首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 624 毫秒
1.
植物各个器官表面及内部定殖着高度多样化的微生物群落,这些微生物与植物长期共进化,作为宿主植物的“共生功能体”(holobiont)在植物生长发育、养分吸收、病害抵御和环境胁迫适应性等方面发挥了重要作用。得益于近10年来多组学技术的发展和应用,有关植物微生物群落的多样性、组成和功能特征、群落构建的驱动因素和植物–微生物互作机制等方面研究取得了一系列重要进展。然而,与土壤微生物组相比,目前对植物微生物组的认识及其应用尚且不足。本文系统总结了植物微生物组的组成特征,植物微生物在调节植物生长发育、促进养分吸收、提高病害抵御能力及环境胁迫适应性等方面的功能及作用机制,从宿主选择、环境因子以及生物互作3个方面总结了驱动植物微生物群落构建的因素,并着重阐述了植物–微生物互作如何塑造植物微生物群落以及如何调节对植物的有益功能。此外,我们对未来植物微生物组研究和应用面临的挑战进行了展望,如核心微生物组挖掘和合成群落构建,植物–微生物互作的分子调控机制,植物微生物群落水平上的互作机制等。深入理解植物微生物群落特征、生态功能以及构建过程对于精准调控植物微生物组以提高植物适应性和生产力以及维持生态系统健康具有...  相似文献   

2.
土壤微生物拥有高度多样化的群落结构,其通过与植物发生复杂的相互作用影响植物健康,也被称为植物的第二基因组。最近研究表明植物能通过改变根际分泌物的组成影响根际微生物群落的组装,反之,根际微生物群落组成的改变能够通过影响植物营养吸收和抵御生物及非生物胁迫的能力影响植物健康。除此之外,农艺管理也是影响土壤微生物群落组装方式的重要因素。但到目前为止,根际微生物与宿主植物及土壤微生物之间互作机制的研究尚不清楚。本文将从农艺管理和宿主植物对微生物群落组装的影响及根际微生物组对植物健康的影响进行总结,为增加作物产量提供机会。  相似文献   

3.
鸡的胃肠道具有复杂的微生物菌群,该微生物菌群与宿主的肠道和整体健康密切相关,为了全面揭示鸡肠道微生物菌群的组成及其功能,本文对鸡肠道微生物菌群的建立发育、各肠段群落的分布及其生理学意义进行综述,从而为鸡肠道功能菌株的分离及有效利用,合理调控微生物菌群-宿主相互作用,提高饲料转化率和改善肠道健康提供理论依据。  相似文献   

4.
黑水虻Hemertia illucens幼虫肠道中栖息着许多种类的微生物,这些微生物与宿主之间的相互作用极为复杂,它们可以影响宿主的生长发育、繁殖能力、营养代谢、行为偏好和寿命。此外,它们还可以调节宿主的免疫系统并保护宿主免受病原体的侵害。深入了解微生物与黑水虻的互作机制,有助于优化黑水虻的生长环境,从而实现更高效的人工繁育。相关文章对微生物与黑水虻互作机理进行了总结,但这些研究方法只能提供微生物群落的结构信息,而无法揭示微生物的功能和代谢能力。因此,宏基因组学、宏转录组学、宏蛋白质组学和代谢组学逐渐被应用,这些技术除了提供关于微生物种群的完整分类,还揭示了它们的功能和代谢能力。通过了解肠道菌群的组成和功能,可以有效调整黑水虻的饲料、饲养环境和生长条件,从而提升黑水虻肠道菌群的稳定,提高黑水虻的生产性能和经济效益。  相似文献   

