA molecules during the synthesis of plasmid DNA is supported by the demonstration that (a) strands of supercoiled ColE1 newly replicated in the presence of chloramphenicol exhibit sensitivity to RNase and alkali treatment, while (b) RNase- and alkali-resistant circular strands of plasmid DNA synthesized either before or after the addition of chloramphenicol remain resistant during subsequent replication of the plasmid in the presence of chloramphenicol. Furthermore, newly made plasmid DNA strands cannot act as templates for further rounds of replication if they possess an RNA segment. The existence of a repair mechanism for the removal of the RNA segment from supercoiled ColE1 DNA molecules was demonstrated by pulse-chase experiments. It was observed that the proportion of RNase-sensitive molecules is considerably higher in pulse-labeled as compared to continuously labeled ColE1 DNA synthesized in the presence of chloramphenicol, and the proportion of pulse-labeled ColE1 DNA that is RNase sensitive is greatly reduced during a chase period. Removal of the RNA segment is also carried out effectively at the restrictive temperature in temperature-sensitive DNA polymerase I mutants. In a survey of other bacterial mutants defective in the repair of damaged DNA, a substantial increase in the rate of accumulation of RNase-and alkali-sensitive supercoiled ColE1 DNA in the presence of chloramphenicol was observed in recBC and uvrA mutants in comparison with the wild-type strains.  相似文献   

6.
To identify specific cellular factors which could be required during the synthesis of retroviral DNA, we have studied the replication of murine leukemia virus in mouse cells temperature sensitive for cell DNA synthesis (M. L. Slater and H. L. Ozer, Cell 7:289-295, 1976) and in several of their revertants. This mutation has previously been mapped on the X chromosome. We found that a short incubation of mutant cells at a nonpermissive temperature (39 degrees C) during the early part of the virus cycle (between 0- to 20-h postinfection) greatly inhibited virus production. This effect was not observed in revertant or wild-type cells. Molecular studies by the Southern transfer procedure of the unintegrated viral DNA synthesized in these cells at a permissive (33 degrees C) or nonpermissive temperature revealed that the levels of linear double-stranded viral DNA (8.8 kilobase pairs) were nearly identical in mutant or revertant cells incubated at 33 or 39 degrees C. However, the levels of two species of supercoiled viral DNA (with one or two long terminal repeats) were significantly lower in mutant cells incubated at 39 degrees C than in mutant cells incubated at 33 degrees C or in revertant cells incubated at 39 degrees C. Pulse-chase experiments showed that linear viral DNA made at 39 degrees C could not be converted into supercoiled viral DNA in mutant cells after a shift down to 33 degrees C. In contrast, such conversion was observed in revertant cells. Restriction endonuclease analysis did not detect differences in the structure of linear viral DNA made at 39 degrees C in mutant cells as compared to linear viral DNA isolated from the same cells at 33 degrees C. However, linear viral DNA made at 39 degrees C in mutant cells was poorly infectious in transfection assays. Taken together, these results strongly suggest that this X-linked gene, affecting mouse cell DNA synthesis, is operating in the early phase of murine leukemia virus replication. It seems to affect the level of production of unintegrated linear viral DNA only slightly while greatly reducing the infectivity of these molecules. In contrast, the accumulation of supercoiled viral DNA and subsequent progeny virus production are greatly reduced. Our pulse-chase experiments suggest that the apparent, but not yet identified, defect in linear viral DNA molecules might be responsible for their subsequent impaired circularization.  相似文献   

7.
Host restriction of friend leukemia virus; fate of input virion RNA   总被引:9,自引:0,他引:9  
M M Sveda  B N Fields  R Soeiro 《Cell》1974,2(4):271-277
Host restriction of oncogenesis by RNA tumor viruses may be studied in vitro by measuring the replication of the lymphatic leukemia component of the Friend Virus Complex (LLV-F) in either NIH-Swiss or Balb/C mouse embryo cells. These cells derive from mice differing at the Fv-1 locus, which controls the replication of all murine RNA leukemia viruses. Studies of early events in the replication of LLV-F were carried out by following the infection of permissive and restrictive mouse embryo cells by 32P labeled LLV-F. 32P labeled viral genome RNA rapidly becomes associated with cell nuclei and may be found integrated to the same extent with high molecular weight host DNA of either permissive or restrictive cells. These results suggest that Fv-1 mediated host restriction of LLV-F occurs at a step following integration of viral genome RNA into host DNA.Two other conclusions are suggested by these data. The nucleus appears to be the site of activation and synthesis of DNA of the infecting virus; and the “provirus”, at least transiently, is represented as an RNA-DNA hybrid molecule covalently integrated with host cell DNA.  相似文献   

