首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Scavenger receptor class B type I (SR-BI) has been identified as a functional HDL binding protein that can mediate the selective uptake of cholesteryl ester (CE) from HDL. To quantify the in vivo role of SR-BI in the process of selective uptake, HDL was labeled with cholesteryl ether ([(3)H] CEt-HDL) and (125)I-tyramine cellobiose ([(125)I]TC-HDL) and injected into SR-BI knockout (KO) and wild-type (WT) mice. In SR-BI KO mice, the clearance of HDL-CE from the blood circulation was greatly diminished (0.043 +/- 0.004 pools/h for SR-BI KO mice vs. 0.106 +/- 0.004 pools/h for WT mice), while liver and adrenal uptake were greatly reduced. Utilization of double-labeled HDL ([(3)H]CEt and [(125)I]TC) indicated the total absence in vivo of the selective decay and liver uptake of CE from HDL in SR-BI KO mice. Parenchymal cells isolated from SR-BI KO mice showed similar association values for [(3)H]CEt and [(125)I]TC in contrast to WT cells, indicating that in parenchymal liver cells SR-BI is the only molecule exerting selective CE uptake from HDL. Thus, in vivo and in vitro, SR-BI is the sole molecule mediating the selective uptake of CE from HDL by the liver and the adrenals, making it the unique target to modulate reverse cholesterol transport.  相似文献   

2.
The class B, type I scavenger receptor (SR-BI) mediates the selective uptake of high density lipoprotein (HDL) cholesteryl esters and the efflux of free cholesterol. SR-BI is predominantly associated with caveolae in Chinese hamster ovary cells. The caveola protein, caveolin-1, binds to cholesterol and is involved in intracellular cholesterol trafficking. We previously demonstrated a correlative increase in caveolin-1 expression and the selective uptake of HDL cholesteryl esters in phorbol ester-induced differentiated THP-1 cells. The goal of the present study was to determine if the expression of caveolin-1 is the causative factor in increasing selective cholesteryl ester uptake in macrophages. To test this, we established RAW and J-774 cell lines that stably expressed caveolin-1. Transfection with caveolin-1 cDNA did not alter the amount of 125I-labeled HDL that associated with the cells, although selective uptake of HDL [3H]cholesteryl ether was decreased by approximately 50%. The amount of [3H]cholesterol effluxed to HDL was not affected by caveolin-1. To directly address whether caveolin-1 inhibits SR-BI-dependent selective cholesteryl ester uptake, we overexpressed caveolin-1 by adenoviral vector gene transfer in Chinese hamster ovary cells stably transfected with SR-BI. Caveolin-1 inhibited the selective uptake of HDL [3H]cholesteryl ether by 50-60% of control values without altering the extent of cell associated HDL. We next used blocking antibodies to CD36 and SR-BI to demonstrate that the increase in selective [3H]cholesteryl ether uptake previously seen in differentiated THP-1 cells was independent of SR-BI. Finally, we used beta-cyclodextrin and caveolin overexpression to demonstrate that caveolae depleted of cholesterol facilitate SR-BI-dependent selective cholesteryl ester uptake and caveolae containing excess cholesterol inhibit uptake. We conclude that caveolin-1 is a novel negative regulator of SR-BI-dependent selective cholesteryl ester uptake.  相似文献   

3.
The major role of native high density lipoprotein (HDL) is to carry cholesterol from peripheral tissues to the liver for bile excretion. As acute-phase (AP)-HDL has a decreased ability for cellular cholesterol efflux but an increased capacity for cholesteryl ester (CE) delivery to peripheral tissues, the interaction of AP-HDL with human hepatoma cells was studied. Binding studies to HUH-7 cells revealed saturable binding properties for HDL and AP-HDL at 4 degrees C. At 37 degrees C, specific cell-association of (125)I- and [1,2,6,7-(3)H]-cholesteryl palmitate ([(3)H]CE)-labeled lipoprotein particles was 2.2- and 1.6-fold higher for HDL indicating that total CE delivery was significantly (P<0.05) higher for HDL in comparison to AP-HDL. In parallel, selective CE uptake (the difference between total lipid uptake and holoparticle uptake) from AP-HDL was decreased compared with HDL. The fact that the capacity for cellular cholesterol efflux from HUH-7 cells is slightly impaired by AP-HDL (compared with HDL) is of support that scavenger receptor class B, type I (SR-BI), the only receptor so far known to mediate bi-directional lipid flux, might be involved in altered HUH-7 cholesterol hemostasis by AP-HDL. Our in vitro findings suggest that HDL and AP-HDL interact differently with cells of hepatic origin resulting in decreased hepatic cholesterol removal from the circulation during the AP reaction.  相似文献   