5.
姜彤  陈昌斌 《菌物学报》2020,39(11):2131-2148
作为人体微生物菌群中真菌菌群的一个重要组成部分,念珠菌通常定植于人体的众多生态位,在免疫系统功能正常的健康人群中与宿主保持共生状态。为适应宿主体内复杂多变的环境,拮抗宿主免疫系统的攻击,以及应对其他微生物菌群的竞争等诸多生存压力,念珠菌进化出一系列极为有效的应对机制以维持其在宿主体内的共生。本文总结了念珠菌通过形态转换、环境适应、免疫调节以及与其他微生物菌群相互作用等策略应对宿主环境生存压力的分子机制,重点阐述了念珠菌、宿主免疫系统以及微生物菌群三者之间的相互作用和相互平衡对于念珠菌实现成功定植和共生的重要意义。  相似文献   

6.
单胃动物肠道微生物菌群与肠道免疫功能的相互作用   总被引:1,自引:0,他引:1  
动物胃肠道栖息着大量的微生物,这些微生物及其代谢产物在营养、免疫等方面对宿主的健康有重要的意义。近年来研究发现肠道微生物与免疫系统间存在密切的交流和互作机制,尽管肠道共生菌具有定植抑制效应,但肠道微生物也可通过其特定组分刺激免疫细胞如Tregs细胞、Th17细胞的分化,肠道菌群的紊乱可能导致细菌移位、肠道屏障功能损伤,影响机体健康。宿主免疫系统可通过分泌多种免疫效应因子如MUC、sIgA、ITF、RegIIIγ、α-防御素等调节肠道微生物的分布和组成,调节肠道菌群的稳态。本文综述了单胃动物肠道微生物菌群的组成,深入探讨了肠道微生物菌群与动物肠道免疫功能之间的相互作用。  相似文献   

7.
张碧云  杨红玲  汪攀  孙云章 《微生物学报》2021,61(10):3046-3058
鱼类肠道中存在大量微生物,对于维持宿主健康具有重要作用。鱼类免疫系统能够监视并调控肠道微生物组成,维持肠道菌群稳态。同时,鱼类肠道共生微生物调节鱼类免疫系统,抑制病原微生物的过度增殖,保证宿主的健康。本文回顾了鱼类肠道微生物与宿主免疫系统相互作用的研究进展,重点介绍了宿主免疫系统识别肠道微生物、塑造肠道菌群以及益生菌对宿主免疫和肠道菌群的调控等,提出了理想的益生菌应该来自动物自身胃肠道,生产中应谨慎选用非宿主来源的益生菌,以期为推动鱼类肠道功能微生物开发和应用提供理论支撑。  相似文献   

8.
叶际微生物与植物有着密切的联系,对宿主生物多样性的维持、群落的稳定和生态系统的功能具有重要意义。随着分子生物学技术的快速发展,叶际微生物与植物的关系及对宿主健康的影响是近年来热点领域之一。基于明确定义的叶际概念,综述了叶际微生物群落结构、驱动因素及其与植物健康的关系,强调了叶际微生物的机遇性以及调控群落驱动因素在未来叶际微生物研究中的重要地位。加深对叶际微生物的认知,有利于实现农业微生物的功能最大化,以期为提高植物产量提供参考。  相似文献   

9.
朱国平  王敏 《生态学报》2021,41(21):8320-8330
生物的胃肠道微生物数量众多,各种菌群之间互相制约,与宿主共同进化。南大洋作为一个巨大的生物资源库,繁衍生存着大量的生物,其生活环境的多样性及特殊性,使得其胃肠道微生物较为特殊,肠道微生物群落也进化到适应宿主的各种营养生活方式。从不同营养级具有代表性的南极海洋生物出发,以南极磷虾,鱼类,企鹅,海豹为主线,综述这些生物胃肠道微生物的研究概况以及相关研究方法的优势与局限性,以期揭示肠道微生物与宿主的关系,为更加有效开发利用微生物资源提供借鉴。  相似文献   

