首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
Optical rotatory dispersion (ORD) and circular dichroism (CD) of 17 amino acid hydantoins were measured between 190 and 600 nm. Most of hydantoins exhibited the negative Cotton effect which showed the trough between 238 and 245 nm. The negative trough of CD was also observed between 212 and 236 nm. The Cotton effect of hydantoins was attributable to n→π* transition of carbonyl group at C-4 of hydantoin ring.  相似文献   

2.
An interesting phenomenon was observed that the existence of the intact cell membrane can enhance the D-amino acids production from D,L-5-substituted hydantoins by reacting with the whole cells of Agrobacterium radiobacter. Two intracellular enzymes were involved in the reaction process. The first enzyme D-hydantoinase converted hydantoins to carbamoyl derivatives which were further converted to D-amino acids by D-amidohydrolase. The amount of D-amino acids produced from hydantoins by the intact cells were 1.8–2.4 fold higher than the toluene treated cells. In addition, by using the intact cells the amount of D-amino acids produced from hydantoins was about 10 fold higher than that produced directly from carbamoyl derivatives. The relatively lower permeability of cell membrane to the reaction intermediate carbamoyl derivatives was confirmed by a simple mathematical model to be the main factor for the better performance of the intact cells for D-amino acid production. Besides, the low intracellular enzymes activities also contributed to the effect of intact cell membrane on enhancing the D-amino acid production.  相似文献   

3.
A series of novel hydantoins was designed and synthesized as structural alternatives to hydroxamate inhibitors of TACE. 5-Mono- and di-substituted hydantoins exhibited activity with IC50 values of 11-60 nM against porcine TACE in vitro and excellent selectivity against other MMPs.  相似文献   

4.
DNA fragments containing the genes involved in the conversion of 5-substituted hydantoins to their corresponding L-amino acids have been cloned from the 172-kb native plasmid (pHN671) of Pseudomonas sp. strain NS671. The largest recombinant plasmid, designated pHPB14, encoded the ability to convert D-5-substituted hydantoins to the corresponding L-amino acids, whereas the smallest one, designated pHPB12, encoded the ability to convert them to their corresponding N-carbamyl-D-amino acids. Restriction analysis suggested that the inserts of both recombinant plasmids are derived from the identical portion in pHN671 and that the insert of pHPB14, compared with that of pHPB12, has an extra 5.3 kb in length. DNA sequencing revealed that pHPB14 contains two additional complete open reading frames, designated ORF5 and hyuE. Analysis of deletion derivatives of pHPB14 indicated that hyuE is required for the ability to produce L-amino acids from the corresponding D-5-substituted hydantoins, but ORF5 is not. Cells of Escherichia coli transformed with a plasmid containing hyuE were capable of racemizing different 5-substituted hydantoins, indicating that hyuE is a gene encoding a hydantoin racemase.  相似文献   

5.
Industrial production of antibiotics, such as semisynthetic penicillins and cephalosporins, requires optically pure D-p-hydroxylphenylglycine and its derivatives as important side-chain precursors. To produce optically pure D-amino acids, microbial D-hydantoinase (E.C. 3.5.2.2) is used for stereospecific hydrolysis of chemically synthesized cyclic hydantoins. We report the apo-crystal structure of D-hydantoinase from B. stearothermophilus SD1 at 3.0 A resolution. The structure has a classic TIM barrel fold. Despite an undetectable similarity in sequence, D-hydantoinase shares a striking structural similarity with the recently solved structure of dihydroorotase. A structural comparison of hydantoinase with dihydroorotase revealed that the catalytic chemistry is conserved, while the substrate recognition is not. This structure provides insight into the stereochemistry of enantioselectivity in hydrolysis and illustrates how the enzyme recognizes stereospecific exocyclic substituents and hydrolyzes hydantoins. It should also provide a rationale for further directed evolution of this enzyme for hydrolysis of new hydantoins with novel exocyclic substituents.  相似文献   

6.
The mechanism of asymmetric production of d-amino acids from the corresponding hydantoins by Pseudomonas sp. AJ-11220 was examined by investigating the properties of the enzymes involved in the hydrolysis of dl-5-substituted hydantoins. The enzymatic production of d-amino acids from the corresponding hydantoins by Pseudomonas sp. AJ-11220 involved the following two successive reactions; the d-isomer specific hydrolysis, i.e., the ring opening of d-5-substituted hydantoins to d-form N-carbamyl amino acids by an enzyme, d-hydantoin hydrolase (d-HYD hydrolase), followed by the d-isomer specific hydrolysis, i.e., the cleavage of N-carbamyl-d-amino acids to d-amino acids by an enzyme, N-carbamyl-d-amino acid hydrolase (d-NCA hydrolase).

l-5-Substituted hydantoins not hydrolyzed by d-HYD hydrolase were converted to d-form 5- substituted hydantoins through spontaneous racemization under the enzymatic reaction conditions.

