首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Human blood clotting factor IX, and two chimeric molecules of factor IX, in which the first epidermal growth factor-like domain or both epidermal growth factor-like domains have been replaced by that of human factor X, have been expressed in mouse C127 cells. The recombinants have been purified using a metal ion-dependent monoclonal antibody specific for residues 1-42 of human factor IX. All recombinant molecules are activated normally by human factor XIa in the presence of calcium ion. Activation of the factor IX recombinants by factor VIIa-tissue factor appears to be normal for the epidermal growth factor-1 exchange but considerably reduced for the construction containing both epidermal growth factor-like domains of factor X. The analysis of gamma-carboxyglutamic acid residues reveals that all of the purified recombinants are almost fully carboxylated. The extent of aspartic acid hydroxylation at residue 64 is 60% for all recombinants. The chimeric molecule with both epidermal growth factor-like domains from factor X has about 4% normal activity in the activated partial thromboplastin time assay. In contrast, the construct containing the first epidermal growth factor-like domain of factor X shows essentially normal clotting activity. Thus, it is unlikely that this domain is involved in a unique interaction with factor VIII.  相似文献   

2.
The first epidermal growth factor (EGF)-like domain of human Factor IX and two chimeric analogs of this domain and EGF were synthesized unambiguously and purified to homogeneity. The synthetic EGF-like domain and its analogs showed the correct mass ions by the fission ionization mass spectrometry and similar disulfide pairings as those found in EGF, but failed to exhibit any putative EGF activity in the receptor and mitogenic assays. However, in NMR titration experiments, the EGF-like domain and one of its analogs were found to bind Ca2+ but not Mg2+. Our results therefore show that the EGF-like domain of Factor IX has the ability to bind calcium ion, shares the structural motif of EGF but does not retain the active determinants responsible for the EGF activity.  相似文献   

3.
Blood coagulation factor IX is composed of discrete domains with an NH2-terminal vitamin K-dependent gamma-carboxyglutamic acid (Gla)-containing region, followed by two domains that are homologous with the epidermal growth factor (EGF) precursor and a COOH-terminal serine protease part. Calcium ions bind to the Gla-containing region and to the NH2-terminal EGF-like domain. To be able to determine the structure and function of the Gla- and EGF-like domains, we have devised a method for cleaving factor IX under controlled conditions and isolating the intact domains in high yield, either separately or linked together. The Ca2+ and Mg2+ binding properties of these fragments were examined by monitoring the metal ion-induced changes in intrinsic protein fluorescence. A fragment, consisting of the Gla region linked to the two EGF-like domains, bound Ca2+ in a manner that was indistinguishable from that of the intact molecule, indicating a native conformation. The Ca2+ affinity of the isolated Gla region was lower, suggesting that the EGF-like domains function as a scaffold for the folding of the Gla region. The Gla-independent high affinity metal ion binding site in the NH2-terminal EGF-like domain was shown to bind Ca2+ but not Mg2+. A comparison with similar studies of factor X (Persson, E., Bj?rk, I., and Stenflo, J. (1991) J. Biol. Chem. 266, 2444-2452) suggests that the Ca2(+)-induced fluorescence quenching is due to an altered environment primarily around the tryptophan residue in position 42.  相似文献   

4.
It has been suggested that epidermal growth factor-like (EGF-like) domains, containing conserved carboxylate residues, are responsible for the high-affinity calcium binding exhibited by a number of vitamin K-dependent plasma proteins involved in the control of the blood coagulation cascade. These include the procoagulant factors IX and X, and the anticoagulants protein C and protein S. To test this hypothesis we have expressed the first EGF-like domain from human factor IX (residues 46-84) using a yeast secretion system, and examined calcium binding to the domain. Using 1H-NMR to measure a calcium-dependent shift assigned to Tyr69 we have detected a high-affinity calcium binding site (Kd = 200-300 microM). We suggest that other EGF-like domains of this type may have similar calcium binding properties. In addition, we have completely assigned the aromatic region of the NMR spectrum by NOESY and COSY analysis, and have used these data to discuss the effect of calcium and pH on the conformation of the domain with reference to a model based on the structure of human EGF.  相似文献   

