首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 246 毫秒
1.
Erroneously arising tetraploid mammalian cells are chromosomally instable and may facilitate cell transformation. An increasing body of evidence shows that the propagation of mammalian tetraploid cells is limited by a p53-dependent arrest. The trigger of this arrest has not been identified so far. Here we show by live cell imaging of tetraploid cells generated by an induced cytokinesis failure that most tetraploids arrest and die in a p53-dependent manner after the first tetraploid mitosis. Furthermore, we found that the main trigger is a mitotic defect, in particular, chromosome missegregation during bipolar mitosis or spindle multipolarity. Both a transient multipolar spindle followed by efficient clustering in anaphase as well as a multipolar spindle followed by multipolar mitosis inhibited subsequent proliferation to a similar degree. We found that the tetraploid cells did not accumulate double-strand breaks that could cause the cell cycle arrest after tetraploid mitosis. In contrast, tetraploid cells showed increased levels of oxidative DNA damage coinciding with the p53 activation. To further elucidate the pathways involved in the proliferation control of tetraploid cells, we knocked down specific kinases that had been previously linked to the cell cycle arrest and p53 phosphorylation. Our results suggest that the checkpoint kinase ATM phosphorylates p53 in tetraploid cells after abnormal mitosis and thus contributes to proliferation control of human aberrantly arising tetraploids.  相似文献   

2.
The p53 tumor suppressor gene product is known to act as part of a cell cycle checkpoint in G1 following DNA damage. In order to investigate a proposed novel role for p53 as a checkpoint at mitosis following disruption of the mitotic spindle, we have used time-lapse videomicroscopy to show that both p53+/+ and p53−/− murine fibroblasts treated with the spindle drug nocodazole undergo transient arrest at mitosis for the same length of time. Thus, p53 does not participate in checkpoint function at mitosis. However, p53 does play a critical role in nocodazole-treated cells which have exited mitotic arrest without undergoing cytokinesis and have thereby adapted. We have determined that in nocodazole-treated, adapted cells, p53 is required during a specific time window to prevent cells from reentering the cell cycle and initiating another round of DNA synthesis. Despite having 4N DNA content, adapted cells are similar to G1 cells in that they have upregulated cyclin E expression and hypophosphorylated Rb protein. The mechanism of the p53-dependent arrest in nocodazole-treated adapted cells requires the cyclin-dependent kinase inhibitor p21, as p21−/− fibroblasts fail to arrest in response to nocodazole treatment and become polyploid. Moreover, p21 is required to a similar extent to maintain cell cycle arrest after either nocodazole treatment or irradiation. Thus, the p53-dependent checkpoint following spindle disruption functionally overlaps with the p53-dependent checkpoint following DNA damage.  相似文献   

3.
BACKGROUND: At therapeutic concentrations, the antineoplastic agent taxol selectively perturbs mitotic spindle microtubules. Taxol has recently been shown to induce apoptosis, similar to the mechanism of cell death induced by other antineoplastic agents. However, taxol has shown efficacy against drug-refractory cancers, raising the possibility that this pharmacological agent may trigger an alternative apoptotic pathway. MATERIALS AND METHODS: The kinetics and IC50 of mitotic (M) block, aberrant mitosis, and cytotoxicity following taxol treatment were analyzed in human cell lines as well as normal mouse embryo fibroblasts (MEFs) and MEFs derived from p53-null mice. Apoptosis was followed by DNA gel electrophoresis and by in situ DNA end-labeling (TUNEL). RESULTS: Taxol induced two forms of cell cycle arrest: either directly in early M at prophase or, for those cells progressing through aberrant mitosis, arrest in G1 as multimininucleated cells. TUNEL labeling revealed that DNA nicking occurred within 30 min of the arrest in prophase. In contrast, G1-arrested, multimininucleated cells became TUNEL positive only after several days. In the subset of cells that became blocked directly in prophase, both wt p53-expressing and p53-null MEFs responded similarly to taxol, showing rapid onset of DNA nicking and apoptosis. However, p53-null MEFs progressing through aberrant mitosis failed to arrest in the subsequent G1 phase or to become TUNEL positive, and remained viable. CONCLUSIONS: Taxol induces two forms of cell cycle arrest, which in turn induce two independent apoptotic pathways. Arrest in prophase induces rapid onset of a p53-independent pathway, whereas G1-block and the resulting slow (3-5 days) apoptotic pathway are p53 dependent.  相似文献   