4.
In addition to its effect on high density lipoprotein (HDL) cholesteryl ester (CE) uptake, scavenger receptor BI (SR-BI) was recently reported to stimulate free cholesterol (FC) flux from Chinese hamster ovary (CHO) cells stably expressing mouse SR-BI, a novel function of SR-BI that may play a role in cholesterol removal from the vessel wall where the receptor can be found. It is possible that SR-BI stimulates flux simply by tethering acceptor HDL particles in close apposition to the cell surface thereby facilitating the movement of cholesterol between the plasma membrane and HDL. To test this, we used transiently transfected cells and compared the closely related class B scavenger receptors mouse SR-BI and rat CD36 for their ability to stimulate cholesterol efflux as both receptors bind HDL with high affinity. The results showed that, although acceptor binding to SR-BI may contribute to efflux to a modest extent, the major stimulation of FC efflux occurs independently of acceptor binding to cell surface receptors. Instead our data indicate that SR-BI mediates alterations to membrane FC domains which provoke enhanced bidirectional FC flux between cells and extracellular acceptors.  相似文献   

5.
Scavenger receptor class B type I (SR-BI) mediates the selective uptake of HDL cholesteryl esters (CEs) by the liver. LPL promotes this selective lipid uptake independent of lipolysis. In this study, the role of SR-BI in the mechanism of this LPL-mediated increase in selective CE uptake was explored. Baby hamster kidney (BHK) cells were transfected with the SR-BI cDNA, and significant SR-BI expression could be detected in immunoblots, whereas no SR-BI was visualized in control cells. Y1-BS1 murine adrenocortical cells were cultured without or with adrenocorticotropic hormone, and cells with no detectable or with SR-BI were obtained. These cells incubated without or with LPL in medium containing 125I/[3H]cholesteryl oleyl ether- labeled HDL3; tetrahydrolipstatin inhibited the catalytic activity of LPL. In BHK and in Y1-BS1 cells without or with SR-BI expression, apparent HDL3 selective CE uptake ([3H]CEt - 125I) was detectable. Cellular SR-BI expression promoted HDL3 selective CE uptake by approximately 250-1,900%. In BHK or Y1-BS1 cells, LPL mediated an increase in apparent selective CE uptake. Quantitatively, this stimulating LPL effect was very similar in control cells and in cells with SR-BI expression. The uptake of radiolabeled HDL3 was also investigated in human embryonal kidney 293 (HEK 293) cells that are an established SR-BI-deficient cell model. LPL stimulated [3H]cholesteryl oleyl ether uptake from labeled HDL3 by HEK 293 cells substantially, showing that LPL can induce selective CE uptake from HDL3 independent of SR-BI. To explore the role of cell surface proteoglycans on lipoprotein uptake, we induced proteoglycan deficiency by heparinase treatment. Proteoglycan deficiency decreased the LPL-mediated promotion of HDL3 selective CE uptake. In summary, evidence is presented that the stimulating effect of LPL on HDL3 selective CE uptake is independent of SR-BI and lipolysis. However, cell surface proteoglycans are required for the LPL action on selective CE uptake. It is suggested that pathways distinct from SR-BI mediate selective CE uptake from HDL.  相似文献   