5.
One of the fastest cellular responses following activation of epidermal growth factor receptor is an increase in intracellular Ca2+ concentration. This event is attributed to a transient Ca2+ release from internal stores and Ca2+ entry from extracellular compartment. Store-operated Ca2+ channels are defined the channels activated in response to store depletion. In the present study, we determined whether epidermal growth factor activated store-operated Ca2+ channels and further, whether depletion of internal Ca2+ stores was required for the epidermal growth factor-induced Ca2+ entry in human glomerular mesangial cells. We found that 100 nm epidermal growth factor activated a Ca2+-permeable channel that had identical biophysical and pharmacological properties to channels activated by 1 microm thapsigargin in human glomerular mesangial cells or A431 cells. The epidermal growth factor-induced Ca2+ currents were completely abolished by a selective phospho-lipase C inhibitor, U73122. However, xestospongin C, a specific inositol 1,4,5-trisphosphate receptor inhibitor, did not affect the membrane currents elicited by epidermal growth factor despite a slight reduction in background currents. Following emptying of internal Ca2+ stores by thapsigargin, epidermal growth factor still potentiated the Ca2+ currents as determined by the whole-cell patch configuration. Furthermore, epidermal growth factor failed to trigger measurable Ca2+ release from endoplasmic reticulum. However, another physiological agent linked to phospholipase C and inositol 1,4,5-trisphosphate cascade, angiotensin II, produced a striking Ca2+ transient. These results indicate that epidermal growth factor activates store-operated Ca2+ channels through an inositol 1,4,5-trisphosphate-independent, but phospholipase C-dependent, pathway in human glomerular mesangial cells.  相似文献   

6.
We isolated protein C from a barium citrate-adsorbed fresh plasma and human factor IX concentrate by immunoaffinity chromatography on a column of Sepharose coupled with monoclonal antibodies to protein C. The antibodies used were conformation-specific monoclonal antibodies to the calcium-induced structure of protein C. Protein C was bound to antibodies coupled with Sepharose in the presence of calcium ions and was eluted with EDTA. This immunopurification resulted in a 13,000-fold purification of the fully functional zymogen from plasma. The immunoaffinity-isolated protein C was found to have higher amounts of single-chain protein C than conventionally isolated protein C when analyzed by sodium dodecyl sulfate-polyacrylamide gels under reduced conditions. The factor IX concentrate was applied to this Ca2+-dependent antibody JTC-3-immobilized Sepharose in the presence of 5 mM CaCl2, and protein C with its gamma-carboxyglutamic acid (Gla) domain intact was firstly bound to this column and then eluted by metal chelation with EDTA. When flow-through fractions were applied again in the presence of Ca2+ to this column, modified protein C which had lost its N-terminal 42-residue peptide was weakly bound to this column. It was eluted in the absence of Ca2+. However, only a low percentage of modified protein C was detectable by an enzyme-linked immunosorbent assay using Ca2+-dependent monoclonal antibody JTC-3 and peroxidase-labeled immunopurified polyclonal antibody. These results indicate that factor IX concentrate has both Gla-domain-intact and Gla-domainless protein C. Moreover, it suggests that Ca2+-dependent monoclonal antibody JTC-3 may recognize the coupled conformational change of protein C induced by the combined effect of Ca2+ binding to the Gla domain and to other parts of protein C.  相似文献   

7.
To determine the function and specificity in factor IX of the first epidermal growth factor (EGF)-like domain and the eight-amino acid hydrophobic stack encoded by exon C (residues 39-46), these domains were replaced by the corresponding polypeptide regions of factor X and chimeric proteins were produced in human embryo kidney cells. Both chimeras were activated by factor XIa at a rate similar to plasma factor IX and exhibited calcium-dependent fluorescence quenching similar to plasma factor IX. Both chimeras competed equally for binding to the endothelial cell receptor. Our findings make it unlikely that the first EGF-like domain or the hydrophobic stack of factor IX are responsible for the specific binding of factor IX to its endothelial cell receptor.  相似文献   

