首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. A previous study compared the functional responses to their prey and intraspecific interference in mature larvae of Perlodes microcephalus, Isoperla grammatica, Dinocras cephalotes and Perla bipunctata. The present study extends this work by assessing interspecific interference between pairs of these species in equal numbers (one, two or three larvae per species) to provide total predator densities of two, four or six larvae. Baetis larvae as prey were replaced as they were eaten, and their density per predator was varied between 20 and 200 larvae. 2. The number of prey eaten by each competing species increased curvilinearly with prey density, the relationship being well described by a Type II model. Of the two constants in the model, handling time varied considerably between species, mean values being shortest for Perlodes, slightly higher for Isoperla, and much higher for Dinocras and Perla. It was not affected significantly either by predator density or the identity of the competing species. 3. Attack rate also varied between species and decreased with predator density. This decrease was slight for Perlodes, and also for Dinocras and Perla in competition with Isoperla. The decrease in Dinocras and Perla was similar to that for intraspecific interference. 4. The decrease in attack rate was described by a convex curve for Perlodes with the other three species and for Dinocras/Perla with Isoperla, but by a concave curve (negative power function) for Isoperla competing with the other three species, and for both Dinocras and Perla in competition with Perlodes. Prey consumption also decreased with predator density, the severity of competition with different species reflecting that for attack rate. 5. A comparison with previous results for intraspecific interference showed that the latter was dominant for Perlodes in all contests and for Dinocras or Perla competing with Isoperla, whilst interspecific interference dominated for Isoperla in all contests and for Dinocras and Perla competing with Perlodes. Both types of interference were applicable to competition between Dinocras and Perla. Isoperla was the least, and Perlodes the most, aggressive of the four species with Dinocras and Perla intermediate.  相似文献   

2.
SUMMARY 1. Comparisons were made of the functional responses of mature larvae of Perlodes microcephalus, Isoperla grammatica, Dinocras cephalotes and Perla bipunctata. Experiments were performed in stream tanks with natural substrata and glass bottoms, so that feeding could be observed above and below the substratum. There was one stonefly per tank and one of 10 prey densities between 20 and 200 larvae of either Chironomus sp. or Baetis rhodani per tank. Consumed prey were replaced in a first set of experiments but not in a second set. Additional experiments assessed intraspecific interference between larvae of each predator species (two to five predators per tank). 2. The number of prey eaten increased curvilinearly with prey density. The relationship was described by two models, a Type II instantaneous model and its integrated equivalent, for experiments with and without prey replacement, respectively. Handling time did not change significantly with prey density, and was the same for experiments with and without prey replacement. Estimates of attack rate were similar for the two models, but varied between prey type and predator species. Handling time varied considerably but was normally distributed for each prey type and predator species. Mean handling time varied for Chironomus from 39 s for Isoperla, which rarely ate a whole larva, to 57 s for Perlodes and for Baetis from 116 s for Perlodes to 167 s for Perla. All predators were more efficient at capturing Baetis, but the longer handling time for Baetis ensured that more Chironomus were eaten. It was concluded that these variations in attack rate and handling time were related to activity and growth differences between the predator species, and that experiments with and without prey replacement could both be relevant to the field, depending on how the predators searched for food. 3. In the interference experiments, mean handling time did not change with increasing predator density, but attack rate decreased curvilinearly, the decrease varying from negligible for Isoperla to marked for Perlodes. Prey capture decreased with decreasing attack rate. Therefore, interference reduced prey consumption, but this effect was negligible for Isoperla and increasingly severe in the order Dinocras, Perla and Perlodes.  相似文献   