6.
Scavenger receptor (SR)-BI catalyzes the selective uptake of cholesteryl ester (CE) from high density lipoprotein (HDL) by a two-step process that involves the following: 1) binding of HDL to the receptor and 2) diffusion of the CE molecules into the cell plasma membrane. We examined the effects of the size of discoidal HDL particles containing wild-type (WT) apoA-I on selective uptake of CE and efflux of cellular free (unesterified) cholesterol (FC) from COS-7 cells expressing SR-BI to determine the following: 1) the influence of apoA-I conformation on the lipid transfer process, and 2) the contribution of receptor binding-dependent processes to the overall efflux of cellular FC. Large (10 nm diameter) reconstituted HDL bound to SR-BI better (B(max) approximately 420 versus 220 ng of apoA-I/mg cell protein), delivered more CE, and promoted more FC efflux than small ( approximately 8 nm) particles. When normalized to the number of reconstituted HDL particles bound to the receptor, the efficiencies of either CE uptake or FC efflux with these particles were the same indicating that altering the conformation of WT apoA-I modulates binding to the receptor (step 1) but does not change the efficiency of the subsequent lipid transfer (step 2); this implies that binding induces an optimal alignment of the WT apoA-I.SR-BI complex so that the efficiency of lipid transfer is always the same. FC efflux to HDL is affected both by binding of HDL to SR-BI and by the ability of the receptor to perturb the packing of FC molecules in the cell plasma membrane.  相似文献   

7.
This study compares the roles of ABCG1 and scavenger receptor class B type I (SR-BI) singly or together in promoting net cellular cholesterol efflux to plasma HDL containing active LCAT. In transfected cells, SR-BI promoted free cholesterol efflux to HDL, but this was offset by an increased uptake of HDL cholesteryl ester (CE) into cells, resulting in no net efflux. Coexpression of SR-BI with ABCG1 inhibited the ABCG1-mediated net cholesterol efflux to HDL, apparently by promoting the reuptake of CE from medium. However, ABCG1-mediated cholesterol efflux was not altered in cholesterol-loaded, SR-BI-deficient (SR-BI(-/-)) macrophages. Briefly cultured macrophages collected from SR-BI(-/-) mice loaded with acetylated LDL in the peritoneal cavity did exhibit reduced efflux to HDL. However, this was attributable to reduced expression of ABCG1 and ABCA1, likely reflecting increased macrophage cholesterol efflux to apolipoprotein E-enriched HDL during loading in SR-BI(-/-) mice. In conclusion, cellular SR-BI does not promote net cholesterol efflux from cells to plasma HDL containing active LCAT as a result of the reuptake of HDL-CE into cells. Previous findings of increased atherosclerosis in mice transplanted with SR-BI(-/-) bone marrow probably cannot be explained by a defect in macrophage cholesterol efflux.  相似文献   

8.
Scavenger receptor class B type I (SR-BI) mediates the selective uptake of HDL cholesteryl esters (CEs) by the liver. Hepatic lipase (HL) promotes this lipid uptake independent from lipolysis. The role of SR-BI in this HL-mediated increase in selective CE uptake was explored. Baby hamster kidney (BHK) cells were transfected with the SR-BI cDNA yielding cells with SR-BI expression, whereas no SR-BI was detected in control cells. These cells were incubated in medium containing 125I [3H]cholesteryl oleyl ether-labeled HDL3 (d = 1.125-1.21 g/ml) and HL was absent or present. Tetrahydrolipstatin (THL) blocked lipolysis. In control BHK cells and in BHK cells with SR-BI, HDL3 selective CE uptake (3H-125I) was detectable and SR-BI promoted this uptake. In both cell types, HL mediated an increase in selective CE uptake from HDL3. Quantitatively, this HL effect was similar in control BHK cells and in BHK cells with SR-BI. These results suggest that HL promotes selective uptake independent from SR-BI. To investigate the role of cell surface proteoglycans on the HL-mediated HDL3 uptake, proteoglycan deficiency was induced by heparinase digestion. Proteoglycan deficiency decreased the HL-mediated promotion of selective CE uptake. In summary, the stimulating HL effect on HDL selective CE uptake is independent from SR-BI and lipolysis. Proteoglycans are a requisite for the HL action on selective uptake. Results suggest that (a) pathway(s) distinct from SR-BI mediate(s) selective CE uptake from HDL.  相似文献   