8.
Factor IX is an indispensable protein required in the blood coagulation cascade. It binds to the surface of phospholipid membrane by means of a gamma-carboxyglutamic acid (Gla) domain situated at the N terminus. Recently, we showed that physiological concentrations of Mg2+ ions affect the native conformation of the Gla domain and in doing so augment the biological activity of factor IXa and binding affinity with its binding protein even in the presence of Ca2+ ions. Here we report on the crystal structures of the Mg2+/Ca2+-bound and Ca2+-bound (Mg2+-free) factor IX Gla domain (IXGD1-46) in complex with its binding protein (IX-bp) at 1.55 and 1.80 A resolutions, respectively. Three Mg2+ and five Ca2+ ions were bound in the Mg2+/Ca2+-bound IXGD1-46, and the Mg2+ ions were replaced by Ca2+ ions in Mg2+-free IXGD1-46. Comparison of Mg2+/Ca2+-bound with Ca2+-bound structures of the complexes showed that Mg2+ ion, which formed a bridge between IXGD1-46 and IX-bp, forced IXGD1-46 to rotate 4 degrees relative to IX-bp and hence might be the cause of a more tight interaction between the molecules than in the case of the Mg2+-free structure. The results clearly suggest that Mg2+ ions are required to maintain native conformation and in vivo function of factor IX Gla domain during blood coagulation.  相似文献   

9.
The activation of human coagulation factor IX by human tissue factor.factor VIIa.PCPS.Ca2+ (TF.VIIa.PCPS.Ca2+) and factor Xa.PCPS.Ca2+ enzyme complexes was investigated. Reactions were performed in a highly purified system consisting of isolated human plasma proteins and recombinant human tissue factor with synthetic phospholipid vesicles (PCPS: 75% phosphatidylcholine (PC), 25% phosphatidylserine (PS)). Factor IX activation was evaluated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, [3H]factor IX activation peptide assay, colorimetric substrate thiobenzyl benzyloxycarbonyl-L-lysinate (Z-Lys-SBzl) hydrolysis, and specific incorporation of a fluorescent peptidyl chloromethyl ketone. Factor IX activation by the TF.VIIa.PCPS.Ca2+ enzyme complex was observed to proceed through the obligate non-enzymatic intermediate species factor IX alpha. The simultaneous activation of human coagulation factors IX and X by the TF.VIIa.PCPS.Ca2+ enzyme complex were investigated. When factors IX and X were presented to the TF.VIIa complex, at equal concentrations, it was observed that the rate of factor IX activation remained unchanged while the rate of factor X activation slowed by 45%. When the proteolytic cleavage products of this reaction were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, it was observed that the intermediate species factor IX alpha was generated more rapidly when factor X was present in the reaction mixture. When factor IX was treated with factor Xa.PCPS in the presence of Ca2+, it was observed that factor IX was rapidly converted to factor IX alpha. The activation of factor IX alpha by the TF.VIIa.PCPS.Ca2+ complex was evaluated, and it was observed that factor IX alpha was activated more rapidly by the TF.VIIa.PCPS.Ca2+ complex than was factor IX itself. These data suggest that factors IX and X, when presented to the TF.VIIa.PCPS.Ca2+ enzyme complex, are both rapidly activated and that factor Xa, which is generated in the initial stages of the extrinsic pathway, participates in the first proteolytic step in the activation of factor IX, the generation of factor IX alpha.  相似文献   

10.
Factor IX Niigata is a mutant factor IX responsible for the moderately severe hemophilia B in a patient who has a normal level of factor IX antigen with reduced clotting activity (1-4% of normal). We reported previously that the purified mutant protein could be converted to the factor IXa beta form by factor XIa/Ca2+ at a rate similar to that in the case of normal factor IX, but the resulting mutant factor IXa beta could not activate factor X in the presence of factor VIII, Ca2+, and phospholipids (Yoshioka, A. et al. (1986) Thromb. Res. 42, 595-604). In the present study, we analyzed factor IX Niigata at the structural level to elucidate the molecular abnormality responsible for the loss of clotting activity. Amino acid sequence analysis of a peptide obtained on lysyl endopeptidase digestion, coupled with subsequent SP-V8 digestion, demonstrated that the alanine at position 390 was substituted by valine in the catalytic domain of the factor IX Niigata molecule.  相似文献   

