首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Delayed gastrointestinal transit is common in patients with severe burn. Ghrelin is a potent prokinetic peptide. We aimed at testing the effect of ghrelin on burn-induced delayed gastrointestinal transit in rats. Gastric emptying (GE), intestinal transit (IT), and colonic transit (CT) studies were performed in male Sprague-Dawley rats. Rats were randomized into two main groups as follows: sham injury and ghrelin-treated burn injury with doses of 0, 2, 5, and 10 nmol/rat ip 6 h after burn. Sham/burn injury was induced under anesthesia. Rats received a phenol red meal 20 min following ghrelin injection. Based on the most effective ghrelin dose, 1 mg/kg sc atropine was given 30 min before the ghrelin in one group of rats for each study. The rats in each group were killed 30-90 min later; their stomachs, intestines, and colons were harvested immediately, and the amount of phenol red recovered was measured. Percentage of gastric emptying (GE%) and geometric center for IT and CT were calculated. We found 1) severe cutaneous burn injury significantly delayed GE, IT, and CT compared with sham injury (P < 0.05); 2) ghrelin normalized both GE and IT, but not the CT; 3) the most effective dose of ghrelin was 2 nmol/rat; and 4) atropine blocked the prokinetic effects of ghrelin on GE% and IT. In conclusion, ghrelin normalizes burn-induced delayed GE and IT but has no effect on CT in rats. The prokinetic effects of ghrelin are exerted via the cholinergic pathway. Ghrelin may have a therapeutic potential for burn patients with delayed upper gastrointestinal transit.  相似文献   

2.
Ghrelin, a nature ligand for the growth hormone secretagogue receptor (GHS-R), stimulates a release of growth hormone, prolactin and adrenocorticotropic hormone. Also, ghrelin increases food intake in adult rats and humans and exhibits gastroprotective effect against experimental ulcers induced by ethanol or stress. The aim of present study was to examine the influence of ghrelin administration on gastric and duodenal growth and expression of pepsin and enterokinase in young mature rats with intact or removed pituitary. METHODS: Two week after sham operation or hypophysectomy, eight week old Wistar male rats were treated with saline (control) or ghrelin (4, 8 or 16 nmol/kg/dose) i.p. twice a day for 4 days. Expression of pepsin in the stomach and enterokinase in the duodenum was evaluated by real-time PCR. RESULTS: In animals with intact pituitary, treatment with ghrelin increased food intake, body weight gain and serum level of growth hormone and insulin-like growth factor-1 (IGF-1). These effects were accompanied with stimulation of gastric and duodenal growth. It was recognized as the significant increase in gastric and duodenal weight and mucosal DNA synthesis. In both organs, ghrelin administered at the dose of 8 nmol/kg caused maximal growth-promoting effect. In contrast to these growth-promoting effects, administration of ghrelin reduced expression of mRNA for pepsin in the stomach and was without effect on expression of mRNA for enterokinase in the duodenum. Hypophysectomy alone lowered serum concentration of growth hormone under the detection limit and reduced serum level of IGF-1 by 90%. These effects were associated with reduction in daily food intake, body weight gain and gastroduodenal growth. In hypophysectomized rats, administration of ghrelin was without significant effect on food intake, body weight gain or growth of gastroduodenal mucosa. Also, serum concentration of growth hormone or IGF-1 was not affected by ghrelin administration in rats with removed pituitary. CONCLUSION: Administration of ghrelin stimulates gastric and duodenal growth in young mature rats with intact pituitary, but inhibits expression of mRNA for pepsin in the stomach. Growth hormone and insulin-like growth factor-1 play an essential role in growth-promoting effects of ghrelin in the stomach and duodenum.  相似文献   