It was proposed that almost all of the dl-5-substituted hydantoins were stoichiometrically and directly converted to the corresponding d-amino acids through the successive reactions of d-HYD hydrolase and d-NCA hydrolase in parrallel with the spontaneous racemization of l-5-substituted hydantoins to those of dl-form.  相似文献   

7.
Various immunological features were measured in 20 patients with epilepsy who had received prolonged treatment with hydantoins. Immunoglobulin A (IgA) was shown to be absent or low in five patients, β1C/A was low in 10 patients. Five patients showed negative reactions to skin tests, and two could not be sensitized to dinitrochlorobenzene. The corresponding features were normal in 14 control patients with epilepsy but without hydantoins. It is suggested that the hydantoins influence humoral immunity, whereas other immunosuppressant agents have been found to affect cellular immunity.  相似文献   

8.
Hydantoin racemase enzyme together with a stereoselective hydantoinase and a stereospecific D-carbamoylase guarantee the total conversion from D,L-5-monosubstituted hydantoins with a low velocity of racemization to optically pure D-amino acids. In this work we have cloned and expressed the hydantoin racemase gene from two strains of Agrobacterium tumefaciens, C58 and LBA4404, in Escherichia coli BL21. The recombinant protein was purified in a one-step procedure by using immobilized cobalt affinity chromatography and showed an apparent molecular mass of 32,000 Da in SDS-gel electrophoresis. Size exclusion chromatography analysis determined a molecular mass of about 100,000 Da, suggesting that the native enzyme is a tetramer. The optimal conditions for hydantoin racemase activity were pH 7.5 and 55 degrees C with L-5-ethylhydantoin as substrate. Enzyme activity was slightly affected by the addition of Ni(2+) and Co(2+) and strongly inhibited by Cu(2+) and Hg(2+). No effect on enzyme activity was detected with Mn(2+), EDTA, or DTT. Kinetic studies showed the preference of the enzyme for hydantoins with short rather than long aliphatic side chains or hydantoins with aromatic rings.  相似文献   

9.
Abstract

(Z)-5-(Naphthylmethylene)-2-thiohydantoin derivatives (3a,b,12a-d) were prepared directly fiom condensations of 2-thiohydantoin derivatives (1,l la,b) with naphthaldehydes. Bisglycosylation took place on reaction of (Z)-5-(naphthylmethylene)- 2-thiohydantoin derivatives (3a,b) with glycosyl halides (4a,b) under alkaline conditions. The bisglycosilated hydantoins produced N3 glycosylated hydantoins on treatment with ammonia in methanol. (Z)-5-(2-Naphthylmethylene)-2-(benzylidene E-hydrazono)hydantoin (9a) and (Z)-5-(2-naphthylmethylene)-2-(polyhydroxyalkylidene E-hydrazono)hydantoins (9b,c) were prepared fiom the reaction of (Z)-5-(2-naphthyylmethylene)-2- methylmercaptohydantoin (7) with benzylidene E-hydrazone (8a) and monosaccharide E-hydrazones (8b,c). S-Glycosylation also took place when N3 substituted hydantoins were reacted. The hydantoin nucleosides were tested for their potential activity against HTV and HSV.  相似文献   