3.
1. Ontogenetic shifts in predator behaviour can affect the assessment of food‐web structure and the development of predator–prey models. Previous studies have shown that the diel activity pattern and functional response differed between larval instars of the carnivorous caddis, Rhyacophila dorsalis. The present study examines switching by larvae of R. dorsalis presented with different proportions of two prey types; either small (length 2–4 mm) and large (5–8 mm) Chironomus larvae for second, third, fourth and fifth instars of R. dorsalis; or Baetis rhodani (9–12 mm) and large Chironomus larvae for fourth and fifth instars. Experiments were performed in stream tanks with one Rhyacophila larva per tank and 200 prey arranged in nine different combinations of the two prey types (20 : 180, 40 : 160, 60 : 140, 80 : 120, 100 : 100, 120 : 80, 140 : 60, 160 : 40 and 180 : 20). Prey were replaced as they were eaten. A model predicted the functional response in the absence of switching and provided a null hypothesis against which any tendency to switch could be tested. 2. There was no prey switching in the second and third instars, with both instars always showing a preference for small over large Chironomus larvae. Prey switching occurred in the fourth and fifth instars. As the relative abundance of one prey type increased in relation to the alternative, the proportion eaten of the former prey changed from less to more than expected from its availability, the relationship being described by an S‐shaped curve. In the experiments with small and large Chironomus, the two instars switched to large larvae when their percentage of the total available prey exceeded 29% and 37% for fourth and fifth instars, respectively. In the experiments with Baetis and large Chironomus, both instars switched to Baetis larvae when their percentage of the total available prey exceeded 36%. 3. Non‐switching in second and third instars was related to their feeding strategies, both instars preferring smaller prey items. When the fourth and fifth instars foraged actively at night, they preferred larger over small Chironomus larvae, but when they behaved as ambush predators at dusk, they captured the more active Baetis larvae in preference to the more sedentary large Chironomus larvae and only switched to the latter when they were >64% of the available prey.  相似文献   

4.
1. Ontogenetic shifts in prey choice and predator behaviour can affect food‐web structure. Therefore, it is important to establish if the diet and feeding activity differ between life‐stages of the same species. This hypothesis was tested for second, third, fourth and fifth larval instars of Rhyacophila dorsalis by comparing their diel activity and feeding patterns. Second to fifth instars collected from two streams were used either for gut analyses or for observations of their activity and feeding patterns in three stream tanks. Food was provided in excess; being organisms living in bryophytes on top of a large stone in each tank, augmented by different‐sized larvae of Ephemeroptera, Simuliidae and Chironomidae. As few first instars for gut analyses were found in the field, the diet of first instars reared in the laboratory was also studied. 2. Larvae for gut analyses were taken 1 h before dusk or dawn (n = 50 larvae per instar for each day or night sample). First and second instars fed on the smaller food items with no significant day‐night differences in diet. Gut contents indicated a progressive trend from feeding chiefly at night in third instars to almost exclusively at night in fifth instars. Fourth and fifth instars fed on the larger food items, whilst the diet of the third instar larvae overlapped with that of both the earlier and later instars. 3. Diel activity patterns of single larvae differed between instars but not within each instar (n = 20 larvae per instar). Second instars were active throughout the 24 h, with peaks at dusk, around midnight, dawn and around midday. A similar pattern was shown by third instars but the peak of activity at midday was less than the other three peaks. Prey were captured only during these peaks for both instars. Fourth and fifth instars were most active, and fed only, at night. They used an ambush strategy to capture more active prey at dusk and dawn (e.g. Baetis, Gammarus), and a searching strategy to capture more sedentary prey during the night (e.g. chironomids, simuliids). These experiments provided support for the hypothesis under test. If competition and/or interference occur between instars, then it could be reduced between earlier and later instars because of differences in their diet and diel pattern of feeding activity.  相似文献   