11.
Protein C is a vitamin K-dependent regulator of blood coagulation. It has beta-hydroxyaspartic acid in position 71 which is in the first of its two domains that are homologous to epidermal growth factor (EGF). This region has recently been demonstrated to have a Ca2+ binding site with a Kd of approximately 100 microM. Recombinant human protein C, expressed in mammalian tissue culture, had full biological activity and contained beta-hydroxyaspartic acid. Furthermore, it had a Ca2+-dependent epitope in the EGF-like domain, recognized by a monoclonal antibody. In contrast, a mutant recombinant human protein C in which beta-hydroxyaspartic acid had been replaced with glutamic acid in position 71 did not have the Ca2+-dependent epitope, and its biological activity was reduced to about 10% of normal. Fab' fragments of this antibody inhibited the anticoagulant activity of plasma-derived activated protein C, apparently by interfering with the interaction between activated protein C and its cofactor, protein S. The latter contains four tandemly arranged EGF homology domains. We propose that beta-hydroxyaspartic acid is directly involved in Ca2+ binding in protein C and in related proteins and that protein C interacts with protein S by means of its EGF homology regions.  相似文献   

12.
Murine monoclonal antibodies, developed following immunization with human protein C, were characterized for their ability to bind antigen in the presence of either CaCl2 or excess EDTA. Three stable clones were obtained which produced antibodies that bound to protein C only in the presence of EDTA. All three antibodies bound to the light chain of protein C on immunoblots and also bound to the homologous proteins factor X and prothrombin in solid-phase radioimmunoassays. One antibody, 7D7B10 was purified and studied further. The binding of 7D7B10 to human protein C was characterized by a KD of 1.4 nM. In competition studies, it was found that the relative affinity of the antibody for protein C was 20-40-fold higher than for prothrombin, fragment 1 of prothrombin, or factor X. In contrast, 7D7B10 was unable to bind to factor IX or bovine protein C. The effect of varying Ca2+ concentration on the interaction of the antibody with protein C was complex. Low concentrations of Ca2+ enhanced the formation of the protein C-antibody complex with half-maximal effect occurring at approximately 60 microM metal ion. However, higher concentrations of Ca2+ completely inhibited 7D7B10 binding to protein C with a K0.5 of 1.1 mM. Furthermore, millimolar concentrations of Mn2+, Ba2+, or Mg2+ also completely abolished antibody binding to protein C. The location of the epitope was delineated by immunoblotting and peptide studies and found to be present in the NH2-terminal 15 residues of protein C. Although residues corresponding to positions 10-13 of human protein C were necessary for maximal binding of the antibody, they were not sufficient. No evidence could be found for involvement of the epitope in metal binding per se. Therefore, the effect of Ca2+ on antibody binding is thought to be due to metal-dependent conformational changes in protein C. It seems likely that Ca2+ occupation of a high affinity site, shown by others to be located in the epidermal growth factor-like domain, causes a conformational change in the NH2-terminal region of protein C which is favorable for antibody interaction, whereas Ca2+ binding to the low affinity site(s), known to be present in the gamma-carboxyglutamic acid domain, causes an unfavorable conformational change.  相似文献   

13.
The binding of metal ions to bovine factor IX   总被引:1,自引:0,他引:1  
The binding isotherms of Ca2+ and Mn2+ to bovine factor IX have been determined at pH 6.5 and pH 7.4, at 25 degrees C. At pH 7.4, at least 2 strong Ca2+ sites, with an average KDISS of 0.1 +/- 0.02 mM, are found. An additional 10 to 11 weaker Ca2+ binding sites, with an average KDISS of 1.3 +/- 0.2 mM are noted, at high levels of Ca2+. At pH 6.5, again at least 2 strong Ca2+ sites on factor IX are evident, with an average KDISS of 0.11 +/- 0.02 mM; but slightly fewer (7 to 8) weaker sites, with an average KDISS of 1.9 +/- 0.3 mM, are obtained. Qualitatively, the binding of Mn2+ to bovine factor IX appears similar to that of Ca2+. At pH 6.5, approximately 2 strong Mn2+ binding sites, with an average KDISS of 13 +/- 1.5 micrometer, and an additional 5 to 6 weak sites, with an average KDISS of 160 +/- 15 micrometer, are present. Manganese does not completely displace Ca2+; and Ca2+ does not completely displace Mn2+ from their respective binding sites. On the other hand, Tb3+ and Sm3+ readily displace Ca2+, at pH 6.5, from its sites on factor IX. The rate and extent of activation of bovine factor IX, by bovine factor XIa, is dependent on the Ca2+ concentration, up to concentrations of Ca2+ which saturate its effect on the system. Substitution of Sr2+ for Ca2+ leads to approximately 50% of the maximum rate of factor IXa formation, and final yield of factor IXa, in this activation system. Manganese does not substitute for Ca2+ in this activation, but does inhibit the stimulatory effect of Ca2+. Both Tb3+ and Sm3+ are effective inhibitors of Ca2+ in factor IX activation by factor XIa.  相似文献   