10.
张彬  刘满强  钱刘兵  梁山峰 《生态学报》2023,43(14):5674-5685
人类活动的不断加剧使得土壤生态系统承受着环境干扰压力。土壤微生物受到环境干扰的响应程度(抵抗力)及恢复至原来状态的能力(恢复力)决定着土壤生态系统的可持续性。梳理和总结了土壤微生物群落对环境干扰的抵抗力和恢复力方面的研究进展。首先,在介绍土壤微生物群落抵抗力和恢复力概念的基础上,阐述了通过评估微生物群落的结构和功能的变化来系统表征抵抗力和恢复力;随后,分析了最近十年(2012-2021年)有关文献,发现土壤微生物群落的结构和(或)功能在环境干扰后的恢复力总体较弱,但耕作、有机物料添加和轮作等农田管理措施下的响应趋势表现出一定的规律性;继而,从个体水平的休眠和胁迫忍耐、种群水平的生存策略、群落水平的多样性和相互作用以及生态系统水平的历史遗留效应等方面分析了土壤微生物群落抵抗力和恢复力的维持机制;最后,从功能性状、多功能性和植物-土壤微生物整体性对未来研究做出了展望,以期为构建土壤健康评价体系及预测环境干扰对土壤功能的影响提供科学依据。  相似文献   

11.
The rhizosphere microbiome and plant health   总被引:38,自引:0,他引:38  
The diversity of microbes associated with plant roots is enormous, in the order of tens of thousands of species. This complex plant-associated microbial community, also referred to as the second genome of the plant, is crucial for plant health. Recent advances in plant-microbe interactions research revealed that plants are able to shape their rhizosphere microbiome, as evidenced by the fact that different plant species host specific microbial communities when grown on the same soil. In this review, we discuss evidence that upon pathogen or insect attack, plants are able to recruit protective microorganisms, and enhance microbial activity to suppress pathogens in the rhizosphere. A comprehensive understanding of the mechanisms that govern selection and activity of microbial communities by plant roots will provide new opportunities to increase crop production.  相似文献   

12.
The root microbiome refers to the community of microbes living in association with a plant's roots, and includes mutualists, pathogens, and commensals. Here we focus on recent advances in the study of root commensal community which is the major research object of microbiome-related researches. With the rapid development of new technologies, plant–commensal interactions can be explored with unprecedented breadth and depth. Both the soil environment and the host plant drive commensal community assembly. The bulk soil is the seed bank of potential commensals, and plants use root exudates and immune responses to build healthy microbial communities from the available microbes. The plant microbiome extends the functional system of plants by participating in a variety of processes, including nutrient absorption, growth promotion, and resistance to biotic and abiotic stresses. Plants and their microbiomes have evolved adaptation strategies over time. However, there is still a huge gap in our understanding of the regulatory mechanisms of plant–commensal interactions. In this review, we summarize recent research on the assembly of root microbial communities and the effects of these communities on plant growth and development, and look at the prospects for promoting sustainable agricultural development through the study of the root microbiome.  相似文献   

13.
? Below-ground microbial communities influence plant diversity, plant productivity, and plant community composition. Given these strong ecological effects, are interactions with below-ground microbes also important for understanding natural selection on plant traits? ? Here, we manipulated below-ground microbial communities and the soil moisture environment on replicated populations of Brassica rapa to examine how microbial community structure influences selection on plant traits and mediates plant responses to abiotic environmental stress. ? In soils with experimentally simplified microbial communities, plants were smaller, had reduced chlorophyll content, produced fewer flowers, and were less fecund when compared with plant populations grown in association with more complex soil microbial communities. Selection on plant growth and phenological traits also was stronger when plants were grown in simplified, less diverse soil microbial communities, and these effects typically were consistent across soil moisture treatments. ? Our results suggest that microbial community structure affects patterns of natural selection on plant traits. Thus, the below-ground microbial community can influence evolutionary processes, just as recent studies have demonstrated that microbial diversity can influence plant community and ecosystem processes.  相似文献   