5.
1. The hypothesis under test was that larvae of Dinocras cephalotes (Curtis), Perla bipunctata Pictet, Isoperla grammatica (Poda), and Perlodes microcephalus (Pictet) differed markedly in their diel activity and feeding patterns. Mature larvae collected about 1 month prior to adult emergence were used either for gut analyses or for observations of their activity and feeding patterns in three stream tanks with natural substrata and glass bottoms, so that activity could be observed above and below the substratum. A dull red light was used for observations in the dark. Food (larvae of Ephemeroptera, Simuliidae, and Chironomidae) was provided in excess. 2. Larvae for gut analyses were taken 1 h before dusk or dawn (n = 30 larvae per species for each day or night sample). The only species with food in the gut for the day samples was P. microcephalus. All species fed at night, the mean number of prey per larva being very similar for D. cephalotes, P. bipunctata, and I. grammatica but significantly higher for P. microcephalus. Most prey were insect larvae, especially Simuliidae and Chironomidae. 3. Diel activity patterns of single larvae differed interspecifically but not intraspecifically. Larvae of D. cephalotes and P. bipunctata were rarely active during the day; their activity increased at dusk and decreased at dawn, and was highest during the night; their success at prey capture was highest at dusk and dawn, with an ambush rather than a search strategy. Isoperla grammatica was rarely active during the day, most active at dusk and dawn when prey capture was highest, using a search strategy, and less active for the rest of the night. Perlodes microcephalus was active during the day, but only below the substratum, and very active from dusk to dawn with a high prey‐capture success, using a search strategy. These experiments provided support for the hypothesis under test. The discussion concludes that the results could also help to explain known differences in growth rate and the length of the life‐cycle in these four species.  相似文献   

6.
1. We investigated the diet and prey electivity of Rhyacophila obliterata, a slow‐moving invertebrate predator capable of hunting in high‐flow microhabitats, and quantified the components of the predation sequence of fifth‐instar larvae foraging on mobile (Baetis mayflies, Amphinemura stoneflies) versus semi‐sessile (larval blackflies) prey. 2. In the field, fifth‐instar Rhyacophila consistently took more larval blackflies than more mobile prey. In behavioural trials, the number of attacks by Rhyacophila differed significantly between prey types, mobile prey being attacked more often than blackflies. Capture success, by contrast, was highest for blackflies, whereas Amphinemura and Baetis were rarely captured. In mixed‐prey feeding trials, Rhyacophila showed strong preference for blackflies and equally strong avoidance of Amphinemura and Baetis. 3. For mobile prey, the risk of being captured by this sluggish predator is very low, so they can afford to be in close contact with it. Rhyacophila was almost unable to capture any other prey but blackflies, resulting in strong passive selection for blackflies. 4. Therefore, the diet of fifth‐instar Rhyacophila can be predicted from laboratory observations and prey behaviour is the major determinant of the diet of this invertebrate predator.  相似文献   

7.
Arthropod predators and parasitoids support the health and functioning of the world's ecosystems, most notably by supplying biological control services to agricultural landscapes. Quantifying the impact that these organisms have on their prey can be challenging, as direct observation and measurement of arthropod predation is difficult. The use of sentinel prey is one method to measure predator impact; however, despite widespread use, few studies have compared predation on different prey types within a single experiment. This study evaluated the predation rates on four sentinel prey items in grass and wheat fields in south-east Queensland, Australia. Attack rates on live and dead Helicoverpa armigera eggs, and dead H. armigera larvae and artificial plasticine larvae, were compared and the predators that were attracted to each prey type were documented with the use of field cameras. There was no significant difference in predation rates between sentinel eggs, while dead larvae were significantly more attacked than artificial larvae. Prey were attacked by a diverse range of predators, including ants, beetles, various nymph and juvenile insects and small mammals. Different predators were active in grass and crop fields, with predator activity peaking around dawn and dusk. The same trends were observed within and between the two habitats studied, providing a measure of confidence in the sentinel prey method. A range of different sentinel prey types could be suitable for use in most comparative studies; however, each prey type has its own benefits and limitations, and these should be carefully evaluated to determine which is most suitable to address the research questions.  相似文献   