3.
Ghrelin, an endogenous ligand of the growth hormone secretagogue receptor, has been primarily isolated from the human and rat stomach. Ghrelin has been shown to stimulate appetite and fat deposition in adult rats and humans. The aim of this study was to investigate the effect of ghrelin administration on pancreatic growth in suckling, weaned and peripubertal seven week old rats. Rats were treated with saline or ghrelin (4, 8 or 16 nmol/kg/dose) intraperitoneally twice a day: suckling rats were treated for 7 or 14 days starting from the first postnatal day, three week old weaned rats and seven weeks old rats were treated for 5 days. Treatment with ghrelin did not affect animal weight in suckling or weaned rats, whereas in young seven week old rats, ghrelin caused a significant increase in body weight. Ghrelin decreased food intake in weaned rats; whereas in seven week old rats, food intake was enhanced. In suckling rats, ghrelin decreased the pancreatic weight, pancreatic amylase content, DNA synthesis and DNA content. In contrast, ghrelin increased pancreatic weight, DNA synthesis, DNA content and amylase content in weaned or young seven week old rats. Pancreatic blood flow was not affected by ghrelin in any group of rats tested. Ghrelin increased serum level of growth hormone in all rats. This effect was weak in suckling rats, higher in weaned and the highest in seven week old animals. Ghrelin did not affect serum level of insulin-like growth factor-1 (IGF-1) in suckling rats. In weaned and in seven week old rats, treatment with ghrelin caused increase in serum level of IGF-1. We conclude that ghrelin reduces pancreatic growth in suckling rats; whereas in weaned and young seven week old animals, treatment with ghrelin increases pancreatic growth. This biphasic effect of ghrelin in young animals on pancreatic growth seems to be related to age-dependent changes of the release of anabolic IGF-1.  相似文献   

4.
Anti-cachectic effect of ghrelin in nude mice bearing human melanoma cells   总被引:5,自引:0,他引:5  
Ghrelin is a novel brain-gut peptide that stimulates food intake and body weight gain. We studied the anabolic effect of ghrelin in a cancer cachexia mouse model. SEKI, a human melanoma cell line, was inoculated into nude mice to examine the effects of ghrelin on food intake and body weight. The intraperitoneal administration of ghrelin twice a day (6 nmol/mice/day) for 6 days suppressed weight loss in SEKI-inoculated mice and increased the rate of weight gain in vehicle-treated nude mice. Ghrelin administration also increased food intake in both SEKI- and vehicle-treated mice. Both the weight of white adipose tissue and the plasma leptin concentration were reduced in tumor-inoculated mice compared with vehicle-treated mice; these factors increased following ghrelin administration. The levels of both ghrelin peptide and mRNA in the stomach were upregulated in tumor-inoculated mice. The anabolic effect of ghrelin efficiently reverses the cachexia in mice bearing SEKI human melanoma. Ghrelin therefore may have a therapeutic ability to ameliorate cancer cachexia.  相似文献   

5.
Sehirli O  Sener E  Sener G  Cetinel S  Erzik C  Yeğen BC 《Peptides》2008,29(7):1231-1240
Mechanisms of burn-induced skin and remote organ injury involve oxidant generation and the release of pro-inflammatory cytokines. In this study the possible antioxidant and anti-inflammatory effects of ghrelin were evaluated in a rat model of thermal trauma. Wistar albino rats were exposed to 90 degrees C bath for 10 s to induce thermal trauma. Ghrelin, was administered subcutaneously (10 ng/kg/day) after the burn injury and repeated twice daily. Rats were decapitated at 6 h and 48 h after burn injury and blood was collected for the analysis of pro-inflammatory cytokines (TNF-alpha and IL-1beta), lactate dehydrogenase (LDH) activity and antioxidant capacity (AOC). In skin, lung and stomach tissue samples malondialdehyde (MDA) and glutathione (GSH) levels, myeloperoxidase (MPO) and Na(+)-K(+)-ATPase activity were measured in addition to the histological analysis. DNA fragmentation ratio in the gastric mucosa was also evaluated. Burn injury caused significant increase in both cytokine levels, and LDH activity, while plasma AOC was found to be depleted after thermal trauma. On the other hand, in tissue samples the raised MDA levels, MPO activity and reduced GSH levels, Na(+)-K(+)-ATPase activity due to burn injury were found at control levels in ghrelin-treated groups, while DNA fragmentation in the gastric tissue was also reduced. According to the findings of the present study, ghrelin possesses a neutrophil-dependent anti-inflammatory effect that prevents burn-induced damage in skin and remote organs and protects against oxidative organ damage.  相似文献   