9.
The LDL receptor (LDLR) and scavenger receptor class B type I (SR-BI) play physiological roles in LDL and HDL metabolism in vivo. In this study, we explored HDL metabolism in LDLR-deficient mice in comparison with WT littermates. Murine HDL was radiolabeled in the protein (125I) and in the cholesteryl ester (CE) moiety ([3H]). The metabolism of 125I-/[3H]HDL was investigated in plasma and in tissues of mice and in murine hepatocytes. In WT mice, liver and adrenals selectively take up HDL-associated CE ([3H]). In contrast, in LDLR−/− mice, selective HDL CE uptake is significantly reduced in liver and adrenals. In hepatocytes isolated from LDLR−/− mice, selective HDL CE uptake is substantially diminished compared with WT liver cells. Hepatic and adrenal protein expression of lipoprotein receptors SR-BI, cluster of differentiation 36 (CD36), and LDL receptor-related protein 1 (LRP1) was analyzed by immunoblots. The respective protein levels were identical both in hepatic and adrenal membranes prepared from WT or from LDLR−/− mice. In summary, an LDLR deficiency substantially decreases selective HDL CE uptake by liver and adrenals. This decrease is independent from regulation of receptor proteins like SR-BI, CD36, and LRP1. Thus, LDLR expression has a substantial impact on both HDL and LDL metabolism in mice.  相似文献   

10.
The mechanisms of HDL-mediated cholesterol transport from peripheral tissues to the liver are incompletely defined. Here the function of scavenger receptor cluster of differentiation 36 (CD36) for HDL uptake by the liver was investigated. CD36 knockout (KO) mice, which were the model, have a 37% increase (P = 0.008) of plasma HDL cholesterol compared with wild-type (WT) littermates. To explore the mechanism of this increase, HDL metabolism was investigated with HDL radiolabeled in the apolipoprotein (125I) and cholesteryl ester (CE, [3H]) moiety. Liver uptake of [3H] and 125I from HDL decreased in CD36 KO mice and the difference, i. e. hepatic selective CE uptake ([3H]125I), declined (–33%, P = 0.0003) in CD36 KO compared with WT mice. Hepatic HDL holo-particle uptake (125I) decreased (–29%, P = 0.0038) in CD36 KO mice. In vitro, uptake of 125I-/[3H]HDL by primary liver cells from WT or CD36 KO mice revealed a diminished HDL uptake in CD36-deficient hepatocytes. Adenovirus-mediated expression of CD36 in cells induced an increase in selective CE uptake from HDL and a stimulation of holo-particle internalization. In conclusion, CD36 plays a role in HDL uptake in mice and by cultured cells. A physiologic function of CD36 in HDL metabolism in vivo is suggested.  相似文献   

11.
Scavenger receptor BI, SR-BI, is a physiologically relevant receptor for high density lipoprotein (HDL) that mediates the uptake of cholesteryl esters and delivers them to a metabolically active membrane pool where they are subsequently hydrolyzed. A previously characterized SR-BI mutant, A-VI, with an epitope tag inserted into the extracellular domain near the C-terminal transmembrane segment, revealed a separation-of-function between SR-BI-mediated HDL cholesteryl ester uptake and cholesterol efflux to HDL, on one hand, and cholesterol release to small unilamellar phospholipid vesicle acceptors and an increased cholesterol oxidase-sensitive pool of membrane free cholesterol on the other. To further elucidate amino acid residues responsible for this separation-of-function phenotype, we engineered alanine substitutions and point mutations in and around the site of epitope tag insertion, and tested these for various cholesterol transport functions. We found that changing amino acid 420 from glycine to histidine had a profound effect on SR-BI function. Despite the ability to mediate selective HDL cholesteryl ester uptake, the G420H receptor had a greatly reduced ability to: 1) enlarge the cholesterol oxidase-sensitive pool of membrane free cholesterol, 2) mediate cholesterol efflux to HDL, even at low concentrations of HDL acceptor where binding-dependent cholesterol efflux predominates, and 3) accumulate cholesterol mass within the cell. Most importantly, the G420H mutant was unable to deliver the HDL cholesteryl ester to a metabolically active membrane compartment for efficient hydrolysis. These observations have important implications regarding SR-BI function as related to its structure near the C-terminal transmembrane domain.  相似文献   