8.
1. Ontogenetic shifts in predator behaviour can affect the assessment of food‐web structure and the development of predator–prey models. Therefore, it is important to establish if the functional response and interference interactions differ between life‐stages. These hypotheses were tested by (i) comparing the functional response of second, third, fourth and fifth larval instars of Rhyacophila dorsalis, using three stream tanks with one Rhyacophila larva per tank and one of 10 prey densities between 20 and 200 larvae of Chironomus sp.; (ii) using other experiments to assess interference within instars (two to five larvae of the same instar per tank), and between pairs of different instars (one, two or three larvae per instar; total predator densities of two, four or six larvae per tank). 2. The first hypothesis was supported. The number of prey eaten by each instar increased with prey density, the relationship being described by a type II model. The curvilinear response was stronger for fourth and fifth instars than for second and third instars. Mean handling time did not change significantly with prey density, and increased with decreasing instar number from 169 s for fifth instars to 200 s for second instars. Attack rate decreased progressively with decreasing instar number. Handling time varied considerably for each predator–prey encounter, but was normally distributed for each predator instar. Variations in attack rate and handling time were related to differences in activity between instars, fourth and fifth instars being more active and aggressive than second and third instars, and having a higher food intake. 3. The second hypothesis was partially supported. In the interference experiments between larvae of the same instar or different instars, mean handling time did not change significantly with increasing predator density, and attack rate did not change for second and third instars but decreased curvilinearly for fourth and fifth instars. Interference between some instars could not be studied because insufficient second instars were available at the same time as fourth and fifth instars, and most third instars were eaten by fourth and fifth instars in the experiments. Prey capture always decreased with decreasing attack rate. Therefore, interference reduced prey consumption in fourth and fifth instars, but not in second and third instars. The varying feeding responses of different instars should be taken into account when assessing their role in predator–prey relationships in the field.  相似文献   

9.
This study determined prey consumption in common sole as a function of prey size (0–0.5, 1–1.5, 2–2.5 and 4–5 g), sediment thickness (20 cm and 2 cm) and fish size (50 g, 125 g or 300 g). Prey consumption (in numbers of prey eaten per fish per day) was reduced with increasing prey size and sediment thickness, and was increased with increasing fish size (< .001 for all factors). All 3 factors showed significant two way interactions (< .001) when expressed in numbers of prey eaten. Prey consumption decreased with prey size when prey could not escape by burying (2 cm of sediment thickness) irrespective of fish size. We suggest that increasing effort to ingest and handle larger prey played a role. Prey consumption increased with fish size when prey could not bury (2 cm of sediment thickness). However, when prey was able to bury (at 20 cm sediment thickness) prey consumption was similar irrespective of fish size (< .001 for interaction fish size × sediment). This interaction suggests that with increasing fish size there is an increasing mismatch between foraging adaptation and prey burial depth. This may explain the dominance of crustaceans in the diet of adult common sole in nature, despite the high abundance of polychaetes.  相似文献   

10.
Stonefly nymphs use hydrodynamic cues to discriminate between prey   总被引:1,自引:0,他引:1  
Summary Playback experiments conducted in a Rocky Mountain, USA, stream determined whether predatory stonefly nymphs (Kogotus modestus; Plecoptera: PerlodiMae) used hydrodynamic cues to discriminate prey species from nonprey species. In the laboratory we recorded pressure wave patterns associated with swimming escape behavior of Baetis bicaudatus (Baetidae), the favored mayfly prey species, and those of a nonprey mayfly, Ephemerella infrequens (Ephemerellidae). We video taped the responses of 24-h starved Kogotus to Baetis playbacks, Ephemerella playbacks or no playbacks made by oscillating (or not) live mayflies (Ephemerella) or clear plastic models placed within in situ flow-through observation boxes. The probability of attacks per encounter with Baetis playbacks was highest and independent of the model type used, but Kogotus also showed an unexpected high probability of attacks per encounter when Ephemerella playbacks were made through live Ephemerella. Thus, Kogotus discriminated between Baetis and Ephemerella swimming patterns but only when playbacks were made through the plastic model. Kogotus never attacked motionless mayflies or motionless plastic models. We allowed some Kogotus to successfully capture one small Baetis immediately before playbacks, which resulted in a much higher probability of attacks per encounter with Baetis playbacks on either model and a heightened discrimination of prey versus nonprey playbacks. The probability of attacks per encounter by Kogotus with live Baetis swimming under similar experimental conditions was strikingly similar to its response to Baetis playbacks made by oscillating the plastic model after a successful capture. Order of playback presentation (Baetis first or Ephemerella first) did not influence predatory responses to mayfly swimming patterns. This study is the first to document the use of hydrodynamic cues by stream-dwelling predators for discrimination of prey from nonprey and provides a mechanism to explain selective predation by stoneflies on Baetis in nature.  相似文献   