6.
Gastroesophageal reflux disease (GERD) is often associated with decreased upper gastrointestinal motility, and ghrelin is an appetite-stimulating hormone known to increase gastrointestinal motility. We investigated whether ghrelin signaling is impaired in rats with GERD and studied its involvement in upper gastrointestinal motility. GERD was induced surgically in Wistar rats. Rats were injected intravenously with ghrelin (3 nmol/rat), after which gastric emptying, food intake, gastroduodenal motility, and growth hormone (GH) release were investigated. Furthermore, plasma ghrelin levels and the expression of ghrelin-related genes in the stomach and hypothalamus were examined. In addition, we administered ghrelin to GERD rats treated with rikkunshito, a Kampo medicine, and examined its effects on gastroduodenal motility. GERD rats showed a considerable decrease in gastric emptying, food intake, and antral motility. Ghrelin administration significantly increased gastric emptying, food intake, and antral and duodenal motility in sham-operated rats, but not in GERD rats. The effect of ghrelin on GH release was also attenuated in GERD rats, which had significantly increased plasma ghrelin levels and expression of orexigenic neuropeptide Y/agouti-related peptide mRNA in the hypothalamus. The number of ghrelin-positive cells in the gastric body decreased in GERD rats, but the expression of gastric preproghrelin and GH secretagogue receptor mRNA was not affected. However, when ghrelin was exogenously administered to GERD rats treated with rikkunshito, a significant increase in antral motility was observed. These results suggest that gastrointestinal dysmotility is associated with impaired ghrelin signaling in GERD rats and that rikkunshito restores gastrointestinal motility by improving the ghrelin response.  相似文献   

7.
Intraventricular (i3vt) ghrelin increases food intake in fatty Zucker rats   总被引:3,自引:0,他引:3  
Brown LM  Benoit SC  Woods SC  Clegg DJ 《Peptides》2007,28(3):612-616
Ghrelin is an orexigenic peptide secreted from the stomach and also made in the brain. Ghrelin receptors are expressed on hypothalamic cells important in appetite and energy balance. We determined that intra-3rd-ventricular (i3vt) ghrelin dose-dependently increases acute (1 and 2 h) food intake in lean and fatty Zucker rats (0, 0.01, 0.1 and 1.0 nmol ghrelin). The percentage increase of food intake in fatty Zucker rats was significantly greater than that in lean rats. Fatty Zucker rats had 4.5 times more ghrelin receptor mRNA in the hypothalamus than lean Zucker rats, suggesting a possible mechanism for the increased sensitivity.  相似文献   

8.
Somatostatin suppresses ghrelin secretion from the rat stomach   总被引:6,自引:0,他引:6  
Ghrelin is an acylated peptide that stimulates food intake and the secretion of growth hormone. While ghrelin is predominantly synthesized in a subset of endocrine cells in the oxyntic gland of the human and rat stomach, the mechanism regulating ghrelin secretion remains unknown. Somatostatin, a peptide produced in the gastric oxyntic mucosa, is known to suppress secretion of several gastrointestinal peptides in a paracrine fashion. By double immunohistochemistry, we demonstrated that somatostatin-immunoreactive cells contact ghrelin-immunoreactive cells. A single intravenous injection of somatostatin reduced the systemic plasma concentration of ghrelin in rats. Continuous infusion of somatostatin into the gastric artery of the vascularly perfused rat stomach suppressed ghrelin secretion in both dose- and time-dependent manner. These findings indicate that ghrelin secretion from the stomach is regulated by gastric somatostatin.  相似文献   

9.
Systemic ghrelin sensitizes cocaine-induced hyperlocomotion in rats   总被引:1,自引:0,他引:1  
The feeding-relevant pathway by which food restriction (FR) augments cocaine action is unknown. Systemic administration of the 28-amino acid acylated peptide ghrelin (1-10 nmol) increases food intake in rats and circulating levels of rat ghrelin are up-regulated by FR. The present experiment examined the impact of repeated administration of ghrelin or vehicle on the subsequent capacity of cocaine to enhance locomotion in rats. Male Sprague-Dawley rats were pretreated daily for seven days with 0, 5 or 10 nmol rat ghrelin (i.p.) in the home cage. On the 8th day, rats were transported to a testing room, placed in a locomotion chamber for 15 min, and then injected (i.p.) with 0, 7.5, or 15 mg/kg cocaine hydrochloride. Locomotor activity was monitored over a 45 min post-cocaine period. Pretreatment with 5 or 10 nmol ghrelin alone did not significantly increase basal locomotion relative to that of the 0 nmol ghrelin group. Rats pretreated with 5 nmol or 10 nmol ghrelin showed an enhanced locomotor response after treatment with 15 mg/kg cocaine relative to rats treated with 0 nmol ghrelin. These results indicate that acute injection of ghrelin, at a feeding-relevant dose, can augment the acute effects of cocaine on locomotion in rats.  相似文献   