10.
Pseudomonas sp. strain NS671, which produces L-amino acids asymmetrically from the corresponding racemic 5-substituted hydantoins, harbored a plasmid of 172 kb. Curing experiments suggest that this plasmid, designated pHN671, is responsible for the conversion of 5-substituted hydantoins to their corresponding L-amino acids by strain NS671. DNA fragments containing the genes involved in this conversion were cloned from pHN671 in Escherichia coli by using pUC18 as a cloning vector. The smallest recombinant plasmid, designated pHPB12, contained a 7.5-kb insert DNA. The nucleotide sequence of the insert DNA was determined, and three closely spaced open reading frames predicted to encode peptides with molecular masses of 75.6, 64.9, and 45.7 kDa were found. These open reading frames were designated hyuA, hyuB, and hyuC, respectively. Cell extracts from E. coli carrying deletion derivatives of pHPB12 were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and the gene products of hyuA, hyuB, and hyuC were identified. The functions of these gene products were also examined with the deletion derivatives. The results indicate that both hyuA and hyuB are involved in the conversions of D- and L-5-substituted hydantoins to corresponding N-carbamyl-D- and N-carbamyl-L-amino acids, respectively, and that hyuC is involved in the conversion of N-carbamyl-L-amino acids to L-amino acids.  相似文献   

11.
An efficient solid-phase protocol for the synthesis of substituted (5-biphenyltetrazolyl)-hydantoins and -thiohydantoins has been developed. Suzuki cross-coupling between resin-bound 2-(tetrazol-5-yl)-phenylborinane and 4-bromobenzaldehyde gave the corresponding tetrazolylbiphenyl aldehyde. Subsequent reductive amination using amino acid esters gave the pivotal resin bound amino acid esters which were transformed to hydantoins or thiohydantoins via two routes: (i) treatment with isocyanates or isothiocyanates or (ii) successive treatment with triphosgene and primary amines. Using molecular modeling, we were able to jump from L-692,429, a well known non-peptidyl growth hormone secretagogue (GHS), to biphenyltetrazolyl hydantoins, obtaining compounds with IC(50) values below 600 nM after two iterative cycles only.  相似文献   

12.
A novel hydantoin racemase gene of Agrobacterium tumefaciens C58 (AthyuA2) has been cloned and expressed in Escherichia coli BL21. The recombinant protein was purified in a one-step procedure and showed an apparent molecular mass of 27000 Da in SDS-gel electrophoresis. Size exclusion chromatography analysis determined a molecular mass of approximately 100000 Da, suggesting that the native enzyme is a tetramer. The optimum pH and temperature for hydantoin racemase activity were 7.5 and 55 degrees C, respectively, with L-5-ethylhydantoin as substrate. Enzyme activity was strongly inhibited by Cu(2+) and Hg(2+). No effect on enzyme activity was detected with any other divalent cations, EDTA or DTT, suggesting that it is not a metalloenzyme. Kinetic studies showed the preference of the enzyme for hydantoins with short rather than long aliphatic side chains or hydantoins with aromatic rings.  相似文献   

13.
A series of trisubstituted hydantoins has been prepared by a versatile solid phase route employing primary alcohols, amines and amino acids as the monomeric building blocks. Several compounds showed submicromolar affinity in binding assays at recombinant human somatostatin receptors.  相似文献   

14.
A new series of IGF-1R inhibitors related to hydantoins were identified from a lead originating from HTS. Their noncompetitive property as well as their slow binding characteristics provided a series of compounds with unique selectivity and excellent cellular activities.  相似文献   

15.
A reaction system was developed for the production of D-amino acids from D,L-5-monosubstituted hydantoins with a very slow rate of spontaneous racemization. For this purpose the D-hydantoinase and D-carbamoylase from Agrobacterium radiobacter NRRL B11291 were cloned in separate plasmids and expressed in Escherichia coli. The third enzyme, hydantoin racemase, was cloned from Agrobacterium tumefaciens C58. The hydantoin racemase amino acid sequence was significantly similar to those previously described. A reaction system consisting of recombinant Escherichia coli whole cell biocatalysts containing separately expressed D-hydantoinase, D-carbamoylase, and hydantoin recemase showed high substrate specificity and was effective toward both aliphatic and aromatic D,L-5-monosubstituted hydantoins. After optimizing reaction conditions (pH 8 and 50 degrees C), 100% conversion of D,L-5-(2-methylthioethyl)-hydantoin (15 mM) into D-methionine was obtained in 30 min.  相似文献   