11.
Tadpoles are often considered to be predators of mosquito larvae and are therefore beneficial for the control of certain disease vectors. Nevertheless, only a few species have actually been recorded to prey on mosquito larvae. The mosquito larvae predation rates of tadpoles of three common Thai anuran species (Bufo melanostictus, Kaloula pulchra and Hylarana raniceps) were experimentally tested. Tadpoles in varying developmental stages were used to assess a size/age effect on the predation rate. In addition, different instars of Culex quinquefasciatus were used in order to assess a prey size effect on the predation rates. All three species failed to show any evidence of mosquito larvae predation. Neither small nor large tadpoles fed on mosquito larvae. Prey size also did not affect predation. Although tadpoles do not feed on mosquito larvae, there may be other direct or indirect inter‐specific interactions that adversely impact the development of larvae in shared habitats with tadpoles.  相似文献   

12.
Evaluation of the success of ecosystem restoration projects requires identification of appropriate ecological metrics. Comparison of reconstructed food webs (or subsets thereof) from restored and non‐restored habitats may be a valuable tool to evaluate restoration success because food webs help identify critical predator–prey relationships, keystone species, relative importance of direct and indirect trophic interactions, and other aspects of ecological function. We compared the diets of apex predatory fishes collected from enhanced and non‐enhanced portions of the channelized Kissimmee River, Florida, USA to determine whether food web structure responded to experimental hydrologic manipulations. Diets were reconstructed for black crappie (Pomoxis nigromaculatus), bowfin (Amia calva), chain pickerel (Esox niger), Florida gar (Lepisosteus platyrhincus), largemouth bass (Micropterus salmoides), and warmouth (Lepomis gulosus) collected from enhanced and non‐enhanced portions of the Kissimmee River. Prey eaten by apex predatory fishes in the enhanced portion of the Kissimmee River were quantitatively and qualitatively different from prey eaten in non‐enhanced portions of the river. Predators in the enhanced portion of the river had fewer empty stomachs, more prey items per individual, more prey types per individual, more fish prey per individual, greater overall richness of prey, and a multivariate suite of prey distinct from predators in non‐enhanced portions of the river. Results from hydrologic manipulations suggest that large‐scale restoration of hydrologic linkages between the main channel and floodplain habitats will positively affect food web structure and ecosystem function in the Kissimmee River.  相似文献   

13.
Animal population dynamics in open systems are affected not only by agents of mortality and the influence of species interactions on behavior and life histories, but also by dispersal and recruitment. We used an extensive data set to compare natural loss rates of two mayfly species that co-occur in high-elevation streams varying in predation risk, and experience different abiotic conditions during larval development. Our goals were to generate hypotheses relating predation to variation in prey population dynamics and to evaluate alternative mechanisms to explain such variation. While neither loss rates nor abundance of the species that develops during snowmelt (Baetis bicaudatus) varied systematically with fish, loss rates of the species that develops during baseflow (Baetis B) were higher in streams containing brook trout than streams without fish; and surprisingly, larvae of this species were most abundant in trout streams. This counter-intuitive pattern could not be explained by a trophic cascade, because densities of intermediate predators (stoneflies) did not differ between fish and fishless streams and predation by trout on stoneflies was negligible. A statistical model estimated that higher recruitment and accelerated development enables Baetis B to maintain larger populations in trout streams despite higher mortality from predation. Experimental estimates suggested that predation by trout potentially accounts for natural losses of Baetis B, but not Baetis bicaudatus. Predation by stoneflies on Baetis is negligible in fish streams, but could make an important contribution to observed losses of both species in fishless streams. Non-predatory sources of loss were higher for B. bicaudatus in trout streams, and for Baetis B in fishless streams. We conclude that predation alone cannot explain variation in population dynamics of either species; and the relative importance of predation is species- and environment-specific compared to non-predatory losses, such as other agents of mortality and non-consumptive effects of predators. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