14.
Phosphorylation of the Ca2+ and membrane-binding protein annexin 1 by epidermal growth factor (EGF) receptor tyrosine kinase has been thought to be involved in regulation of the EGF receptor trafficking. To elucidate the interaction of annexin 1 during EGF receptor internalization, we followed the distribution of annexin 1-GFP fusion proteins at sites of internalizing EGF receptors. The observed association of annexin 1 with EGF receptors was confirmed by immunoprecipitation. We found that this interaction was independent of a functional phosphorylation site in the annexin 1 N-terminal domain but mediated through the Ca2+ binding core domain.  相似文献   

15.
In vitro hydroxylation of aspartic acid has recently been demonstrated in a synthetic peptide based on the structure of the first epidermal growth factor domain in human factor IX (Gronke, R. S., VanDusen, W. J., Garsky, V. M., Jacobs, J. W., Sardana, M. K., Stern, A. M., and Friedman, P. A. (1989) Proc. Natl. Acad. Sci. U.S.A. 86, 3609-3613). The putative enzyme responsible for the posttranslational modification, aspartyl beta-hydroxylase, has been shown to be a member of a class of 2-ketoglutarate-dependent dioxygenases, which include prolyl-4- and lysyl-hydroxylases. In the present study, we describe the solubilization with nonionic detergent of the enzyme from bovine liver microsomes and its purification using DEAE-cellulose followed by heparin-Sepharose. No additional detergent was required during purification. The partially purified enzyme preparation was found to contain no prolyl-4- or lysyl-hydroxylase activity. Using a synthetic peptide based on the structure of the epidermal growth factor-like region in human factor X as substrate, the apparent Km values for iron and alpha-ketoglutarate were 3 and 5 microM, respectively. The enzyme hydroxylated the factor X peptide with the same stereospecificity (erythro beta-hydroxyaspartic acid) and occurred only at the aspartate corresponding to the position seen in vivo. Furthermore, the extent to which either peptide (factor IX or X) was hydroxylated reflected the extent of hydroxylation observed for both human plasma factors IX and X.  相似文献   

16.
Factor IX Alabama is a factor IX variant in which a glycine has been substituted for Asp47 in the first epidermal growth factor (EGF) domain. The structural defect in factor IX Alabama results in a molecule with 10% of normal coagulant activity. The interactions of immunoaffinity-purified factor IX Alabama with its activator, cofactors, and substrate have been investigated to determine the functional defect in the variant. Factor IX Alabama is activated by factor XIa/calcium at near normal rates. Calcium fluorescence-quenching experiments indicate that high affinity calcium binding in the first EGF domain is not altered in factor IX Alabama. The active site of factor IXa Alabama is fully competent to activate factor X in the absence of calcium when using polylysine as a surface to catalyze the reaction. Factor IXa Alabama has only 64% of normal factor IXa activity in the presence of 300 microM CaCl2 in the polylysine-catalyzed system although apparent high affinity calcium binding constants are similar. Factor IXa Alabama has 52-60% of normal activity in a calcium/phospholipid vesicle system. The addition of factor VIIIa to the phospholipid vesicle system decreases the relative rate of factor IXa Alabama to 18-19% of normal. Three-dimensional computer-aided models of the first EGF domain of normal factor IX and factor IX Alabama indicate no major structural alterations resulting from the glycine substitution for Asp47. The model of the first EGF domain of normal factor IX predicts a calcium-binding site involving Asp47, Asp49, Asp64, and Asp65. Our binding data, however, indicate that Asp47 is not necessary to form the high affinity binding site. We conclude that Asp47 in normal factor IX coordinates to the bound calcium, inducing a conformational change in the molecule essential for proper interaction with factor X and factor VIIIa.  相似文献   