14.
AIMS: To evaluate the effect of plant variety and Azospirillum brasilense inoculation on the microbial communities colonizing roots and leaves of tomato (Lycopersicon esculentum Mill.) plants. METHODS AND RESULTS: Seeds of cherry and fresh-market tomato were inoculated with A. brasilense BNM65. Sixty days after planting, plants were harvested and the microbial communities of the rhizoplane and phyllosphere were analysed by community-level physiological profiles (CLPP) using BIOLOG EcoPlates and denaturing gradient gel electrophoresis (DGGE) of PCR-amplified 16S rRNA genes. Differences on the rhizoplane and phyllosphere bacterial communities between the two tomato types were detected by principal component analysis of the CLPP; DGGE fingerprints also showed differences at the phyllosphere level. Fresh-market tomato had a more complex phyllosphere bacterial community than cherry tomato, as determined by DGGE profiles. Physiological and genetic changes on phyllosphere and rhizoplane bacterial communities by Azospirillum seed inoculation were evident only on cherry tomato. CONCLUSIONS: Tomato genotype affects the response of native bacterial communities associated with the roots and leaves to A. brasilense seed inoculation. SIGNIFICANCE AND IMPACT OF THE STUDY: The successful implementation of Azospirillum inoculation requires not only the consideration of the interactions between A. brasilense strains and plant genotypes, but also the plant-associated microflora.  相似文献   

15.
Lorenz Hiltner is recognized as the first scientist to coin the term “rhizosphere” in 1904. His scientific career and achievements are summarized in this essay. Most of his research he performed in the Bavarian Agriculture–Botanical Institute (later named the “Bavarian Institute of Plant Growth and Plant Protection”) in Munich, where he was the director from 1902 to 1923. Beginning with intensive and thorough investigations on the germination and growth of different crop plants (legumes and non-legumes) Hiltner became convinced, that root exudates of different plants support the development of different bacterial communities. His definition of the “rhizosphere” in the year 1904 centered on the idea, that plant nutrition is considerably influenced by the microbial composition of the rhizosphere. Hiltner observed bacterial cells even inside the rhizodermis of healthy roots. In analogy with fungal root symbionts, Hiltner named the bacterial community that is closely associated with roots “bacteriorhiza.” In his rhizosphere concept, Hiltner also envisioned, that beneficial bacteria are not only attracted by the root exudates but that there are also “uninvited guests,” that adjust to the specific root exudates. Based on his observations he hypothesized that “the resistance of plants towards pathogenesis is dependent on the composition of the rhizosphere microflora.” He even had the idea, that the quality of plant products may be dependent on the composition of the root microflora. In addition to his scientific achievements, Hiltner was very dedicated to applied work. Together with F. Nobbe he had the first patent on Rhizobium inoculants (Nitragin). He continuously improved formulations and the effectivity of the Rhizobium preparations and he also initiated seed dressing with sublimate for plant protection of seedlings. Thus, Hiltner tightly linked breakthroughs in basic research to improved rhizosphere management practices. In addition, he wrote a pioneering monograph on plant protection for everybody’s practical use. His emphasis on understanding microbes in the context of their micro-habitat, the rhizosphere, made him a pioneer in microbial ecology. Even now, in the era of genome and postgenome analysis with our better understanding of plant nutrition and soil bacteriology, his ideas and contributions are as fresh as they were more than 100 years ago.  相似文献   

16.
General circulation models on global climate change predict increase in surface air temperature and changes in precipitation. Increases in air temperature (thus soil temperature) and altered precipitation are known to affect the species composition and function of soil microbial communities. Plant roots interact with diverse soil organisms such as bacteria, protozoa, fungi, nematodes, annelids and insects. Soil organisms show diverse interactions with plants (eg. competition, mutualism and parasitism) that may alter plant metabolism. Besides plant roots, various soil microbes such as bacteria and fungi can produce volatile organic compounds (VOCs), which can serve as infochemicals among soil organisms and plant roots. While the effects of climate change are likely to alter both soil communities and plant metabolism, it is equally probable that these changes will have cascading consequnces for grazers and subsequent food web components aboveground. Advances in plant metabolomics have made it possibile to track changes in plant metabolomes as they respond to biotic and abiotic environmental changes. Recent developments in analytical instrumentation and bioinformatics software have established metabolomics as an important research tool for studying ecological interactions between plants and other organisms. In this review, we will first summarize recent progress in plant metabolomics methodology and subsequently review recent studies of interactions between plants and soil organisms in relation to climate change issues.  相似文献   

