首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 118 毫秒
1.
ERCC1-XPF endonuclease facilitates DNA double-strand break repair   总被引:1,自引:0,他引:1  
ERCC1-XPF endonuclease is required for nucleotide excision repair (NER) of helix-distorting DNA lesions. However, mutations in ERCC1 or XPF in humans or mice cause a more severe phenotype than absence of NER, prompting a search for novel repair activities of the nuclease. In Saccharomyces cerevisiae, orthologs of ERCC1-XPF (Rad10-Rad1) participate in the repair of double-strand breaks (DSBs). Rad10-Rad1 contributes to two error-prone DSB repair pathways: microhomology-mediated end joining (a Ku86-independent mechanism) and single-strand annealing. To determine if ERCC1-XPF participates in DSB repair in mammals, mutant cells and mice were screened for sensitivity to gamma irradiation. ERCC1-XPF-deficient fibroblasts were hypersensitive to gamma irradiation, and gammaH2AX foci, a marker of DSBs, persisted in irradiated mutant cells, consistent with a defect in DSB repair. Mutant mice were also hypersensitive to irradiation, establishing an essential role for ERCC1-XPF in protecting against DSBs in vivo. Mice defective in both ERCC1-XPF and Ku86 were not viable. However, Ercc1(-/-) Ku86(-/-) fibroblasts were hypersensitive to gamma irradiation compared to single mutants and accumulated significantly greater chromosomal aberrations. Finally, in vitro repair of DSBs with 3' overhangs led to large deletions in the absence of ERCC1-XPF. These data support the conclusion that, as in yeast, ERCC1-XPF facilitates DSB repair via an end-joining mechanism that is Ku86 independent.  相似文献   

2.
The effect of high dietary intake of animal fat and an increased fat energy intake on colon and liver genotoxicity and on markers of oxidative damage and antioxidative defence in colon, liver and plasma was investigated in Big Blue rats. The rats were fed ad libitum with semi-synthetic feed supplemented with 0, 3, 10 or 30% w/w lard. After 3 weeks, the mutation frequency, DNA repair gene expression, DNA damage and oxidative markers were determined in liver, colon and plasma. The mutation frequency of the lambda gene cII did not increase with increased fat or energy intake in colon or liver. The DNA-adduct level measured by 32P-postlabelling decreased in both liver and colon with increased fat intake. In liver, this was accompanied by a 2-fold increase of the mRNA level of nucleotide excision repair (NER) gene ERCC1. In colon, a non-statistically significant increase in the ERCC1 mRNA levels was observed. Intake of lard fat resulted in increased ascorbate synthesis and affected markers of oxidative damage to proteins in liver cytosol, but not in plasma. The effect was observed at all lard doses and was not dose-dependent. However, no evidence of increased oxidative DNA damage was found in liver, colon, or urine. Thus, lard intake at the expense of other nutrients and a large increase in the fat energy consumption affects the redox state locally in the liver cytosol, but does not induce DNA-damage, systemic oxidative stress or a dose-dependent increase in mutation frequency in rat colon or liver.  相似文献   

3.
DNA mismatch repair (DMR) functions to maintain genome stability. Prokaryotic and eukaryotic cells deficient in DMR show a microsatellite instability (MSI) phenotype characterized by repeat length alterations at microsatellite sequences. Mice deficient in Pms2, a mammalian homolog of bacterial mutL, develop cancer and display MSI in all tissues examined, including the male germ line where a frequency of approximately 10% was observed. To determine the consequences of maternal DMR deficiency on genetic stability, we analyzed F(1) progeny from Pms2(-/-) female mice mated with wild-type males. Our analysis indicates that MSI in the female germ line was approximately 9%. MSI was also observed in paternal alleles, a surprising result since the alleles were obtained from wild-type males and the embryos were therefore DMR proficient. We propose that mosaicism for paternal alleles is a maternal effect that results from Pms2 deficiency during the early cleavage divisions. The absence of DMR in one-cell embryos leads to the formation of unrepaired replication errors in early cell divisions of the zygote. The occurrence of postzygotic mutation in the early mouse embryo suggests that Pms2 deficiency is a maternal effect, one of a limited number identified in the mouse and the first to involve a DNA repair gene.  相似文献   