14.
Diving behavior and its frequency may differ among species of mosquito larvae because of differences in predation pressure. The present study aimed to investigate the relationship between water depth and predation frequency on two mosquito species, Culex tritaeniorhynchus (wetland breeder) and Aedes albopictus (container breeder), by the diving beetle Eretes griseus. Culex tritaeniorhynchus spends more time at the surface than A. albopictus, which spends more time thrashing underwater. When intact mosquito larvae of both species were present, the diving beetles consumed almost all A. albopictus larvae (98.3%). After all the A. albopictus larvae had been consumed, the diving beetles began to prey on C. tritaeniorhynchus. In order to compare the effect of position on the predation preference of the diving beetles, equal numbers of both species were heat‐killed and allowed to settle on the bottom of the container. When all the dead mosquito larvae had sunk to the bottom of a plastic container, the diving beetles caught both mosquito species at random. These results indicate that mosquito larvae near the surface were eaten less frequently by diving beetles than those at the bottom. The low diving frequency of C. tritaeniorhynchus is regarded as a form of anti‐predatory behavior.  相似文献   

15.
Prey selection by Chaoborus punctipennis under laboratory conditions   总被引:3,自引:3,他引:0  
Equal numbers of Diaphanosoma leuchtenbergianum, Daphnia parvula, and Diaptomus pallidus were offered to individual, fourth-instar larvae of Chaoborus punctipennis. When the prey species were presented separately to the larvae, 100% of the Diaphanosoma, 67% of the Daphnia, and 57% of the Diaptomus were consumed. However, when the three species were offered to the predator concurrently, 90% of the Diaphanosoma, 10% of the Daphnia and < 1% of the Diaptomus were eaten. This strong selection for Diaphanosoma was consistent at three prey densities.  相似文献   

16.
Although bats are nocturnal, many species emerge from roosts to forage during twilight, despite a presumed high risk of predation at this time. Here, we describe twilight foraging by a maternity colony of Schneider's leafnosed bat (Hipposideros speoris) in the dry zone of Sri Lanka and determine the dietary benefits of such behavior. Bats usually began foraging during dusk, sometimes before sunset, and also foraged during twilight in the morning. Mean use of available twilight by four radio‐tagged bats was 75 percent. Twilight foraging made up, on average, 47 percent of the total foraging time of these bats (range = 25–96%), although twilight consisted of only 12 percent of the available time between sunset and sunrise the next morning. Eight species of potential predators (7 birds and 1 mammal) were observed within a 1 km radius of the colony, of which 5 species are predicted to regularly capture bats. Bats took a wide diversity of prey (11 insect orders, including at least 27 families, and spiders) that ranged in wing length from 2.0 to 54.0 mm. Major orders in the diet were Coleoptera, Lepidoptera, and Diptera. Prey of secondary importance included Hemiptera, Hymenoptera, Isoptera, and Neuroptera. Bats captured large numbers of insects that were only available or had marked peaks in abundance during twilight. These groups included small, swarming insects (especially flies) that have peaks in flight activity at dusk and dawn, large diurnal species (especially dragonflies) that have crepuscular activity, and winged termites that emerge in swarms at dusk. Access to these insects was a clear benefit of twilight foraging.  相似文献   

17.
Diet and feeding strategy of the blackmouth catshark Galeus melastomus in the deep waters of the eastern Ionian Sea were investigated. Sampling was carried out using experimental bottom longline fishing at depths ranging from 300 to 855 m in summer and autumn 2010. Diet variability with fish size, season, area, sex and depth zone was tested and only season was found to significantly affect the diet of the species. Of the 870 stomachs examined, only 1·4% were empty. Cumulative prey curves showed that the sample sizes were adequate to describe the main prey items of the diet for both seasons. Prey identified belonged primarily to three major groups: fishes, cephalopods and dendrobranchiatan and caridean shrimps. In autumn, the above three major groups were found as principal prey, whereas in summer cephalopods followed by fishes were the principal prey and shrimps were found as secondary prey. SIMPER analysis indicated high dissimilarity between seasons and highlighted that Sepiolidae, Myctophidae, fishes, cephalopods, shrimps and other crustaceans contributed to seasonal differences in the diet of G. melastomus. The prey diversity index was higher in autumn than in summer. A high dietary overlap was observed between the two seasons. Galeus melastomus behaved as an opportunistic predator with a variety of unimportant prey in its diet. Feeding strategy indicated that G. melastomus holds a generalist niche with a considerable specialization at the individual level. This strategy seems to be an adaptation to a food‐scarce environment, as typified in deep‐water habitats.  相似文献   