8.
Replicating molecules of Simian virus 40 DNA labeled during a short pulse with [3H]thymidine have been fractionated by ultracentrifugation methods and the open circular form (DNA component II) has been characterized. The pulse-labeled DNA component II is a relatively small constituent (1 to 3%) of the pool of replicating molecules. Examination of the circular (18 S) and linear (16 S) strands of DNA component II by alkaline sedimentation and by degradation using exonuclease III of Escherichia coli reveals that the newly synthesized DNA is principally in the linear strand. Cleavage of pulse-labeled DNA component II by an fi+, R-factor restriction endonuclease from E. coli demonstrates that the interruption in the pulse-labeled strand is specifically located at the termination point for replication.During a chase period of 20 minutes the amount of DNA component II increases to about 6 to 8% of the total labeled viral DNA. The kinetics of formation of superhelical, DNA component I and disappearance of replicative intermediates are linear during the chase period. After several hours of continuous labeling of replicating viral DNA, the DNA component II pool consists mainly of molecules labeled in both strands with the interruption non-specifically located in either strand. These molecules probably arise by the random introduction of single-strand breaks in newly synthesized DNA component I. During short periods of continuous labeling with [3H]thymidine, the ratio of DNA components I to II increases as a function of the pulse duration. These results support a model for 8V 40 DNA replication in which the open circular form is a precursor of the superhelical form.  相似文献   

9.
W K Yang  D M Yang    J O Kiggans  Jr 《Journal of virology》1980,36(1):181-188
Formation of viral closed circular supercoiled DNA duplexes and production of progeny virus were both inhibited in cultured mouse cells treated with cycloheximide in the first 4 h of type C retrovirus infection. With different doses of cycloheximide to cause different degrees of inhibition, the number of viral supercoiled DNA duplexes detected in the cells at 11 h showed an apparent correlation with the amount of progeny virus produced in the 12- to 22-h period of infection. A slight accumulation of the full-genome linear duplex and an open circular duplex of viral DNA intermediate was observed in the cycloheximide-treated cells. Cycloheximide given to the cells during the time of conversion of viral DNA from linear to supercoiled duplex forms (6 to 11 h after virus inoculation) did not inhibit the conversion. These kinetic data suggest that a cycloheximide-sensitive metabolic process, probably early viral protein synthesis, is required for retrovirus replication and supercoiled viral DNA formation in the cell.  相似文献   

10.
Quantitative real-time PCR (qPCR) has become a gold standard for the quantification of nucleic acids and microorganism abundances, in which plasmid DNA carrying the target genes are most commonly used as the standard. A recent study showed that supercoiled circular confirmation of DNA appeared to suppress PCR amplification. However, to what extent to which different structural types of DNA (circular versus linear) used as the standard may affect the quantification accuracy has not been evaluated. In this study, we quantitatively compared qPCR accuracies based on circular plasmid (mostly in supercoiled form) and linear DNA standards (linearized plasmid DNA or PCR amplicons), using proliferating cell nuclear gene (pcna), the ubiquitous eukaryotic gene, in five marine microalgae as a model gene. We observed that PCR using circular plasmids as template gave 2.65-4.38 more of the threshold cycle number than did equimolar linear standards. While the documented genome sequence of the diatom Thalassiosira pseudonana shows a single copy of pcna, qPCR using the circular plasmid as standard yielded an estimate of 7.77 copies of pcna per genome whereas that using the linear standard gave 1.02 copies per genome. We conclude that circular plasmid DNA is unsuitable as a standard, and linear DNA should be used instead, in absolute qPCR. The serious overestimation by the circular plasmid standard is likely due to the undetected lower efficiency of its amplification in the early stage of PCR when the supercoiled plasmid is the dominant template.  相似文献   

11.
We have designed a YAC circularization vector, pCIRC3, allowing enrichment of the YAC DNA by exonuclease digestion of the linear yeast chromosomes. Due to the presence of P1 replicon sequences in this vector, the circular YACs would replicate as PACs in Escherischia coli.  相似文献   

