首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In conjugating pairs of Paramecium caudatum, the micronuclear events occur synchronously in both members of the pair. To find out whether micronuclear behavior is controlled by the somatic macronucleus or by the germinal micronucleus, and whether or not synchronization of micronuclear behavior is due to intercellular communication between conjugating cells, the behavior of the micronucleus was examined after removal of the macronuclei from either or both cells of a mating pair at various stages of conjugation. When macronuclei were removed from both cells of a pair, micronuclear development was arrested 1 to 1.5 hr after macronuclear removal. When the macronucleus of a micronucleate cell mating with an amicronucleate cell was removed later than 3 to 3.5 hr of conjugation, that is, an early stage of meiotic prophase of the micronucleus, micronuclear events occurred normally in the operated cell. These results suggest that most micronuclear events are under the control of the macronucleus and that the gene products provided by the macronucleus are transferable between mating cells. One such product is required for induction of micronuclear division and is provided just before metaphase of the first meiotic division of the micronucleus. This factor is effective at a lower concentration in the cytoplasm and/or is more transferable between mating cells than the factors required for other stages. This factor, which seems to be present at least until the stage of micronuclear disintegration, is able to induce repeated micronuclear division as long as it remains active. The factor can act on a micronucleus which has not passed through a meiotic prophase. Moreover, the results suggest the existence of a second factor which is provided by the macronucleus after the first meiotic division that inhibits further micronuclear division.  相似文献   

2.
ABSTRACT. The germinal micronucleus divides six times during conjugation of Paramecium caudatum : this includes two meiotic divisions and one mitosis of haploid nuclei during mating, and three mitoses of a fertilization nucleus (synkaryon). Microsurgical removal of the macronucleus showed that micronuclei were able to divide repeatedly in the absence of the macronucleus, after metaphase of meiosis I of the micronucleus and also after synkaryon formation. When the macronucleus was removed after the first division of synkaryon, in an extreme case the synkaryon divided five times and produced 32 nuclei, compared to three divisions and eight nuclei produced in the presence of the macronucleus. Treatment with actinomycin D (100 μ /ml) inhibited the morphological changes of the macronucleus during conjugation and induced a multimicronucleate state in exconjugants. However, in other cells, it induced production of a few giant micronuclei. We conclude that the micronucleus is able to undergo repeated divisions at any stage of conjugation in the absence of the macronucleus once the factor(s) for induction of the micronuclear division has been produced by the macronucleus. The macronucleus may also produce a regulatory factor required to stop micronucler division.  相似文献   

3.
For determination of the effect of K+ on macro- and micronuclear differentiation Paramecium caudatum exconjugants were transferred to medium with various concentrations of Valinomycin and/or K+ at the critical stage of nuclear differentiation. The differentiation was not disturbed by transfer to medium containing 1.5 mM to 50 mM KCl. Injection of KCl solution at the critical stage also did not affect differentiation of the macronucleus appreciably. But change of the KCl concentration in the medium at the critical stage interrupted of normal development of the macronucleus.
Macro- and micronuclear differentiations after conjugation are known to be determined by the antero-posterior localization of postzygotic micronuclei. This nuclear localization is achieved by elongation of mitotic spindles and marked shortening of the cell length at the time of micronuclear division. Successive measurements of cell length at 25°C showed that cells began to shorten 1.5 hr after mating-pair separation, reaching to half the initial length about 2.5 hr after the separation, and then returning to recover their initial length within about 50 min. In a solution of K+ (50 mM) plus Valinomycin (1μg/ml or more), cell shortening was inhibited. It is not known whether elongation of mitotic spindles at the time of critical nuclear division was disordered by this treatment, but the macronuclear anlagen developed in the treated cells. Thus shortening in the cell length is not indispensable for nuclear differentiation.  相似文献   

4.
The micronucleus from vegetative cells of one mating type (O or E) in Paramecium tetraurelia was transplanted by micropipet into amicronucleate cells of opposite mating type (E or O). When autogamy was induced in the recipient cells, they developed new macronuclei and micronuclei derived from the transplanted micronucleus and usually expressed the same mating type as the recipients. The results indicate that micronuclei in the asexual phase may be undetermined for mating type. Recipient E cells in which the macronucleus had been previously removed were transplanted with a whole macronucleus from an O cell. Their mating type was soon transformed E to O before the occurrence of autogamy, and remained O after autogamy. This demonstrates that the transplanted macronucleus determined the O cytoplasmic state to determine the developing zygotic macronucleus for mating type O. It is unlikely that the micronucleus is determined for mating type in O or E cell during the asexual cycle.  相似文献   