4.
We recently demonstrated that the p53 oncosuppressor associates to centrosomes in mitosis and this association is disrupted by treatments with microtubule-depolymerizing agents. Here, we show that ATM, an upstream activator of p53 after DNA damage, is essential for p53 centrosomal localization and is required for the activation of the postmitotic checkpoint after spindle disruption. In mitosis, p53 failed to associate with centrosomes in two ATM-deficient, ataxiatelangiectasia-derived cell lines. Wild-type ATM gene transfer reestablished the centrosomal localization of p53 in these cells. Furthermore, wild-type p53 protein, but not the p53-S15A mutant, not phosphorylatable by ATM, localized at centrosomes when expressed in p53-null K562 cells. Finally, Ser15 phosphorylation of endogenous p53 was detected at centrosomes upon treatment with phosphatase inhibitors, suggesting that a p53 dephosphorylation step at centrosome contributes to sustain the cell cycle program in cells with normal mitotic spindles. When dissociated from centrosomes by treatments with spindle inhibitors, p53 remained phosphorylated at Ser15. AT cells, which are unable to phosphorylate p53, did not undergo postmitotic proliferation arrest after nocodazole block and release. These data demonstrate that ATM is required for p53 localization at centrosome and support the existence of a surveillance mechanism for inhibiting DNA reduplication downstream of the spindle assembly checkpoint  相似文献   

5.
Cell cycle checkpoints guard against the inappropriate commitment to critical cell events such as mitosis. The bisdioxopiperazine ICRF-193, a catalytic inhibitor of DNA topoisomerase II, causes a reversible stalling of the exit of cells from G2 at the decatenation checkpoint (DC) and can generate tetraploidy via the compromising of chromosome segregation and mitotic failure. We have addressed an alternative origin – endocycle entry - for the tetraploidisation step in ICRF-193 exposed cells. Here we show that DC-proficient p53-functional tumour cells can undergo a transition to tetraploidy and subsequent aneuploidy via an initial bypass of mitosis and the mitotic spindle checkpoint. DC-deficient SV40-tranformed cells move exclusively through mitosis to tetraploidy. In p53-functional tumour cells, escape through mitosis is enhanced by dominant negative p53 co-expression. The mitotic bypass transition phase (termed G2endo) disconnects cyclin B1 degradation from nuclear envelope breakdown and allows cells to evade the action of Taxol. G2endo constitutes a novel and alternative cell cycle phase - lasting some 8 h - with distinct molecular motifs at its boundaries for G2 exit and subsequent entry into a delayed G1 tetraploid state. The results challenge the paradigm that checkpoint breaching leads directly to abnormal ploidy states via mitosis alone. We further propose that the induction of bypass could: facilitate the covert development of tetraploidy in p53 functional cancers, lead to a misinterpretation of phase allocation during cell cycle arrest and contribute to tumour cell drug resistance.  相似文献   

6.
A "spindle assembly" checkpoint has been described that arrests cells in G1 following inappropriate exit from mitosis in the presence of microtubule inhibitors. We have here addressed the question of whether the resulting tetraploid state itself, rather than failure of spindle function or induction of spindle damage, acts as a checkpoint to arrest cells in G1. Dihydrocytochalasin B induces cleavage failure in cells where spindle function and chromatid segregation are both normal. Notably, we show here that nontransformed REF-52 cells arrest indefinitely in tetraploid G1 following cleavage failure. The spindle assembly checkpoint and the tetraploidization checkpoint that we describe here are likely to be equivalent. Both involve arrest in G1 with inactive cdk2 kinase, hypophosphorylated retinoblastoma protein, and elevated levels of p21(WAF1) and cyclin E. Furthermore, both require p53. We show that failure to arrest in G1 following tetraploidization rapidly results in aneuploidy. Similar tetraploid G1 arrest results have been obtained with mouse NIH3T3 and human IMR-90 cells. Thus, we propose that a general checkpoint control acts in G1 to recognize tetraploid cells and induce their arrest and thereby prevents the propagation of errors of late mitosis and the generation of aneuploidy. As such, the tetraploidy checkpoint may be a critical activity of p53 in its role of ensuring genomic integrity.  相似文献   