10.
Ghrelin attenuates the development of acute pancreatitis in rat.   总被引:12,自引:0,他引:12  
BACKGROUND: Ghrelin, a circulating growth hormone-releasing peptide isolated from human and rat stomach, stimulates growth hormone secretion, food intake and exhibits gastroprotective properties. Ghrelin is predominantly produced by a population of endocrine cells in the gastric mucosa, but its presence in bowel, pancreas, pituitary and hypothalamus has been reported. In human fetal pancreas, ghrelin is expressed in a prominent endocrine cell population. In adult pancreatic islets the population of these cell is reduced. The aim of present study was to investigate the influence of ghrelin administration on the development of acute pancreatitis. METHODS: Acute pancreatitis was induced in rat by caerulein injection. Ghrelin was administrated twice (30 min prior to the first caerulein or saline injection and 3 h later) at the doses: 2, 10 or 20 nmol/kg. Immediately after cessation of caerulein or saline injections the following parameters were measured: pancreatic blood flow, plasma lipase activity, plasma interleukin-1beta (IL-1beta) and interleukin 10 (IL-10) concentration, pancreatic DNA synthesis, and morphological signs of pancreatitis. RESULTS: Administration of ghrelin without induction of pancreatitis did not affect significantly any parameter tested. Caerulein led to the development of acute edematous pancreatitis. Treatment with ghrelin at the dose 2 nmol/kg, during induction of pancreatitis, was without effect on pancreatic histology or biochemical and functional parameters. Treatment with ghrelin at the dose 10 and 20 nmol/kg attenuated the development of pancreatitis and the effects of both doses were similar. Administration of ghrelin (10 or 20 nmol/kg) reduced inflammatory infiltration of pancreatic tissue and vacuolization of acinar cells. Also, plasma lipase activity and plasma IL-1beta concentration were reduced, and caerulein-induced fall in pancreatic DNA synthesis was reversed. Administration of ghrelin at the dose 10 and 20 nmol/kg was without effect on caerulein-induced pancreatic edema and pancreatitis-related fall in pancreatic blood flow. CONCLUSIONS: (1) Administration of ghrelin attenuates pancreatic damage in caerulein-induced pancreatitis; (2) Protective effect of ghrelin administration seems Background: Ghrelin, a circulating growth hormone-releasing peptide isolated from human and rat stomach, stimulates growth hormone secretion, food intake and exhibits gastroprotective properties. Ghrelin is predominantly produced by a population of endocrine cells in the gastric mucosa, but its presence in bowel, pancreas, pituitary and hypothalamus has been reported. In human fetal pancreas, ghrelin is expressed in a prominent endocrine cell population. In adult pancreatic islets the population of these cell is reduced. The aim of present study was to investigate the influence of ghrelin administration on the development of acute pancreatitis. Methods: Acute pancreatitis was induced in rat by caerulein injection. Ghrelin was administrated twice (30 min prior to the first caerulein or saline injection and 3 h later) at the doses: 2, 10 or 20 nmol/kg. Immediately after cessation of caerulein or saline injections the following parameters were measured: pancreatic blood flow, plasma lipase activity, plasma interleukin-1beta (IL-1beta) and interleukin 10 (IL-10) concentration, pancreatic DNA synthesis, and morphological signs of pancreatitis. Results: Administration of ghrelin without induction of pancreatitis did not affect significantly any parameter tested. Caerulein led to the development of acute edematous pancreatitis. Treatment with ghrelin at the dose 2 nmol/kg, during induction of pancreatitis, was without effect on pancreatic histology or biochemical and functional parameters. Treatment with ghrelin at the dose 10 and 20 nmol/kg attenuated the development of pancreatitis and the effects of both doses were similar. Administration of ghrelin (10 or 20 nmol/kg) reduced inflammatory infiltration of pancreatic tissue and vacuolization of acinar cells. Also, plasma lipase activity and plasma IL-1beta conc; concentration were reduced, and caerulein-induced fall in pancreatic DNA synthesis was reversed. Administration of ghrelin at the dose 10 and 20 nmol/kg was without effect on caerulein-induced pancreatic edema and pancreatitis-related fall in pancreatic blood flow. Conclusions: (1) Administration of ghrelin attenuates pancreatic damage in caerulein-induced pancreatitis; (2) Protective effect of ghrelin administration seems to be related the inhibition in inflammatory process and the reduction in liberation of pro-inflammatory IL-1beta.  相似文献   