12.
13.
Apicomplexans, including the pathogens Plasmodium and Toxoplasma, carry a nonphotosynthetic plastid of secondary endosymbiotic origin called the apicoplast. The P. falciparum apicoplast contains a 35 kb, circular DNA genome with limited coding capacity that lacks genes encoding proteins for DNA organization and replication. We report identification of a nuclear-encoded bacterial histone-like protein (PfHU) involved in DNA compaction in the apicoplast. PfHU is associated with apicoplast DNA and is expressed throughout the parasite's intra-erythocytic cycle. The protein binds DNA in a sequence nonspecific manner with a minimum binding site length of ~27 bp and a Kd of ~63 nM and displays a preference for supercoiled DNA. PfHU is capable of condensing Escherichia coli nucleoids in vivo indicating its role in DNA compaction. The unique 42 aa C-terminal extension of PfHU influences its DNA condensation properties. In contrast to bacterial HUs that bend DNA, PfHU promotes concatenation of linear DNA and inhibits DNA circularization. Atomic Force Microscopic study of PfHU–DNA complexes shows protein concentration-dependent DNA stiffening, intermolecular bundling and formation of DNA bridges followed by assembly of condensed DNA networks. Our results provide the first functional characterization of an apicomplexan HU protein and provide additional evidence for red algal ancestry of the apicoplast.  相似文献   

14.
G mouse cells were resistant to N- and NB-tropic Friend leukemia viruses and to B-tropic WN 1802B. Though the cells were resistant to focus formation by the Moloney isolate of murine sarcoma virus, they were relatively sensitive to helper component murine leukemia virus. To amphotropic murine leukemia virus and to focus formation by amphotropic murine sarcoma virus, G mouse cells were fully permissive. When the cell lines were established starting from the individual embryos, most cell lines were not resistant to the murine leukemia viruses. Only one resistant line was established. Cloning of this cell line indicated that the resistant cells constantly segregated sensitive cells during the culture; i.e., the G mouse cell cultures were probably always mixtures of sensitive and resistant cells. Among the sensitive cell clones, some were devoid of Fv-1 restriction. Such dually permissive cells, and also feral mouse-derived SC-1 cells, retained glucose-6-phosphate dehydrogenase-1 and apparently normal number 4 chromosomes. The loss of Fv-1 restriction in these mouse cells was not brought about by any gross structural changes in the vicinity of Fv-1 on number 4 chromosomes.  相似文献   

15.
Hot spot mutant p53 (mutp53) proteins exert oncogenic gain-of-function activities. Binding of mutp53 to DNA is assumed to be involved in mutp53-mediated repression or activation of several mutp53 target genes. To investigate the importance of DNA topology on mutp53-DNA recognition in vitro and in cells, we analyzed the interaction of seven hot spot mutp53 proteins with topologically different DNA substrates (supercoiled, linear and relaxed) containing and/or lacking mutp53 binding sites (mutp53BS) using a variety of electrophoresis and immunoprecipitation based techniques. All seven hot spot mutp53 proteins (R175H, G245S, R248W, R249S, R273C, R273H and R282W) were found to have retained the ability of wild-type p53 to preferentially bind circular DNA at native negative superhelix density, while linear or relaxed circular DNA was a poor substrate. The preference of mutp53 proteins for supercoiled DNA (supercoil-selective binding) was further substantiated by competition experiments with linear DNA or relaxed DNA in vitro and ex vivo. Using chromatin immunoprecipitation, the preferential binding of mutp53 to a sc mutp53BS was detected also in cells. Furthermore, we have shown by luciferase reporter assay that the DNA topology influences p53 regulation of BAX and MSP/MST1 promoters. Possible modes of mutp53 binding to topologically constrained DNA substrates and their biological consequences are discussed.  相似文献   

16.
The murine gene Fv-1 predominantly controls the outcome of infection by murine ecotropic retroviruses. The inhibition of virus replication by the Fv-1 gene product has been determined to be at an early stage in virus replication. Mechanistically, its effect appears to be on the accumulation of unintegrated proviral DNA or its integration or both. We investigated the synthesis of unintegrated proviral DNA, using several clones of B-, N-, or NB-tropic Friend murine leukemia virus. Our results indicate that the accumulation of B-tropic proviral DNA in NIH cells may be inhibited at either the level of linear (form III) or covalently closed circular DNA (form I), depending upon the degree of restriction of the clone of virus used. We confirmed that there is an effect of the Fv-1 gene on the accumulation of form I DNA of either B- or N-tropic Friend murine leukemia virus. However, the decrease in infectious centers effected by the Fv-1 gene did not correlate quantitatively with the effect on form I proviral DNA produced by N-tropic Friend murine leukemia virus in nonpermissive cells. Lastly, we demonstrated in nonpermissively infected NIH cells that a rapidly migrating doublet of viral DNA is formed.  相似文献   