4.
The DNA repair proteins poly(ADP-ribose) polymerase-1 (PARP-1), Ku86, and catalytic subunit of DNA-PK (DNA-PKcs) have been involved in telomere metabolism. To genetically dissect the impact of these activities on telomere function, as well as organismal cancer and aging, we have generated mice doubly deficient for both telomerase and any of the mentioned DNA repair proteins, PARP-1, Ku86, or DNA-PKcs. First, we show that abrogation of PARP-1 in the absence of telomerase does not affect the rate of telomere shortening, telomere capping, or organismal viability compared with single telomerase-deficient controls. Thus, PARP-1 does not have a major role in telomere metabolism, not even in the context of telomerase deficiency. In contrast, mice doubly deficient for telomerase and either Ku86 or DNA-PKcs manifest accelerated loss of organismal viability compared with single telomerase-deficient mice. Interestingly, this loss of organismal viability correlates with proliferative defects and age-related pathologies, but not with increased incidence of cancer. These results support the notion that absence of telomerase and short telomeres in combination with DNA repair deficiencies accelerate the aging process without impacting on tumorigenesis.  相似文献   

5.
C G Gendrel  M Dutreix 《Genetics》2001,159(4):1539-1545
Sequence divergence reduces the frequency of recombination, a process that is dependent on the activity of the mismatch repair system. In the yeast Saccharomyces cerevisiae, repair of mismatches results in gene conversion or restoration, whereas failure to repair mismatches results in postmeiotic segregation (PMS). By examining the conversion and PMS in yeast strains deficient in various MMR genes and heterozygous for large inserts (107 bp) with either a mixed sequence or a 39 (CA/TG) repetitive microsatellite sequence, we demonstrate that: (1) the inhibition of conversion by large inserts depends upon a complex containing both Msh2 and Pms1 proteins; (2) conversion is not inhibited if the single-stranded DNA loop in the heteroduplex is the microsatellite sequence; and (3) large heteroduplex loops with random sequence or repetitive sequence might be repaired by two complexes, containing either Msh2 or Pms1. Our results suggest that inhibition of recombination by heterologous inserts and large loop repair are not processed by the same MMR complexes. We propose that the inhibition of conversion by large inserts is due to recognition by the Msh2/Pms1 complex of mismatches created by intrastrand interactions in the heteroduplex loop.  相似文献   

6.
Serum amyloid A (SAA) is an acute phase reactant, whose level in the blood is elevated in response to trauma, infection, inflammation, and neoplasia. Elevated levels of SAA in the serum of cancer patients were suggested to be of liver origin rather than a tumor cell product. The role of SAA in human malignancies has not been elucidated. We investigated the expression of SAA at various stages of human colon carcinoma progression. Nonradioactive in situ hybridization applied on paraffin tissue sections from 26 colon cancer patients revealed barely detected SAA mRNA expression in normal looking colonic epithelium. Expression was increased gradually as epithelial cells progressed through dysplasia to neoplasia. Deeply invading colon carcinoma cells showed the highest levels of SAA. Expression was also found in colon carcinoma metastases. Cells of lymphoid follicles of the intestinal wall, inflammatory cells, ganglion cells, and endothelial cells, also expressed SAA mRNA. Immunohistochemical staining revealed SAA protein expression that colocalized with SAA mRNA expression. RT-PCR analysis confirmed the expression of the SAA1 and SAA4 genes in colon carcinomas, expression that was barely detectable in normal colon tissues. These findings indicate local and differential expression of SAA in human colon cancer tissues and suggest its role in colonic tumorigenesis.  相似文献   

7.
Yin J  Li J  Vogel U  Wang H 《Biochemical genetics》2005,43(9-10):543-548
DNA repair systems are responsible for maintaining the integrity of the genome and have a critical role in protecting against mutations that can lead to cancer. DNA repair gene products of ERCC1 and ERCC2/XPD are involved in the nucleotide excision repair pathway. The allele frequencies of the polymorphisms ERCC1 G19007A and ERCC2/XPD C22541A were examined in a northeastern Chinese population. The allele frequencies were 0.21 (A) and 0.79 (G) for ERCC1 G19007A and 0.49 (A) and 0.51 (C) for ERCC2/XPD C22541A. Comparison with average frequencies from previously reported Caucasian studies demonstrated that the A-allele frequency of ERCC1 G19007A was much lower in the northeastern Chinese population, indicating a remarkable ethnic difference (chi((1)) (2) = 160.09, p < 0.001), and that allele frequencies of ERCC2/XPD C22541A showed marginal racial differences (chi((1)) (2) = 4.36, p = 0.04). We have previously reported that both homozygote carriers of the A-allele as well as homozygous carriers of a high-risk haplotype (which includes the AA genotype in ERCC1 G19007A) were at increased risk of basal cell carcinoma, breast cancer, and lung cancer among Caucasians. The low A-allele frequency of ERCC1 G19007A in the Chinese population may suggest that the genetic contribution to cancer risk differs substantially between ethnic groups.  相似文献   