11.
Ghrelin, an endogenous ligand for growth hormone secretagogue receptor, was identified in the rat stomach. This peptide acts through nitric oxide (NO) by expressing endothelial nitric oxide synthase (eNOS) and down regulating inducible nitric oxide synthase (iNOS) at its gastroproprotective effect against restraint stress induced damage. Recently the ghrelin receptor has also been detected in peripheral systems including immune tissue. We have investigated the possible effect of ghrelin on phagocytic activity of peritoneal macrophages in acute cold-restraint stress (ACRS) exposed rats. The rats were divided into control, stress and ghrelin groups. In ghrelin groups, single dose and three days consecutive dose of ghrelin (20 microg/kg. i.p.) were applied to rats that were exposed to ACRS for 4 h. 1 ml of saline was injected i.p. after ACRS for 3 consecutive days to the rats of the stress groups. Ghrelin administration reduced the increased phagocytic activity induced by ACRS. We conclude that ghrelin exerts an important role at macrophage phagocytic activity in ACRS exposed rats.  相似文献   

12.
Ghrelin, an orexigenic peptide produced in the stomach, is increased in streptozotocin (STZ)-induced diabetic (DM) mice. This study clarifies the regulation of ghrelin levels by leptin in STZ-DM mice. STZ-DM mice had higher plasma ghrelin concentrations and greater ghrelin mRNA expression than control mice. Changes in ghrelin levels were dose dependently attenuated by the subcutaneous injection of leptin (0-27 nmol x kg(-1) x day(-1) over 7 days). Leptin treatment also partially reversed the hyperphagia and hyperglycemia observed in STZ-DM mice, but not the hypoinsulinemia, and there was a decrease in plasma ghrelin concentrations and ghrelin mRNA levels compared with STZ-LEP pair-fed mice. These results indicate that leptin treatment partially reverses elevated plasma ghrelin levels in STZ-DM mice independent of food intake and insulin, and suggest that hypoleptinemia in STZ-DM mice upregulates ghrelin.  相似文献   

13.
Liu X  York DA  Bray GA 《Peptides》2004,25(12):2171-2177
Ghrelin is a peptide produced by the stomach and released into the circulation. As a natural ligand of the growth hormone secretagogue (GHS) receptor, it stimulates growth hormone secretion but it also stimulates feeding in humans and rodents. The orexigenic effect of ghrelin has been related to AgRP/NPY and orexin pathways. We proposed that ghrelin might be involved in the susceptibility to diet induced obesity and in the regulation of macronutrient selection. We have investigated these hypotheses in two strains of rat, the Osborne–Mendel (OM) rat that prefers diets high in fat and is sensitive to dietary obesity and the S5B/P1 (S5B) rat that prefers a low fat diet and is resistant to high fat diet induced obesity.

OM and S5B rats were adapted to a choice of high fat (HF) and low fat (LF) diet for 2 weeks. GHRP-2, an analogue of ghrelin, was injected intraperitoneally into satiated and 24 h fasted rats at doses of 10, 30 and 90 nmol. Food intake was measured over the next 4 h period. In satiated S5B rats, GHRP-2 stimulated intake of the LF diet in a dose dependent manner but did not affect the intake of the HF diet. In satiated OM rats, 90 nmol of GHRP-2 stimulated HF intake. In contrast, neither fasted OM nor S5B rats increased the intake of either HF or LF diet in response to GHRP-2. Fasting for 18 h induced a large rise in ghrelin mRNA in stomach of OM rats but not in S5B rats. There were no significant differences in plasma total ghrelin. An increase in ghrelin mRNA in stomach immediately before the onset of the dark cycle was observed in OM but not in S5B rats. Active ghrelin level was significantly affected by different feeding conditions in both OM and S5B rats adapted on HF diet with a trend to increase after 48 h of fasting and to decline to basal levels following 10 h of refeeding. These data suggest that ghrelin stimulates the intake of the preferred macronutrient. In addition, a differential regulation of ghrelin gene expression between OM and S5B rats may be important in their differential sensitivity to HF diet-induced obesity.  相似文献   