7.
8.
Cell cycle arrest is a major cellular response to DNA damage preceding the decision to repair or die. Many malignant cells have non-functional p53 rendering them more “aggressive” in nature. Arrest in p53-negative cells occurs at the G2M cell cycle checkpoint. Failure of DNA damaged cells to arrest at G2 results in entry into mitosis and potential death through aberrant mitosis and/or apoptosis. The pivotal kinase regulating the G2M checkpoint is Cdk1/cyclin B whose activity is controlled by phosphorylation. The p53-negative myeloid leukemia cell lines K562 and HL-60 were used to determine Cdk1 phosphorylation status during etoposide treatment. Cdk1 tyrosine 15 phosphorylation was associated with G2M arrest, but not with cell death. Cdk1 tyrosine 15 phosphorylation also led to suppression of nuclear cyclin B-associated Cdk1 kinase activity. However cell death, associated with broader tyrosine phosphorylation of Cdk1 was not attributed to tyrosine 15 alone. This broader phosphoryl isoform of Cdk1 was associated with cyclin A and not cyclin B. Alternative phosphorylations sites were predicted as tyrosines 4, 99 and 237 by computer analysis. No similar pattern was found on Cdk2. These findings suggest novel Cdk1 phosphorylation sites, which appear to be associated with p53-independent cell death following etoposide treatment.  相似文献   

9.
Growing evidence indicates a central role for p53 in mediating cell cycle arrest in response to mitotic spindle defects so as to prevent rereplication in cells in which the mitotic division has failed. Here we report that a transient inhibition of spindle assembly induced by nocodazole, a tubulin-depolymerizing drug, triggers a stable activation of p53, which can transduce a cell cycle inhibitory signal even when the spindle-damaging agent is removed and the spindle is allowed to reassemble. Cells transiently exposed to nocodazole continue to express high levels of p53 and p21 in the cell cycle that follows the transient exposure to nocodazole and become arrested in G(1), regardless of whether they carry a diploid or polyploid genome after mitotic exit. We also show that p53 normally associates with centrosomes in mitotic cells, whereas nocodazole disrupts this association. Together these results suggest that the induction of spindle damage, albeit transient, interferes with the subcellular localization of p53 at specific mitotic locations, which in turn dictates cell cycle arrest in the offspring of such defective mitoses.  相似文献   

10.
Mutations in the p53 tumor suppressor gene locus predispose human cells to chromosomal instability. This is due in part to interference of mutant p53 proteins with the activity of the mitotic spindle and postmitotic cell cycle checkpoints. Recent data demonstrates that wild type p53 is required for postmitotic checkpoint activity, but plays no role at the mitotic spindle checkpoint. Likewise, structural dominant p53 mutants demonstrate gain-of-function properties at the mitotic spindle checkpoint and dominant negative properties at the postmitotic checkpoint. At mitosis, mutant p53 proteins interfere with the control of the metaphase-to-anaphase progression by up-regulating the expression of CKs1, a protein that mediates activatory phosphorylation of the anaphase promoting complex (APC) by Cdc2. Cells that carry mutant p53 proteins overexpress CKs1 and are unable to sustain APC inactivation and mitotic arrest. Thus, mutant p53 gain-of-function at mitosis constitutes a key component to the origin of chromosomal instability in mutant p53 cells.  相似文献   