17.
Effect of the Fv-1 locus on the titration of murine leukemia viruses.   总被引:22,自引:22,他引:0       下载免费PDF全文
Titration of N- and B-tropic murine leukemia viruses on sensitive and resistant cell lines has been studied by direct XC plaque assay and infective center assay. The titration of cloned B-tropic virus by infective center assay on BALB/3T3 (Fv-1b/b) and NIH/3T3 (Fv-1n/n) cells gave one-hit patterns, with 100-fold less infected NIH/3T3 cells than BALB/3T3 cells. The titration of B-tropic virus on DBA/2 cells (Fv-1n/n) was also a one-hit. The titration of a one-hit curve, and there were about 100-fold less infected BALB/3T3 cells than NIH/3T3 cells. Comparable results were obtained by titrating the cloned N-tropic virus on congenic SIM (Fv-1n/n) and SIM.R (Fv-1b/b) cells or the Gross N-tropic virus on BALB/3T3 cells. Therefore, our data indicate that the multiple-hit phenomenon described previously may not be an essential part of the Fv-1 gene restriction.  相似文献   

18.
Three principal forms of viral DNA have been identified in cells infected with avian sarcoma virus: (i) a linear duplex molecule synthesized in the cytoplasm, (ii) a covalently closed circular molecule found in the nucleus, and (iii) proviral DNA covalently linked to high-molecular-weight cell DNA. To define precursor product relationships among these forms of viral DNA, we performed pulsechase experiments using 5-bromodeoxyuridine to label by density the linear species of viral DNA in the cytoplasm during the first 4 h after infection. After a 4-to 8-h chase with thymidine, a portion of the density-labeled viral DNA was transported to the nucleus and converted to a covalently closed circular form. We conclude that linear viral DNA, synthesized in the cytoplasm, is the precursor to closed circular DNA observed in the nucleus.  相似文献   

19.
Simian virus 40 (SV40)-infected CV1 cells transiently exposed to hypoxia show a burst of viral replication immediately after reoxygenation. DNA precursor incorporation and analysis of growing daughter strands by alkaline sedimentation demonstrated that SV40 DNA synthesis began with a lag of about 3 to 5 min after reoxygenation followed by a largely synchronous viral replication round. Viral RNA-DNA primers complementary to the SV40 origin region were not detectable before 3 min upon reoxygenation. A distinct form of circular closed, supercoiled SV40 DNA was detectable as soon as 3 min after reoxygenation but not under hypoxia. Sensitivity to the DNA nuclease Bal 31 and migration behavior in chloroquine-containing agarose gels suggested that this DNA species was highly underwound compared to other SV40 topoisomers and was probably related to the highly underwound form U DNA first described by Dean et al. (F. B. Dean, P. Bullock, Y. Murakami, C. R. Wobbe, L. Weissbach, and J. Hurwitz, Proc. Natl. Acad. Sci. USA 84:16–20, 1987), in vitro. 3′-OH ends of presumed RNA-DNA primers could be detected in form U by 3′ end labeling with T7 polymerase. Addition of aphidicolin to the cells before reoxygenation led to a pronounced accumulation of form U DNA containing RNA-DNA primers. In vivo pulse-chase kinetic studies performed with aphidicolin-treated SV40-infected cells showed that form U is an initial intermediate of SV40 DNA replication which matures into higher-molecular-weight replication intermediates and into SV40 form I DNA after removal of the inhibitor. These results suggest that in vivo initiation of SV40 replication is arrested by hypoxia before origin unwinding and primer synthesis.  相似文献   

20.
We have investigated the mechanisms by which alleles at the mouse Fv-1 locus restrict replication of murine leukemia viruses. Inhibition of productive infection is closely paralleled by reduced accumulation of integrated proviral DNA as well as by reduced levels of linear viral DNA in a cytoplasmic fraction. Nevertheless, viral DNA is present at nearly normal levels in a nuclear fraction, and total amounts of viral DNA are only mildly affected in restrictive infections, suggesting a block in integration to account for reduced levels of proviral DNA. However, integrase (IN)-dependent trimming of 3' ends of viral DNA occurs normally in vivo during restrictive infections, demonstrating that not all IN-mediated events are prevented in vivo. Furthermore, viral integration complexes present in nuclear extracts of infected restrictive cells are fully competent to integrate their DNA into a heterologous target in vitro. Thus, the Fv-1-dependent activity that restricts integration in vivo may be lost in vitro; alternatively, Fv-1 restriction may prevent a step required for integration in vivo that is bypassed in vitro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号