5.
C4A2 repeats are present in multiple clusters in both the macronucleus and micronucleus of Tetrahymena. Although the macronucleus is generated from the micronucleus after sexual conjugation, the repeats are telomeric sequences in the macronucleus but are internally located in the micronucleus (1). This study investigates the fate of the sequences adjacent to the micronuclear C4A2 repeats. Southern blot analyses of 21 C4A2-containing micronuclear clones show that extensive elimination of the adjacent sequences occurs during the formation of the macronucleus. Comparison of one C4A2-containing micronuclear clone with its derived macronuclear segment indicates that approximately 4.5 kb of DNA, which includes the C4A2 repeats and adjacent sequences on both sides is deleted from the macronucleus. The two regions adjoining the deletion are joined together to form a contiguous segment in the macronucleus. This excision of C4A2 repeats and surrounding sequences and the rejoining of the retained segments is probably the mechanism by which all or most of the other C4A2 adjacent sequences are eliminated.  相似文献   

6.
Kazuyuki Mikami 《Chromosoma》1979,73(1):131-142
An exconjugant cell of Paramecium caudatum has two kinds of macronuclei, fragmented prezygotic macronuclei and postzygotic new macronuclei (anlagen). Although the DNA synthesis in the fragmented prezygotic macronucleus continues until the third cell cycle after conjugation, selective suppression of the DNA synthesis in the prezygotic macronucleus takes place at the fourth cell cycle. The inhibition of DNA synthesis in prezygotic fragmented macronuclei is due to the presence of a postzygotic macronucleus (anlage) in the same cytoplasm because the inhibition does not occur when the postzygotic macronucleus (anlage) is removed by micromanipulation during the third or fourth cell cycle. Well-developed postzygotic macronuclei (anlagen) with full ability to divide have the ability to depress the DNA synthesis of prezygotic macronuclear fragments. The suppression of DNA synthesis in prezygotic macronuclear fragments seems to be irreversible. Competition for the limited amount of DNA precursors also plays an important role in the onset of the selective suppression of the DNA synthesis.  相似文献   

7.
The macronucleus of the protozoan Oxytricha fallax is generated from a micronucleus following conjugation. While the micronucleus contains high molecular weight DNA, the macronucleus contains only short linear DNA molecules which all end in the same 20 bp inverted terminal repeat (Ma-ITR). The Ma-ITR was radioactively labeled and purified for use as a probe in hybridizations to micronuclear and macronuclear DNA. Sequences homologous to the Ma-ITR were detected in micronuclear DNA. The copy number of the repeat in the micronuclear genome is approximately that required to encode the macronuclear DNA termini. The micronuclear copies are found embedded in repeated long sequence blocks.  相似文献   

8.
The macronucleus of Paramecium caudatum controls most cellular activities, including sexual immaturity after conjugation. Exconjugant cells have two macronuclear forms: (1) fragments of the maternal macronucleus, and (2) the new macronuclei that develop from the division products of a fertilization micronucleus. The fragments are distributed into daughter cells without nuclear division and persist for at least eight cell cycles after conjugation. Conjugation between heterokaryons revealed that the fragmented maternal macronuclei continued to express genetic information for up to eight cell cycles. When the newly developed macronucleus was removed artificially within four cell cycles after conjugation, the clones regenerated the macronuclear fragments (macronuclear regeneration; MR) and showed mating reactivity, because they were sexually mature. However, when the new macronucleus was removed during later stages, many MR clones did not show mating reactivity. In some extreme cases, immaturity continued for more than 50 fissions after conjugation, as seen with normal clones that had new macronuclei derived from a fertilization micronucleus. These results indicate that the immaturity determined by the new macronucleus is not annulled by the regenerated maternal macronucleus. Mature macronuclear fragments may be "reprogrammed" in the presence of the new macronucleus, resulting in their expression of "immaturity."  相似文献   