18.
The diet of juvenile chinook salmon and the foods available to them were studied during spring and summer in a large, braided, New Zealand river. During both sampling periods fish and potential prey were collected at dawn and dusk. Analysis showed that in spring the feeding rate increased at dawn, when aquatic taxa comprised the majority of their prey. Prey of terrestrial origin dominated the diet at dusk in summer but formed only about 1% of the diet during spring, when few such prey were available.
During spring the fish selectively preyed upon larger nymphs of the mayflies Deleatidium spp. However, in summer chironomids, other dipterans, and trichopterans were consumed to the exclusion of Deleatidium . Most of the chironomids and trichopterans taken were pupae or emerging adults and it is suggested that this may reflect differences in vulnerability during the diurnal emergence period.  相似文献   

19.
Feeding by marine fish larvae: developmental and functional responses   总被引:10,自引:0,他引:10  
Synopsis The relationship between prey consumption rate and prey concentration (functional response), and its change with growth (developmental response) were examined in the laboratory for three species of marine fish larvae: bay anchovy Anchoa mitchilli (Engraulidae), sea bream Archosargus rhomboidalis (Sparidae) and lined sole Achirus lineatus (Soleidae). The major objective was to determine relative predatory abilities of the larvae by fitting feeding rate data to developmental and functional response models. Feeding success, prey capture success, attack rates, handling times and search rates were estimated. Prey consumption rates and attack rates of bay anchovy usually were highest, but at the lowest prey level (50 per liter) first-feeding sea bream larvae had the highest consumption rate. Sea bream could consume prey at near-maximum rates at prey levels lower than those required by the other species. As larvae grew, time searching per attack decreased rapidly for all species, especially at low prey levels. Handling time also decreased, but most rapidly for bay anchovy. Search rates were highest for bay anchovy and lowest for lined sole. Bay anchovy had the best apparent predation ability, but when previous results on larval growth rates, survival rates and growth efficiencies were considered, sea bream larvae were the most efficient predators and the least likely of the three species to be limited by low prey levels.  相似文献   

20.
Quantifying species trophic interaction strengths is crucial for understanding community dynamics and has significant implications for pest management and species conservation. DNA-based methods to identify species interactions have revolutionized these efforts, but a significant limitation is the poor ability to quantify the strength of trophic interactions, that is the biomass or number of prey consumed. We present an improved pipeline, called Lazaro, to map unassembled shotgun reads to a comprehensive arthropod mitogenome database and show that the number of prey reads detected is quantitatively predicted from the prey biomass consumed, even for indirect predation. Two feeding bioassays were performed: starved coccinellid larvae consuming different numbers of aphids (Prey Quantity bioassay), and starved coccinellid larvae consuming a chrysopid larvae that had consumed aphids (Direct and Indirect Predation bioassay). Prey taxonomic assignment against a mitochondrial genome database had high accuracy (99.8% positive predictive value) and the number of prey reads was directly related to the number of prey consumed and inversely related to the elapsed time since consumption with high significance (r2 = .932, p = 4.92E-6). Aphids were detected up to 6 h after direct predation plus 3 h after indirect predation (9 h in total) and detection was related to the predator-specific decay rates. Lazaro enabled quantitative predictions of prey consumption across multiple trophic levels with high taxonomic resolution while eliminating all false positives, except for a few confirmed contaminants, and may be valuable for characterizing prey consumed by field-sampled predators. Moreover, Lazaro is readily applicable for species diversity determination from any degraded environmental DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号