17.
Competition and allelopathy in aquatic plant communities   总被引:2,自引:0,他引:2  
The paper reviews the published literature on the studies of competition and allelopathy in aquatic plant communities. Taking a broader view of the community, the studies on interactions between macrophytes and microphytes, macrophytes and macro-invertebrates and microbial communities are also reviewed. The role of these interactions in the structure and dynamics of aquatic communities has been discussed in light of the current hypotheses concerning competition in terrestrial communities. The available information suggests that the aquatic plants of various growth forms differ greatly among themselves in their responses and adaptations to competition and allelopathy. The possible application of these interactions in biological control of plant pests and in agriculture is also summarized. We conclude that the observed differences in these interactions between the terrestrial and aquatic environment are due to the effects of water as a non-resource variable as well as due to special adaptive characteristics of aquatic plants. Further we hypothesize that the aquatic plants adopt both competitive and allelopathic strategies under different conditions and in interactions with different plants. The review highlights that our knowledge of both competition and allelopathy among aquatic plant communities is inadequate and fragmentary, and therefore, both extensive and intensive studies are required.  相似文献   

18.
Microbiology is the basis of sustainable agriculture: an opinion   总被引:2,自引:0,他引:2  
Agricultural microbiology is presented as a synthetic research field responsible for knowledge transfer from general microbiology and microbial ecology to the agricultural biotechnologies. The major goal of agricultural microbiology is a comprehensive analysis of symbiotic micro‐organisms (bacteria, fungi) interacting with agriculturally important plants and animals: here we have focussed on plants. In plants, interactions with micro‐organisms are diverse, ranging from two‐partite symbioses (e.g. legume–rhizobia N2‐fixing nodular symbioses or arbuscular mycorrhiza) to multipartite endophytic and epiphytic (root‐associated, phyllosphere) communities. Two‐partite symbioses provide the clearest models for addressing genetic cooperation between partners, resulting in the formation of super‐organism genetic systems, which are responsible for host productivity. Analysis of these systems has now been extended considerably by using the approaches of metagenomics, which allow the dissection of taxonomic/population structures and the metabolic/ecological functions of microbial communities, which have resulted from the adaptation of free‐living, soil microflora in the endosymbiotic niches. Both beneficial (nutritional, defensive, regulatory) and antagonistic (biocontrol) functions expressed by symbiotic microbes towards their hosts are the potential subjects of effective agronomic use. A fundamental knowledge of the genetics, molecular biology, ecology and evolution of symbiotic interactions could enable the development of microbe‐based sustainable agriculture. This could achieve: (a) an improvement of major adaptive functions and productivity in crop plants by manipulating their microbial cohabitants; (b) partial or even full substitution of ecologically hazardous agrochemicals (mineral fertilizers, pesticides) by microbial preparations; (c) a decrease in the cost and an improvement of the quality of agricultural products.  相似文献   

19.
丛枝菌根菌诱导植物抗病的内在机制   总被引:15,自引:5,他引:10  
应用菌根真菌诱导植物抗病性是近年化学生态学和病害生物防治研究的热点.研究表明,丛枝菌根真菌(AMF)对土传病原物具有一定拮抗或抑制作用,能提高植物对土传病害的抗/耐病性.在菌根根际,各种菌群不断产生相互作用,AMF在其中起着抑制病原菌、促进有益菌生长的作用,可与其他桔抗菌结合,用做生防菌.AMF提高植物抗病性的机制还有这样几种假设:(1)植物营养得到改善;(2)竞争作用;(3)根系形态结构改变;(4)根际微生物区系变化;(5)诱导抗性及诱导系统抗性,即AMF侵染植物根系后,诱导植物体内酚酸类代谢产物增加,使植物产生局部或系统防御反应.深人研究AMF提高植物抗病性的机制,有助于正确理解菌根的抗病作用,使其能尽快地成为植物病害生物防治中的一种新方法,在生态农业中发挥作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号