9.
Chilodonella uncinata, like all ciliates, contains two distinct nuclei in every cell: a germline micronucleus and a somatic macronucleus. During development of the macronucleus from a zygotic nucleus, the genome is processed in several ways, including elimination of internal sequences. In this study, we analyze micronuclear and macronuclear copies of beta-tubulin in C. uncinata and find at least four divergent paralogs of beta-tubulin in the macronucleus. We characterize the micronuclear version of one paralog and compare its internally eliminated sequences (IESs) with previously described IESs in this species. These comparisons reveal the presence of a conserved sequence motif within IESs. In addition, we compare the sequences of beta-tubulin from C. uncinata with other ciliates and to other alveolates in order to test the hypothesis that the mode of molecular evolution in ciliates obscures phylogenetic signal in protein-coding genes. We find that heterogeneous rates of substitution in beta-tubulin across ciliates result in unstable genealogies that are inconsistent with phylogenies based on small subunit rDNA genes and on ultrastructure. We discuss the implications of our findings for genome processing and protein evolution in ciliates.  相似文献   

10.
11.
Summary Ultrastructural changes in the micro- and macronucleus throughout division were followed in synchronized cultures of the suctorian, Tokophrya infusionum. After an initial swelling, the micronucleus elongates enormously; microtubules within the micronucleus proliferate and lengthen as the micronucleus elongates. Changes in the macronucleus become visible only after micronuclear division is well underway. The chromatin bodies fuse into long chromatin strands, and the large bundles of microtubules present in the resting macronucleus break up into small groups which parallel the chromatin strands. Colchicine, which prevents reproduction in Tokophrya, seems to block division at a very early stage. The macronucleus appears the same as the resting nucleus of untreated organisms, with numerous microtubules and distinct chromatin bodies. The chromatin in the micronucleus aggregates into large clumps, however, and proliferation of microtubules does not occur.Supported by a Graduate Fellowship at The Rockefeller University.Supported by Grant A1-01407-12 USPHS and Grant A1-08989-01 USPHS.  相似文献   

12.
13.
Following conjugation of the hypotrichous ciliate Euplotes aediculatus, the posterior fragments of the old (prezygotic) macronucleus persist until after the first vegetative division. These fragments remain viable during exconjugant development as shown by their ability to regenerate should the cell's new macronucleus be damaged. It thus seemed possible that these parental nuclear fragments might participate in the development of the new macronucleus and/or the crucial post-conjugant cortical reorganization that restores the exconjugant cell's ability to feed. This idea was tested by damaging the posterior fragments with various doses of microbeam ultraviolet (UV) light and assessing the results of such treatment on subsequent cortical and nuclear development. When the posterior fragments of the macronucleus were irradiated at the beginning of cortical morphogenesis, the new macronucleus in 1/3 to 1/2 of the cells assumed a “folded” appearance but did not mature. These cells did not undergo cortical reorganization. Cells irradiated at earlier stages did not detectably develop an oral apparatus; their new macronucleus remained arrested at the spherical anlage stage. The results show that the posterior fragments of the parental macronucleus are necessary for normal nuclear and cortical development. These old nuclear fragments appear to influence the growing macronuclear anlage directly and probably the cortex as well. There also appears to be an information flow from the non-irradiated partner of a persistently joined exconjugant doublet to its irradiated counterpart, enabling normal anlage and cortex development in the irradiated cell.  相似文献   

14.
Each cell of Paramecium caudatum has a germinal micronucleus. When a bi-micronucleate state was created artificially by micronuclear transplantation, both micronuclei divided for at least 2 cell cycles after nuclear transplantation. However, this bi-micronucleate state was unstable and reduced to a uni-micronucleate state after several fissions. Although the number of micronuclei was usually 1 during the vegetative phase, 4 presumptive micronuclei differentiated after conjugation. At the first post-conjugational fission, only 1 of the 4 micronuclei divided, indicating that there is tight regulation of micronuclear number in exconjugants. Micronuclei that did not divide at the first post-conjugational fission may persist through the first and second post-conjugational cell cycles. The decision to divide appears to be separate from the decision to degenerate, as evidenced by division of a remaining micronucleus upon removal of the dividing micronucleus at the first division. Degeneration of micronuclei in exconjugants differs from that of haploid nuclei after meiosis. Nutritional state affected micronuclear degeneration. Under well-fed conditions, the micronuclei destined to degenerate lost the ability to divide earlier than after starvation treatment, suggesting that micronuclear degeneration is an "apoptotic" phenomenon, probably under the control of the new macronuclei (macronuclear anlagen).  相似文献   