12.
The transport of HDL cholesteryl esters (CE) from plasma to the liver involves a direct uptake pathway, mediated by hepatic scavenger receptor B-I (SR-BI), and an indirect pathway, involving the exchange of HDL CE for triglycerides (TG) of TG-rich lipoproteins by cholesteryl ester transfer protein (CETP). We carried out HDL CE turnover studies in mice expressing human CETP and/or human lecithin:cholesterol acyltransferase (LCAT) transgenes on a background of human apoA-I expression. The fractional clearance of HDL CE by the liver was delayed by LCAT transgene, while the CETP transgene increased it. However, there was no incremental transfer of HDL CE radioactivity to the TG-rich lipoprotein fraction in mice expressing CETP, suggesting increased direct removal of HDL CE in the liver. To evaluate the possibility that this might be mediated by SR-BI, HDL isolated from plasma of the different groups of transgenic mice was incubated with SR-BI transfected or control CHO cells. HDL isolated from mice expressing CETP showed a 2- to 4-fold increase in SR-BI-mediated HDL CE uptake, compared to HDL from mice lacking CETP. The addition of pure CETP to HDL in cell culture did not lead to increased selective uptake of HDL CE by cells. However, when human HDL was enriched with TG by incubation with TG-rich lipoproteins in the presence of CETP, then treated with hepatic lipase, there was a significant enhancement of HDL CE uptake. Thus, the remodeling of human HDL by CETP, involving CE;-TG interchange, followed by the action of hepatic lipase (HL), leads to the enhanced uptake of HDL CE by cellular SR-BI.These observations suggest that in animals such as humans in which both the selective uptake and CETP pathways are active, the two pathways could operate in a synergistic fashion to enhance reverse cholesterol transport.  相似文献   

13.
Scavenger receptor BI (SR-BI) mediates the selective uptake of high-density lipoprotein (HDL) cholesteryl ester (CE), a process by which HDL CE is taken into the cell without degradation of the HDL particle. In addition, SR-BI stimulates the bi-directional flux of free cholesterol (FC) between cells and lipoproteins, an activity that may be responsible for net cholesterol efflux from peripheral cells as well as the rapid hepatic clearance of FC from plasma HDL. SR-BI also increases cellular cholesterol mass and alters cholesterol distribution in plasma membrane domains as judged by the enhanced sensitivity of membrane cholesterol to extracellular cholesterol oxidase. In contrast, CD36, a closely related class B scavenger receptor, has none of these activities despite binding HDL with high affinity. In the present study, analyses of chimeric SR-BI/CD36 receptors and domain-deleted SR-BI have been used to test the various domains of SR-BI for functional activities related to HDL CE selective uptake, bi-directional FC flux, and the alteration of membrane cholesterol mass and distribution. The results show that each of these activities localizes to the extracellular domain of SR-BI. The N-terminal cytoplasmic tail and transmembrane domains appear to play no role in these activities other than targeting the receptor to the plasma membrane. The C-terminal tail of SR-BI is dispensable for activity as well for targeting to the plasma membrane. Thus, multiple distinct functional activities are localized to the SR-BI extracellular domain.  相似文献   