17.
The binding of factor IX to cultured bovine endothelial cells was characterized using isolated domains of bovine factor IX. An NH2-terminal fragment that consists of the gamma-carboxyglutamic acid (Gla) region linked to the two epidermal growth factor (EGF)-like domains bound to the endothelial cells with the same affinity as intact factor IX, indicating that the serine protease part of factor IX is not involved in binding. This fragment also inhibited the factor IXa beta'-induced clotting of plasma at a concentration that would suggest a competition for phospholipid binding sites. However, after proteolytic removal of the Gla region from the fragment, the two EGF-like domains inhibited clotting almost as effectively, suggesting a direct interaction between this part of the molecule and the cofactor, factor VIIIa. Using affinity-purified Fab fragments against the Gla region, the EGF-like domains, and the serine protease part, it was observed that the serine protease part of the molecule undergoes a large conformational change upon activation, whereas the Gla region and the EGF-like domains appear to be unaffected. All three classes of Fab fragments were equally efficient as inhibitors of the factor IXa beta'-induced clotting reaction. Part of factor Va and factor VIIIa have significant sequence homology to a lectin. We therefore investigated the effect on in vitro clotting of the recently identified unique disaccharide Xyl alpha 1-3Glc, that is O-linked to a serine residue in the NH2-terminal EGF-like domain of human factor IX (Hase, S., Nishimura, H., Kawabata, S.-I., Iwanaga, S., and Ikenaka, T. (1990) J. Biol. Chem. 265, 1858-1861). However, no effect on blood clotting was observed in the assay system used. Our results are compatible with a model in which the serine protease part provides the specificity of the binding of factor IXa to factor VIIIa-phospholipid, but that the EGF-like domain(s) also contributes to the interaction of the enzyme with its cofactor.  相似文献   

18.
Voltage-dependent Ca2+ channels were studied by the binding of the potent Ca2+ channel antagonist PN200-110 and by the K+-induced 45Ca2+ uptake in human muscle cultured aneurally in the presence of insulin, fibroblast growth factor, and epidermal growth factor, added in combination or individually. Compared to the muscle grown in medium without growth factors, 14-15 days of treatment with insulin (10 micrograms/ml) alone or in combination with two other growth factors caused a 3.4- and 3.8-fold increase per culture dish in the number of PN200-110 binding sites, respectively. There was no change in the affinity of the ligand-receptor complex. Under the same conditions, there was also fourfold increase of the K+-induced 45Ca2+ uptake in cultured human muscle. Neither fibroblast growth factor nor epidermal growth factor alone influenced PN200-110 binding sites. Our study demonstrates that insulin enhances the development of functional voltage-dependent Ca2+ channels in cultured human muscle.  相似文献   

19.
The blood coagulation factor IX(a) binds specifically to a site on endothelial cells with a Kd of 2.0-3.0 nM. A number of previous studies have attempted to define the region(s) of factor IX(a) that mediate this interaction. These studies suggested that there are two regions of factor IX(a), the gamma-carboxyglutamic acid (Gla) domain and the epidermal growth factor like (EGF-like) domains, that mediate high-affinity binding to endothelial cells. Recently, however, the participation of the EGF1 domain has been excluded from the interaction. This indicated that if there was an EGF component of factor IX contributing to the binding affinity, then it must be in the second EGF-like domain. In order to further evaluate this relationship, we performed competitive binding experiments between 125I plasma factor IX and a set of six chimeric proteins composed of portions of factor VII and factor IX. Our data suggest that the high-affinity interaction between factor IX and the endothelial cell binding site is mediated by the factor IX Gla domain and that the factor IX EGF domains are not involved in binding specificity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号