15.
The DNA of ciliated protozoa.   总被引:35,自引:0,他引:35       下载免费PDF全文
Ciliates contain two types of nuclei: a micronucleus and a macronucleus. The micronucleus serves as the germ line nucleus but does not express its genes. The macronucleus provides the nuclear RNA for vegetative growth. Mating cells exchange haploid micronuclei, and a new macronucleus develops from a new diploid micronucleus. The old macronucleus is destroyed. This conversion consists of amplification, elimination, fragmentation, and splicing of DNA sequences on a massive scale. Fragmentation produces subchromosomal molecules in Tetrahymena and Paramecium cells and much smaller, gene-sized molecules in hypotrichous ciliates to which telomere sequences are added. These molecules are then amplified, some to higher copy numbers than others. rDNA is differentially amplified to thousands of copies per macronucleus. Eliminated sequences include transposonlike elements and sequences called internal eliminated sequences that interrupt gene coding regions in the micronuclear genome. Some, perhaps all, of these are excised as circular molecules and destroyed. In at least some hypotrichs, segments of some micronuclear genes are scrambled in a nonfunctional order and are recorded during macronuclear development. Vegetatively growing ciliates appear to possess a mechanism for adjusting copy numbers of individual genes, which corrects gene imbalances resulting from random distribution of DNA molecules during amitosis of the macronucleus. Other distinctive features of ciliate DNA include an altered use of the conventional stop codons.  相似文献   

16.
Ciliates contain two types of nuclei: a micronucleus and a macronucleus. The micronucleus serves as the germ line nucleus but does not express its genes. The macronucleus provides the nuclear RNA for vegetative growth. Mating cells exchange haploid micronuclei, and a new macronucleus develops from a new diploid micronucleus. The old macronucleus is destroyed. This conversion consists of amplification, elimination, fragmentation, and splicing of DNA sequences on a massive scale. Fragmentation produces subchromosomal molecules in Tetrahymena and Paramecium cells and much smaller, gene-sized molecules in hypotrichous ciliates to which telomere sequences are added. These molecules are then amplified, some to higher copy numbers than others. rDNA is differentially amplified to thousands of copies per macronucleus. Eliminated sequences include transposonlike elements and sequences called internal eliminated sequences that interrupt gene coding regions in the micronuclear genome. Some, perhaps all, of these are excised as circular molecules and destroyed. In at least some hypotrichs, segments of some micronuclear genes are scrambled in a nonfunctional order and are recorded during macronuclear development. Vegetatively growing ciliates appear to possess a mechanism for adjusting copy numbers of individual genes, which corrects gene imbalances resulting from random distribution of DNA molecules during amitosis of the macronucleus. Other distinctive features of ciliate DNA include an altered use of the conventional stop codons.  相似文献   

17.
The role of the micronucleus in the age-dependent increase in mortality after conjugation in Paramecium has been investigated using micronuclear transplantation. The clone of Paramecium caudatum used for this study had a lifespan of about 750 fissions. In this clone, the fission rate began to decrease about 450 fissions after conjugation. Mortality after selfing conjugation also began to appear at about 450 fissions and gradually increased with clonal age. Cells at about 650 fissions showed 10–70% survival after selfing conjugation but when their micronuclei were transplanted into amicronucleate cells of about 450 fissions, the progeny survival increased to 70–90%. When micronuclei from cells 700–750 fissions old were transplanted into amicronucleate cells of 100–150 fissions, however, increase in progeny survival was very rare. The results indicate that micronuclei in cells up to the age of 650 fissions can function normally if the cytoplasmic environment is young.  相似文献   

18.
Strain d48 of Paramecium tetraurelia contains the A i-antigen gene in the micronucleus, but the gene is lost when micronuclear products develop into the macronucleus. It has recently been shown that when injected into d48, macronucleoplasm from the wild type transforms d48 cells to wild type. It is shown here that wild-type cytoplasm can also bring about transformation, with a marked stage-specific sensitivity for both donor and recipient. It was also found that a plasmid containing the cloned A gene could transform d48 to wild type. Injection of nucleoplasm from animals in the vegetative stage of the cell cycle into the cytoplasm of recipients at various stages of autogamy caused high-frequency transformation of cells able to express the A serotype both before and after the next autogamy. Injection of nucleoplasm into vegetative macronuclei produced over 70% transformants able to express the A serotype after the next autogamy. The ability of nucleoplasm to transform was acquired at the second cell cycle after autogamy and was maintained throughout the vegetative stage. When cytoplasm was obtained from donors during autogamy and injected into the cytoplasm of recipients 1 to 2 h after the sensitive period, quite high frequencies of stable revertants were found when tested both before and after the next autogamy. Cells that were injected into the macronucleus with the cloned A plasmid expressed the A serotype after five fissions in over 20% of the lines and maintained this ability through successive fissions; all transformants except one stably expressed the A serotype even after the next autogamy.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号