11.
Checkpoint kinase-1 (CHK1) is a key regulator of the DNA damage-elicited G2-M checkpoints. The aim of the present study was to investigate the effects of a selective CHK1 inhibitor, Chir124, on cell survival and cell cycle progression following ionizing radiation (IR). Treatment with Chir-124 resulted in reduced clonogenic survival and abrogated the IR- induced G2-M arrest in a panel of isogenic HCT116 cell lines after IR. This radiosensitizing effect was relatively similar between p53-/- and p53-sufficient wild type (WT) HCT116 cells. However, the number of mitotic cells (as measured by assessing the phosphorylation of mitotic proteins) increased dramatically in p53-/- HCT116 cells after concomitant Chir-124 exposure, compared to IR alone, while no such effect was observed in p53-sufficient WT HCT116 cells. In p53-/- cells, Chir-124 treatment induced a marked accumulation of polyploid cells that were characterized by micronucleation or multinucleation. p21-/- HCT116 cells displayed a similar pattern of response as p53-/- cells. Chir-124 was able to radiosensitize HCT116 cells that lack checkpoint kinase-2 (CHK2) or that were deficient for the spindle checkpoint protein Mad2. Finally, Chir-124 could radiosensitize tetraploid cell lines, which were relatively resistant against DNA damaging agents. Altogether these results suggest that Chir-124-mediated radiosensitization is profoundly influenced by the p53 and cell cycle checkpoint system.  相似文献   

12.
DNA damage induced by the topoisomerase I inhibitor irinotecan (CPT-11) triggers in p53(WT) colorectal carcinoma cells a long term cell cycle arrest and in p53MUT cells a transient arrest followed by apoptosis (Magrini, R., Bhonde, M. R., Hanski, M. L., Notter, M., Scherübl, H., Boland, C. R., Zeitz, M., and Hanski, C. (2002) Int. J. Cancer 101, 23-31; Bhonde, M. R., Hanski, M. L., Notter, M., Gillissen, B. F., Daniel, P. T., Zeitz, M., and Hanski, C. (2006) Oncogene 25, 165-175). The mechanism of the p53-independent apoptosis still remains largely unclear. Here we used five p53WT and five p53MUT established colon carcinoma cell lines to identify gene expression alterations associated with apoptosis in p53MUT cells after treatment with SN-38, the irinotecan metabolite. After treatment, 16 mitosis-related genes were found to be expressed at least 2-fold stronger in the apoptosis-executing p53MUT cells than in the cell cycle-arrested p53WT cells by oligonucleotide microarray analysis. One of the genes whose strong post-treatment expression was associated with apoptosis was the mitotic checkpoint kinase hMps1 (human ortholog of the yeast monopolar spindle 1 kinase). hMps1 mRNA and protein expression were suppressed by the treatment-induced and by the exogenous adenovirus-coded p53 protein. The direct suppression of hMps1 on RNA level or inhibition of its activity by a dominant-negative hMps1 partly suppressed apoptosis. Together, these data indicate that the high expression of mitotic genes in p53MUT cells after SN-38 treatment contributes to DNA damage-induced apoptosis, whereas their suppression in p53WT cells acts as a safeguard mechanism preventing mitosis initiation and the subsequent apoptosis. hMps1 kinase is one of the mitotic checkpoint proteins whose expression after DNA damage in p53MUT cells activates the checkpoint and contributes to apoptosis.  相似文献   

13.
Most cell lines that lack functional p53 protein are arrested in the G2 phase of the cell cycle due to DNA damage. When the G2 checkpoint is abrogated, these cells are forced into mitotic catastrophe. A549 lung adenocarcinoma cells, in which p53 was eliminated with the HPV16 E6 gene, exhibited efficient arrest in the G2 phase when treated with adriamycin. Administration of caffeine to G2-arrested cells induced a drastic change in cell phenotype, the nature of which depended on the status of p53. Flow cytometric and microscopic observations revealed that cells that either contained or lacked p53 resumed their cell cycles and entered mitosis upon caffeine treatment. However, transit to the M phase was slower in p53-negative cells than in p53-positive cells. Consistent with these observations, CDK1 activity was maintained at high levels, along with stable cyclin B1, in p53-negative cells. The addition of butyrolactone I, which is an inhibitor of CDK1 and CDK2, to the p53-negative cells reduced the floating round cell population and induced the disappearance of cyclin B1. These results suggest a relationship between the p53 pathway and the ubiquitin-mediated degradation of mitotic cyclins and possible cross-talk between the G2-DNA damage checkpoint and the mitotic checkpoint.  相似文献   