14.
Scavenger receptor (SR)-BI is the first molecularly defined receptor for high density lipoprotein (HDL) and it can mediate the selective uptake of cholesteryl ester into cells. To elucidate the molecular mechanisms by which SR-BI facilitates lipid uptake, we examined the connection between lipid donor particle binding and lipid uptake using kidney COS-7 cells transiently transfected with SR-BI. We systematically compared the uptake of [(3)H]cholesteryl oleoyl ether (CE) and [(14)C]sphingomyelin (SM) from apolipoprotein (apo) A-I-containing reconstituted HDL (rHDL) particles and apo-free lipid donor particles. Although both types of lipid donor could bind to SR-BI, only apo-containing lipid donors exhibited preferential delivery of CE over SM (i.e. nonstoichiometric lipid uptake). In contrast, apo-free lipid donor particles (phospholipid unilamellar vesicles, lipid emulsion particles) gave rise to stoichiometric lipid uptake due to interaction with SR-BI. This apparent whole particle uptake was not due to endocytosis, but rather fusion of the lipid components of the lipid donor with the cell plasma membrane; this process is perhaps mediated by a fusogenic motif in the extracellular domain of SR-BI. The interaction of apoA-I with SR-BI not only prevents fusion of the lipid donor with the plasma membrane but also allows the optimal selective lipid uptake. A comparison of rHDL particles containing apoA-I and apoE-3 showed that while both particles bound equally well to SR-BI, the apoA-I particle gave approximately 2-fold greater CE selective uptake. Catabolism of all major HDL lipids can occur via SR-BI with the relative selective uptake rate constants for CE, free cholesterol, triglycerides (triolein), and phosphatidylcholine being 1, 1.6, 0.7, and 0.2, respectively. It follows that a putative nonpolar channel created by SR-BI between the bound HDL particle and the cell plasma membrane is better able to accommodate the uptake of neutral lipids (e.g. cholesterol) relative to polar phospholipids.  相似文献   

15.
16.
Scavenger receptor (SR)-BI mediates the selective uptake of high density lipoprotein (HDL) cholesteryl esters and the efflux of free cholesterol. In Chinese hamster ovary (CHO) cells, SR-BI is predominantly associated with caveolae which we have recently demonstrated are the initial loci for membrane transfer of HDL cholesteryl esters. Because cholesterol accumulation in macrophages is a critical event in atherogenesis, we investigated the expression of SR-BI and caveolin-1 in several macrophage cell lines. Human THP-1 monocytes were examined before and after differentiation to macrophages by treatment with 200 nm phorbol ester for 72 h. Undifferentiated THP-1 cells expressed caveolin-1 weakly whereas differentiation up-regulated caveolin-1 expression greater than 50-fold. In contrast, both undifferentiated and differentiated THP-1 cells expressed similar levels of SR-BI. Differentiation of THP-1 cells increased the percent of membrane cholesterol associated with caveolae from 12% +/- 1.9% to 38% +/- 3.1%. The increase in caveolin-1 expression was associated with a 2- to 3-fold increase in selective cholesterol ether uptake from HDL. Two mouse macrophage cell lines, J774 and RAW, expressed levels of SR-BI similar to differentiated THP-1 cells but did not express detectable levels of caveolin-1. In comparison to differentiated THP-1 cells, RAW and J774 cells internalized 9- to 10-fold less cholesteryl ester. We conclude that differentiated THP-1 cells express both caveolin-1 and SR-BI and that their co-expression is associated with enhanced selective cholesteryl ester uptake.  相似文献   

17.
Free cholesterol (FC) has been reported to efflux from cells through caveolae, which are 50-100 nm plasma membrane pits. The 22 kDa protein caveolin-1 is concentrated in caveolae and is required for their formation. The HDL scavenger receptor BI (SR-BI), which stimulates both FC efflux and selective uptake of HDL-derived cholesteryl ester (CE), has been reported to be concentrated in caveolae, suggesting that this localization facilitates flux of FC and CE across the membrane. However, we found that overexpression of caveolin-1 in Fischer rat thyroid (FRT) cells, which lack caveolin-1 and caveolae, or HEK 293 cells, which normally express very low levels of caveolin-1, did not affect FC efflux to HDL or liposomes. Transient expression of SR-B1 did not affect this result. Similarly, caveolin-1 expression did not affect selective uptake of CE from labeled HDL particles in FRT or HEK 293 cells transfected with SR-BI. We conclude that basal and SR-BI-stimulated FC efflux to HDL and liposomes and SR-BI-mediated selective uptake of HDL CE are not affected by caveolin-1 expression in HEK 293 or FRT cells.  相似文献   