16.
Hydantoin racemase enzyme plays a crucial role in the reaction cascade known as "hydantoinase process." In conjunction with a stereoselective hydantoinase and a stereospecific carbamoylase, it allows the total conversion from D,L-5-monosubstituted hydantoins, with a low rate of racemization, to optically pure D- or L-amino acids. Residues Cys76 and Cys181 belonging to hydantoin racemase from Sinorhizobium meliloti (SmeHyuA) have been proved to be involved in catalysis. Here, we report biophysical data of SmeHyuA Cys76 and Cys181 to alanine mutants, which point toward a two-base mechanism for the racemization of 5-monosubstituted hydantoins. The secondary and the tertiary structure of the mutants were not significantly affected, as shown by circular dichroism. Calorimetric and fluorescence experiments have shown that Cys76 is responsible for recognition and proton retrieval of D-isomers, while Cys181 is responsible for L-isomer recognition and racemization. This recognition process is further supported by measurements of protein stability followed by chemical denaturation in the presence of the corresponding compound.  相似文献   

17.
In order to investigate the contribution from the chiral penultimate unit to the enantiomer selection in the activated N-carboxyanhydride (NCA) polymerizations, the addition reaction to N-[(S)-methylbenzyl]glycine NCA of various α-amino acid hydantoins activated by the tertiary amines was investigated in different solvents. The reactions of activated Ala, Val, and Phe hydantoins were stereoselective and suggested the participation of the penultimate unit in the enantiomer selection of the activated NCA type of polymerization. The degree of enantiomer selection was not well correlated with the structure of hydantoins. Taking into account the dipole repulsion and the orbital overlapping between the reaction species, the transition-state model was proposed, which gave a good explanation of the selectivity for (R)-hydantoin in PhNO2 and CH3CN and the selectivity for (S)-hydantoin in AcNMe2 and HCONMe2. In these two types of solvents the orientation of the methylbenzyl group with respect to the NCA ring is so different that the direction of the approach of the activated hydantoin to the NCA is different. This difference leads to the inversion of enantiomer selection in amide solvents and in others. Cationic species derived from tertiary amines and the chiral amide compound were found to affect the enantiomer selection in the model reaction. The implications of these findings with regard to enantiomer selection in the activated NCA type of polymerization are discussed.  相似文献   

18.
海因酶热稳定性及底物特异性研究进展   总被引:2,自引:0,他引:2  
海因酶是在微生物中广泛分布的能水解5-取代海因衍生物制备光学纯氨基酸的关键生物催化剂,在各种氨基酸的酶法生产中具有良好的应用前景。着重概述了海因酶的热稳定性、底物特异性研究及应用,并讨论了其发展方向。  相似文献   

19.
Two recombinant reaction systems for the production of optically pure D-amino acids from different D,L-5-monosubstituted hydantoins were constructed. Each system contained three enzymes, two of which were D-hydantoinase and D-carbamoylase from Agrobacterium tumefaciens BQL9. The third enzyme was hydantoin racemase 1 for the first system and hydantoin racemase 2 for the second system, both from A. tumefaciens C58. Each system was formed by using a recombinant Escherichia coli strain with one plasmid harboring three genes coexpressed with one promoter in a polycistronic structure. The D-carbamoylase gene was cloned closest to the promoter in order to obtain the highest level of synthesis of the enzyme, thus avoiding intermediate accumulation, which decreases the reaction rate. Both systems were able to produce 100% conversion and 100% optically pure D-methionine, D-leucine, D-norleucine, D-norvaline, D-aminobutyric acid, D-valine, D-phenylalanine, D-tyrosine, and D-tryptophan from the corresponding hydantoin racemic mixture. For the production of almost all D-amino acids studied in this work, system 1 hydrolyzed the 5-monosubstituted hydantoins faster than system 2.  相似文献   

20.
微生物乙内酰脲酶及其研究进展   总被引:10,自引:3,他引:7  
乙内酰脲酶是广泛分布在微生物中的一类可降解乙内酰脲酶类化合物的酶系 ,包括乙内酰脲水解酶、N-氨甲酰氨基酸水解酶及乙内酰脲消旋酶。微生物的乙内酰脲酶在结构与组成、立体选择性、底物专一性、反应条件和作用机制等方面有所不同 ,在各种 L-及 D-型氨基酸的酶法生产中具有良好的应用前景。本文对乙内酰脲酶研究及应用的一般情况作了概述 ,并讨论了有关乙内酰脲酶研究的主要研究进展  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号