14.
Paclitaxel (PTX), a microtubule-active drug, causes mitotic arrest leading to apoptosis in certain tumor cell lines. Here we investigated the effects of PTX on human arterial smooth muscle cell (SMC) cells. In SMC, PTX caused both (a) primary arrest in G1 and (b) post-mitotic arrest in G1. Post-mitotic cells were multinucleated (MN) with either 2C (near-diploid) or 4C (tetraploid) DNA content. At PTX concentrations above12 ng/ml, MN cells had 4C DNA content consistent with the lack of cytokinesis during abortive mitosis. Treatment with 6-12 ng/ml PTX yielded MN cells with 2C DNA content. Finally, 1-6 ng/ml of PTX, the lowest concentrations that affected cell proliferation, caused G1 arrest without multinucleation. It is important that PTX did not cause apoptosis in SMC. The absence of apoptosis could be explained by mitotic exit and G1 arrest as well as by low constitutive levels of caspase expression and by p53 and p21 induction. Thus, following transient mitotic arrest, SMC exit mitosis to form MN cells. These post-mitotic cells were subsequently arrested in G1 but maintained normal elongated morphology and were viable for at least 21 days. We conclude that in SMC PTX causes post-mitotic cell cycle arrest rather than cell death.  相似文献   

15.
G1 tetraploidy checkpoint and the suppression of tumorigenesis   总被引:9,自引:0,他引:9  
Checkpoints suppress improper cell cycle progression to ensure that cells maintain the integrity of their genome. During mitosis, a metaphase checkpoint requires the integration of all chromosomes into a metaphase array in the mitotic spindle prior to mitotic exit. Still, mitotic errors occur in mammalian cells with a relatively high frequency. Metaphase represents the last point of control in mitosis. Once the cell commits to anaphase there are no checkpoints to sense segregation defects. In this context, we will explore our recent finding that non-transformed mammalian cells have a checkpoint that acts subsequent to mitotic errors to block the proliferation of cells that have entered G1 with tetraploid status. This arrest is dependent upon both p53 and pRb, and may represent an important function of both p53 and pRb as tumor suppressors. Further, we discuss the possibility that this mechanism may similarly impose G1 arrest in cells that become aneuploid through errors in mitosis.  相似文献   

16.
Cells eventually exit from mitosis during sustained arrest at the spindle checkpoint, without sister chromatid separation and cytokinesis. The resulting tetraploid cells are arrested in the subsequent G1 phase in a p53-dependent manner by the regulatory function of the postmitotic G1 checkpoint. Here we report how the nucleolus plays a critical role in activation of the postmitotic G1 checkpoint. During mitosis, the nucleolus is disrupted and many nucleolar proteins are translocated from the nucleolus into the cytoplasm. Among the nucleolar factors, Myb-binding protein 1a (MYBBP1A) induces the acetylation and accumulation of p53 by enhancing the interaction between p300 and p53 during prolonged mitosis. MYBBP1A-dependent p53 activation is essential for the postmitotic G1 checkpoint. Thus, our results demonstrate a novel nucleolar function that monitors the prolongation of mitosis and converts its signal into activation of the checkpoint machinery.  相似文献   

17.
Fragkos M  Beard P 《PloS one》2011,6(8):e22946
Cell death occurring during mitosis, or mitotic catastrophe, often takes place in conjunction with apoptosis, but the conditions in which mitotic catastrophe may exhibit features of programmed cell death are still unclear. In the work presented here, we studied mitotic cell death by making use of a UV-inactivated parvovirus (adeno-associated virus; AAV) that has been shown to induce a DNA damage response and subsequent death of p53-defective cells in mitosis, without affecting the integrity of the host genome. Osteosarcoma cells (U2OSp53DD) that are deficient in p53 and lack the G1 cell cycle checkpoint respond to AAV infection through a transient G2 arrest. We found that the infected U2OSp53DD cells died through mitotic catastrophe with no signs of chromosome condensation or DNA fragmentation. Moreover, cell death was independent of caspases, apoptosis-inducing factor (AIF), autophagy and necroptosis. These findings were confirmed by time-lapse microscopy of cellular morphology following AAV infection. The assays used readily revealed apoptosis in other cell types when it was indeed occurring. Taken together the results indicate that in the absence of the G1 checkpoint, mitotic catastrophe occurs in these p53-null cells predominantly as a result of mechanical disruption induced by centrosome overduplication, and not as a consequence of a suicide signal.  相似文献   