18.
The physiological role of murine scavenger receptor class B type I (SR-BI) was evaluated by in vivo clearances of human HDL3 and LDL in normal and SR-BI knockout (KO) mice. In normal mice, cholesteryl esters (CEs) were removed faster than proteins, indicating a selective uptake process from both HDL3 and LDL. SR-BI KO mice showed 80% losses of HDL-CE selective uptake and the complete loss of LDL-CE selective uptake in the first phase of clearance. However, the second phase was characterized by an acceleration of CE disappearance in SR-BI KO mice. Thus, SR-BI is the only murine receptor mediating HDL-CE selective uptake, whereas a SR-BI-independent pathway specific to LDL can rescue SR-BI deficiency. The analysis of LDL recovered 3 h after injection in mice from different genotypes revealed that LDLs are significantly depleted in CE (reduction from 19% to 50% of the CE/protein ratios). A smaller LDL size in comparison with that of noninjected LDL was also detectable but was more evident for LDL recovered from normal mice. All LDL preparations migrate faster than noninjected LDL on agarose-barbital gels. Thus, both SR-BI-dependent and -independent pathways lead to substantial changes in LDL.  相似文献   

19.
The high density lipoprotein (HDL) receptor, scavenger receptor class B, type I (SR-BI), mediates selective cholesteryl ester uptake from lipoproteins into liver and steroidogenic tissues but also cholesterol efflux from macrophages to HDL. Recently, we demonstrated the uptake of HDL particles in SR-BI overexpressing Chinese hamster ovarian cells (ldlA7-SRBI) using ultrasensitive microscopy. In this study we show that this uptake of entire HDL particles is followed by resecretion. After uptake, HDL is localized in endocytic vesicles and organelles en route to the perinuclear area; many HDL-positive compartments were classified as multivesiculated and multilamellated organelles by electron microscopy. By using 125I-labeled HDL, we found that approximately 0.8% of the HDL added to the media is taken up by the ldlA7-SRBI cells within 1 h, and almost all HDL is finally resecreted. 125I-Labeled low density lipoprotein showed a very similar association, uptake, and resecretion pattern in ldlA7-SRBI cells that do not express any low density lipoprotein receptor. Moreover, we demonstrate that the process of HDL cell association, uptake, and resecretion occurs in three physiologically relevant cell systems, the liver cell line HepG2, the adrenal cell line Y1BS1, and phorbol myristate acetate-differentiated THP-1 cells as a model for macrophages. Finally, we present evidence that HDL retroendocytosis represents one of the pathways for cholesterol efflux.  相似文献   

20.
Cholesteryl ester transfer protein (CETP) promotes reverse cholesterol transport via exchange of cholesteryl ester and triglyceride among lipoproteins. Here, we focused on HDL metabolism during inhibition of CETP expression by using CETP antisense oligodeoxynucleotides (ODNs) in HepG2 cells. CETP secretion was decreased by 70% in mRNA levels and by 52% in mass 20 h after ODNs against CETP were delivered to HepG2 cells. Furthermore, as a consequence of the downregulation of CETP, the expression of scavenger receptor class B type I (SR-BI), an HDL receptor, was also reduced by approximately 50% in mRNA and protein levels, whereas the apolipoprotein A-I (apoA-I) expression and secretion were increased by 30 and 92%, respectively. In a functional study, the selective uptake of (125)I-[(14)C]cholesteryl oleate-labeled HDL(3) was decreased. Cholesterol efflux to apoA-I and HDL(3) was significantly increased by 88 and 37%, respectively. Moreover, the CE levels in cells after antisense treatment were elevated by 20%, which was related to the about twofold increase of cholesterol esterification and increased acyl-CoA:cholesterol acyltransferase 1 mRNA levels. Taken together, these findings suggest that although acute suppression of CETP expression leads to an elevation in cellular cholesterol stores, apoA-I secretion, and cellular cholesterol efflux to apoA-I, the return of HDL-CE to hepatocytes via an SR-BI pathway was inhibited in vitro. Thus antisense inhibition of hepatic CETP expression manifests dual effects: namely, increased formation of HDL and suppression of catabolism of HDL-CE, probably via the SR-BI pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号