8.
Stone JE  Petes TD 《Genetics》2006,173(3):1223-1239
DNA mismatches are generated when heteroduplexes formed during recombination involve DNA strands that are not completely complementary. We used tetrad analysis in Saccharomyces cerevisiae to examine the meiotic repair of a base-base mismatch and a four-base loop in a wild-type strain and in strains with mutations in genes implicated in DNA mismatch repair. Efficient repair of the base-base mismatch required Msh2p, Msh6p, Mlh1p, and Pms1p, but not Msh3p, Msh4p, Msh5p, Mlh2p, Mlh3p, Exo1p, Rad1p, Rad27p, or the DNA proofreading exonuclease of DNA polymerase delta. Efficient repair of the four-base loop required Msh2p, Msh3p, Mlh1p, and Pms1p, but not Msh4p, Msh5p, Msh6p, Mlh2p, Mlh3p, Exo1p, Rad1p, Rad27p, or the proofreading exonuclease of DNA polymerase delta. We find evidence that a novel Mlh1p-independent complex competes with an Mlhp-dependent complex for the repair of a four-base loop; repair of the four-base loop was affected by loss of the Mlh3p, and the repair defect of the mlh1 and pms1 strains was significantly smaller than that observed in the msh2 strain. We also found that the frequency and position of local double-strand DNA breaks affect the ratio of mismatch repair events that lead to gene conversion vs. restoration of Mendelian segregation.  相似文献   

9.
10.
XPF/ERCC1 endonuclease is required for DNA lesion repair. To assess effects of a C2169A nonsense mutation in XPF at position 2169 in gastric cancer tissues and cell lines, genomic DNA was extracted from blood samples of 488 cancer patients and 64 gastric tumors. The mutation was mapped using a TaqMan MGB probe. In addition, gastric cancer cell lines were transfected with mutated XPF to explore XPF/ERCC1 interaction, XPF degradation, and DNA repair by a comet assay. The C2169A mutation was not detected in 488 samples of blood genomic DNA, yet was found in 32 of 64 gastric cancer tissue samples (50.0%), resulting in a 194C-terminal amino acid loss in XPF protein and lower expression. Laser micro-dissection confirmed that this point mutation was not present in surrounding normal tissues from the same patients. The truncated form of XPF (tXPF) impaired interaction with ERCC1, was rapidly degraded via ubiquitination, and resulted in reduced DNA repair. In gastric cancers, the mutation was monoallelic, indicating that XPF is a haplo-insufficient DNA repair gene. As the C2169A mutation is closely associated with gastric carcinogenesis in the Chinese population, our findings shine light on it as a therapeutic target for early diagnosis and treatment of gastric cancer.  相似文献   

11.
Ku antigen is a heterodimer, comprised of 86- and 70-kDa subunits, which binds preferentially to free DNA ends. Ku is associated with a catalytic subunit of 450 kDa in the DNA-dependent protein kinase (DNA-PK), which plays a crucial role in DNA double-strand break (DSB) repair and V(D)J recombination of immunoglobulin and T-cell receptor genes. We now demonstrate that Ku86 (86-kDa subunit)-deficient Chinese hamster cell lines are hypersensitive to ICRF-193, a DNA topoisomerase II inhibitor that does not produce DSB in DNA. Mutant cells were blocked in G2 at drug doses which had no effect on wild-type cells. Moreover, bypass of this G2 block by caffeine revealed defective chromosome condensation in Ku86-deficient cells. The hypersensitivity of Ku86-deficient cells toward ICRF-193 was not due to impaired in vitro decatenation activity or altered levels of DNA topoisomerase IIα or -β. Rather, wild-type sensitivity was restored by transfection of a Ku86 expression plasmid into mutant cells. In contrast to cells deficient in the Ku86 subunit of DNA-PK, cells deficient in the catalytic subunit of the enzyme neither accumulated in G2/M nor displayed defective chromosome condensation at lower doses of ICRF-193 compared to wild-type cells. Our data suggests a novel role for Ku antigen in the G2 and M phases of the cell cycle, a role that is not related to its role in DNA-PK-dependent DNA repair.  相似文献   