14.
Ghrelin, a novel growth-hormone-releasing acylated peptide, was recently isolated from rat stomach by the search of an endogenous ligand to an "orphan" G-protein-coupled-receptor. Ghrelin neuron is present in the arcuate nucleus of rat hypothalamus, but its central effect on growth hormone (GH) release has yet to be clarified. We determined the plasma GH concentration and GH mRNA level in the pituitary in response to central administration of ghrelin. A single intracerebroventricular (ICV) administration of ghrelin to rats increased the plasma GH concentration dose-dependently. A continuous ICV administration of ghrelin via osmotic pump for 12 days increased the plasma GH concentration on day 6, but did not keep the high GH concentration on day 12. The GH mRNA levels in both groups of single and continuous administration of ghrelin were not significantly different from those of controls. A single administration of growth-hormone secretagogue also did not stimulate GH synthesis. Central ghrelin stimulated GH release but did not augment GH synthesis. In addition to gastric ghrelin, hypothalamic ghrelin functions to regulate GH release.  相似文献   

15.
Widespread use of ionizing radiation has led to the realization of the danger associated with radiation exposure. Although studies in radiation countermeasures were initiated a half century ago, an effective therapy for a radiomitigator has not been identified. Ghrelin is a gastrointestinal hormone, and administration of ghrelin is protective in animal models of injuries including radiation combined injury. To test whether ghrelin can be protective in whole body irradiaton (WBI) alone, male Sprague Dawley (SD) rats were treated with human ghrelin (20 nmol/rat) daily for 6 days starting at either 24 h or 48 h after 10 Gray (Gy) WBI and survival outcome was examined. The 10 Gy WBI produced a LD70/30 model in SD rats (30% survival in 30 days). The survival rate in rats treated with ghrelin starting at 24 h was significantly improved to 63% and when treatment was initiated at 48 h, the survival remained at 61%. At 7 days post WBI, plasma ghrelin was significantly reduced from the control value. Ghrelin treatment starting at 24 h after WBI daily for 6 days improved histological appearance of the intestine, reduced gut permeability, serum endotoxin levels and bacterial translocation to the liver by 38%, 42% and 61%, respectively at day 7 post WBI. Serum glucose and albumin were restored to near control levels with treatment. Ghrelin treatment also attenuated WBI-induced intestinal apoptosis by 62% as evidenced by TUNEL staining. The expression of anti-apoptotic cell regulator Bcl-xl was decreased by 38% in the vehicle and restored to 75% of the control with ghrelin treatment. Increased expression of intestinal CD73 and pAkt were observed with ghrelin treatment, indicating protection of the intestinal epithelium after WBI. These results indicate that human ghrelin attenuates intestinal injury and mortality after WBI. Thus, human ghrelin can be developed as a novel mitigator for radiation injury.  相似文献   

16.
Ghrelin was originally purified and characterized in rats and humans as the first identified endogenous ligand of the growth hormone secretagogue receptor. In mammals, ghrelin is mainly produced in the stomach, with minor levels of ghrelin present in the brain and various other tissues. Ghrelin is involved in the regulation of many physiological functions including the regulation of growth hormone secretion and food intake in mammals. The gene and peptide structures of ghrelin have been recently identified in several fish species. As in mammals, ghrelin mRNA is mainly expressed in the gut of fish. Ghrelin is involved in the regulation of a number of physiological functions, including the regulation of pituitary hormone release and the stimulation of food intake in fish. In this review, we wish to provide an up-to-date discussion on the structure, distribution and functions of ghrelin in fish, in comparison to ghrelin in other vertebrates.  相似文献   

17.
Ghrelin is a novel gut-brain peptide that binds to the growth hormone secretagogue receptor (GHS-R), thereby functioning in the regulation of growth hormone (GH) release and food intake. Ghrelin-producing cells are most abundant in the oxyntic glands of the stomach. The regulatory mechanism that governs the biosynthesis and secretion of ghrelin has not been clarified. We report that ghrelin mRNA expression in the gastric fundus was increased, but that ghrelin peptide content decreased after a 48-h fast. Both values returned to control levels after refeeding. The ghrelin plasma concentration in the gastric vein and systemic venous blood increased after 24- and 48-h fasts. Furthermore, des-octanoylated ghrelin and n-octanoylated ghrelin were found in rat stomach, with the ratio of des-octanoylated ghrelin to n-octanoylated ghrelin markedly increased after fasting. The ghrelin mRNA level in the stomach also increased after administration of insulin and leptin. Conversely, db/db mice, which are deficient in the leptin receptor, had lower ghrelin mRNA levels than control mice. These findings suggest that this novel gastrointestinal hormone plays a role in the regulation of energy balance.  相似文献   

18.
Ghrelin acts in the central nervous system to stimulate gastric acid secretion   总被引:37,自引:0,他引:37  
Ghrelin is a novel acylated peptide that functions in the regulation of growth hormone release and energy metabolism. It was isolated from rat stomach as an endogenous ligand for growth hormone secretagogue receptor. Ghrelin is also localized in the arcuate nucleus of rat hypothalamus. Intracerebroventricular (ICV) administration increases food intake and body weight. We examined the effect of ghrelin on gastric acid secretion in urethane-anesthetized rats and found that ICV administration of ghrelin increased gastric acid output in a dose-dependent manner. Vagotomy and administration of atropine abolished the gastric acid secretion induced by ghrelin. ICV administration of ghrelin also induced c-fos expression in the neurons of the nucleus of the solitary tract and the dorsomotor nucleus of the vagus, which are key sites in the central nervous system for regulation of gastric acid secretion. Our results suggest that ghrelin participates in the central regulation of gastric acid secretion by activating the vagus system.  相似文献   

19.
Ghrelin, a novel acylated peptide and endogenous ligand for growth hormone (GH) secretagogue receptor, was originally isolated from rat and human stomachs. In addition to its GH-releasing activity, ghrelin plays an important role in many physiological functions, including food intake, gastric acid secretion, neonatal development, and so on. In this study, the effect of daily treatment with ghrelin on milk production was investigated in lactating rats and the development of the pups was monitored. Daily subcutaneous injection of ghrelin into nursing dams for 8 days from parturition caused a significant increase in milk yield and litter weight gain. When litters nursed by ghrelin-treated and saline-treated dams were interchanged on day 4 of lactation, the growth curves were reversed. Daily injections of ghrelin also increased plasma GH levels. Northern blot analysis revealed that daily injection of ghrelin significantly increased mammary casein mRNA expression. In addition, RT-PCR analysis showed that a ghrelin receptor was present in the mammary glands of lactating rats. These results suggest that ghrelin may play an important role in milk production in lactating dams.  相似文献   

20.
The gastrointestinal (GI) tract is one of the most susceptible organs to ischemia. We previously reported altered gastric motility after gastric ischemia and reperfusion (I/R). However, there have also been few reports of alterations in the eating behavior after gastric I/R. Ghrelin is a GI peptide that stimulates food intake and GI motility. Although ghrelin itself has been demonstrated to attenuate the mucosal injuries induced by gastric I/R, the endogenous ghrelin dynamics after I/R has not yet been elucidated. The present study was designed to investigate the relationship between food intake and the ghrelin dynamics after gastric I/R. Wistar rats were exposed to 80-min gastric ischemia, followed by 12-h or 48-h reperfusion. The food intake, plasma ghrelin levels, gastric preproghrelin mRNA expression levels, and the histological localization of ghrelin-immunoreactive cells were evaluated. The effect of exogenous ghrelin on the food intake after I/R was also examined. Food intake, the plasma ghrelin levels, the count of ghrelin-immunoreactive cells corrected by the percentage areas of the remaining mucosa, and the expression levels of preproghrelin mRNA in the stomach were significantly reduced at 12 h and 48 h after I/R compared with the levels in the sham-operated rats. Intraperitoneal administration of ghrelin significantly reversed the decrease of food intake after I/R. These data show that gastric I/R evoked anorexia with decreased plasma ghrelin levels and ghrelin production, which appears to be attributable to the I/R-induced gastric mucosal injuries. The decrease in the plasma ghrelin levels may have been responsible for the decreased food intake after gastric I/R.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号