12.
Cisplatin is a highly potent cytotoxic and genotoxic agent used in the chemotherapy of various types of tumors. Its cytotoxic effect is supposed to be due to the induction of intra- and interstrand DNA cross-links which are repaired via the nucleotide excision repair (NER) pathway. Here, we elucidated the mechanism of cisplatin-induced cytotoxicity in mutants derived from CHO-9 cells defective in NER. We compared 43-3B and 27-1 cells deficient for ERCC1 and ERCC3, respectively, with the corresponding wild-type and ERCC1 complemented 43-3B cells. It is shown that cells defective in ERCC1 are more sensitive than cells defective in ERCC3 with regard to cisplatin-induced reproductive cell death. ERCC1 and ERCC3 mutants showed a higher frequency of apoptosis and, to a lesser degree, necrosis compared to repair proficient cells. Induction of apoptosis in both ERCC1 and ERCC3 defective cells was accompanied by decline in Bcl-2 protein level, activation of caspases 8, 9 and 3 and poly(ADP-ribose)polymerase (PARP) cleavage. Since the mutant cells are defective in the repair of cisplatin-induced DNA lesions, the data demonstrate that non-repaired cisplatin-induced DNA adducts act as a trigger of the mitochondrial apoptotic pathway by down-regulation of Bcl-2 followed by caspase activation.  相似文献   

13.
Deficiencies in DNA mismatch repair (MMR) result in predisposition to neoplasia in both rodents and humans. Pms2 is one of the several proteins involved in the eukaryotic MMR system. In order to determine the effect of Pms2-deficiency on mutation, we measured mutant frequencies in the endogenous Hprt gene of lymphocytes from male Pms2(-/-), Pms2(+/-), and Pms2(+/+) mice. Spleens were removed from mice of various ages and lymphocytes isolated from spleens were cultured to determine the frequency of 6-thioguanine-resistant mutants. Mean mutant frequencies in Pms2(-/-) mice at 6, 10, 18, and 34 weeks of age [42.6 x 10(-6) (n=6), 38.5 x 10(-6) (n=6), 58.2 x 10(-6) (n=9), and 49.1 x 10(-6) (n=5), respectively] were significantly higher than those of comparably aged Pms2(+/+) and Pms2(+/-) mice (all less than 3 x 10(-6)). Mutant clones from the mice were expanded, RNA extracted, and Hprt cDNA amplified by RT-PCR. DNA sequencing analysis of 221 mutant cDNAs from the three different Pms2 genotypes identified 182 clones with independent mutations, including five clones that contained multiple mutations. When compared to the mutational spectrum observed in Pms2(+/+) and Pms2(+/-) mice, the mutational spectrum for Pms2(-/-) mice was significantly different. The Pms2(-/-) mutational analysis indicated that loss of the Pms2 protein causes increases in the frequencies of strand-slippage-type frameshift mutations and of A:T --> G:C transitions in the Hprt gene. The absolute frequencies of A:T --> G:C transitions in MMR-deficient mice suggest increases in this mutation may be a common feature of MMR-deficient mice, not just of Pms2-deficient mice, and may be related to the cancer predisposition that results from loss of MMR function.  相似文献   

14.
Ku86 is one of the two regulatory subunits of the DNA-PK (DNA-dependent protein kinase) complex that is required for DNA double-strand break repair in mammalian cells. In a previous study, by means of somatic gene targeting, we generated human cell lines deficient in Ku86 (XRCC5). Heterozygous human Ku86 cells exhibited a wide array of haploinsufficient phenotypes, including sensitivity to ionizing radiation, defects in DNA-PK and DNA end-binding activities, elevated levels of p53 (TP53) and gamma-H2AX foci, and a defect in cell proliferation with an increase in the frequency of aneuploid cells. Here we demonstrate that the overexpression of a human Ku86 cDNA complemented the deficiencies of these cells to wild-type levels. In contrast, Ku86 overexpression only partially rescued the telomere defects characteristic of Ku86 heterozygous cells and did not rescue their genetic instability. Additionally, in stark contrast to every other species described to date, we had shown earlier that homozygous human Ku86(-/-) cells are inviable, because they undergo 8 to 10 rounds of cell division before succumbing to apoptosis. The tumor suppressor protein p53 regulates the DNA damage response in mammalian cells and triggers apoptosis in the face of excessive DNA damage. Correspondingly, ablation of p53 expression has repeatedly been shown to significantly ameliorate the pathological effects of loss-of-function mutations for a large number of DNA repair genes. Surprisingly, however, even in a p53-null genetic background, the absence of Ku86 proved lethal. Thus the gene encoding Ku86 (XRCC5) is an essential gene in human somatic cells, and its absence cannot be suppressed by the loss of p53 function. These results suggest that Ku86 performs an essential role in telomere maintenance in human cells.  相似文献   

15.
16.
17.
We have previously shown that high DNA repair capacity protects psoriasis patients against chemically induced basal cell carcinoma [Dybdahl et al. Mutat. Res. 433 (1999) 15-22]. We have used the same study persons to investigate the correlation between expression of eight genes involved in nucleotide excision repair and DNA repair capacity. mRNA levels of XPA, XPB, XPC, XPD, XPF, XPG, CSB and ERCC1 in primary lymphocytes from 33 individuals were quantified by dot-blots and normalized to beta-actin. ERCC1 and XPD mRNA quantities were highly correlated (r=0.89; P<10(-11)) while XPA, XPB, XPC, XPG, XPFand CSB mRNAs were moderately correlated (r=0.2-0.7). Thus, the mRNA expressions seem to fall in at least two groups. There was a three to sevenfold variation in the expression levels of the mRNAs. This is in contrast to the more than a hundredfold variation in mRNA levels reported in cancer patients.DNA repair capacity was measured in a host cell reactivation assay, where primary lymphocytes were transfected with an UV-irradiated plasmid encoding firefly-luciferase. Only ERCC1 and XPD mRNA levels correlated with the DNA repair capacity (P<0.03). In order to see if ERCC1 or XPD activity was limiting for DNA repair, we cotransfected with plasmids encoding NER genes, thus over-expressing either XPB, XPC, XPD, CSB or ERCC1 in the host cell reactivation assay. Only XPB over-expression increased DNA repair capacity. Thus, there is no indication that neither XPD nor ERCC1 limits the DNA repair capacity. However, our results indicate that ERCC1 and XPD mRNA levels may be used as a proxy for DNA repair capacity in lymphocytes.  相似文献   

18.
MAD2 (mitotic arrest deficient 2) is a key regulator of mitosis. Recently, it had been suggested that MAD2-induced mitotic arrest mediates DNA damage response and that upregulation of MAD2 confers sensitivity to DNA-damaging anticancer drug-induced apoptosis. In this study, we report a potential novel role of MAD2 in mediating DNA nucleotide excision repair through physical interactions with two DNA repair proteins, XPD (xeroderma pigmentosum complementation group D) and ERCC1. First, overexpression of MAD2 resulted in decreased nuclear accumulation of XPD, a crucial step in the initiation of DNA repair. Second, immunoprecipitation experiments showed that MAD2 was able to bind to XPD, which led to competitive suppression of binding activity between XPD and XPA, resulting in the prevention of physical interactions between DNA repair proteins. Third, unlike its role in mitosis, the N-terminus domain seemed to be more important in the binding activity between MAD2 and XPD. Fourth, phosphorylation of H2AX, a process that is important for recruitment of DNA repair factors to DNA double-strand breaks, was suppressed in MAD2-overexpressing cells in response to DNA damage. These results suggest a negative role of MAD2 in DNA damage response, which may be accounted for its previously reported role in promoting sensitivity to DNA-damaging agents in cancer cells. However, the interaction between MAD2 and ERCC1 did not show any effect on the binding activity between ERCC1 and XPA in the presence or absence of DNA damage. Our results suggest a novel function of MAD2 by interfering with DNA repair proteins.  相似文献   

19.
A human DNA repair gene, ERCC2 (Excision Repair Cross Complementing 2), was assigned to human chromosome 19 using hybrid clone panels in two different procedures. One set of cell hybrids was constructed by selecting for functional complementation of the DNA repair defect in mutant CHO UV5 after fusion with human lymphocytes. In the second analysis, DNAs from an independent hybrid panel were digested with restriction enzymes and analyzed by Southern blot hybridization using DNA probes for the three DNA repair genes that are located on human chromosome 19: ERCC1, ERCC2, and X-Ray Repair Cross Complementing 1 (XRCC1). The results from hybrids retaining different portions of this chromosome showed that ERCC2 is distal to XRCC1 and in the same region of the chromosome 19 long arm (q13.2-q13.3) as ERCC1, but on different MluI macrorestriction fragments. Similar experiments using a hybrid clone panel containing segregating Chinese hamster chromosomes revealed the hamster homologs of the three repair genes to be part of a highly conserved linkage group on Chinese hamster chromosome number 9. The known hemizygosity of hamster chromosome 9 in CHO cells can account for the high frequency at which genetically recessive mutations are recovered in these three genes in CHO cells. Thus, the conservation of linkage of the repair genes explains the seemingly disproportionate number of repair genes identified on human chromosome 19.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号