18.
Targeting DNA repair with poly(ADP-ribose) polymerase (PARP) inhibitors has shown a broad range of anti-tumor activity in patients with advanced malignancies with and without BRCA deficiency. It remains unclear what role p53 plays in response to PARP inhibition in BRCA-proficient cancer cells treated with DNA damaging agents. Using gene expression microarray analysis, we find that DNA damage response (DDR) pathways elicited by veliparib (ABT-888), a PARP inhibitor, plus topotecan comprise the G1/S checkpoint, ATM, and p53 signaling pathways in p53-wildtype cancer cell lines and BRCA1, BRCA2 and ATR pathway in p53-mutant lines. In contrast, topotecan alone induces the G1/S checkpoint pathway in p53-wildtype lines and not in p53-mutant cells. These responses are coupled with G2/G1 checkpoint effectors p21CDKN1A upregulation, and Chk1 and Chk2 activation. The drug combination enhances G2 cell cycle arrest, apoptosis and a marked increase in cell death relative to topotecan alone in p53-wildtype and p53-mutant or -null cells. We also show that the checkpoint kinase inhibitor UCN-01 abolishes the G2 arrest induced by the veliparib and topotecan combination and further increases cell death in both p53-wildtype and -mutant cells. Collectively, PARP inhibition by veliparib enhances DDR and cell death in BRCA-proficient cancer cells in a p53-dependent and -independent fashion. Abrogating the cell-cycle arrest induced by PARP inhibition plus chemotherapeutics may be a strategy in the treatment of BRCA-proficient cancer.  相似文献   

19.
Skp2 regulates G2/M progression in a p53-dependent manner   总被引:1,自引:0,他引:1  
Targeted proteasomal degradation mediated by E3 ubiquitin ligases controls cell cycle progression, and alterations in their activities likely contribute to malignant cell proliferation. S phase kinase-associated protein 2 (Skp2) is the F-box component of an E3 ubiquitin ligase complex that targets p27Kip1 and cyclin E1 to the proteasome. In human melanoma, Skp2 is highly expressed, regulated by mutant B-RAF, and required for cell growth. We show that Skp2 depletion in melanoma cells resulted in a tetraploid cell cycle arrest. Surprisingly, co-knockdown of p27Kip1 or cyclin E1 failed to prevent the tetraploid arrest induced by Skp2 knockdown. Enhanced Aurora A phosphorylation and repression of G2/M regulators cyclin B1, cyclin-dependent kinase 1, and cyclin A indicated a G2/early M phase arrest in Skp2-depleted cells. Furthermore, expression of nuclear localized cyclin B1 prevented tetraploid accumulation after Skp2 knockdown. The p53 status is most frequently wild type in melanoma, and the tetraploid arrest and down-regulation of G2/M regulatory genes were strongly dependent on wild-type p53 expression. In mutant p53 melanoma lines, Skp2 depletion did not induce cell cycle arrest despite up-regulation of p27Kip1. These data indicate that elevated Skp2 expression may overcome p53-dependent cell cycle checkpoints in melanoma cells and highlight Skp2 actions that are independent of p27Kip1 degradation.  相似文献   

20.
Loss of centrosome integrity induces p38-p53-p21-dependent G1-S arrest   总被引:2,自引:0,他引:2  
Centrosomes organize the microtubule cytoskeleton for both interphase and mitotic functions. They are implicated in cell-cycle progression but the mechanism is unknown. Here, we show that depletion of 14 out of 15 centrosome proteins arrests human diploid cells in G1 with reduced Cdk2-cyclin A activity and that expression of a centrosome-disrupting dominant-negative construct gives similar results. Cell-cycle arrest is always accompanied by defects in centrosome structure and function (for example, duplication and primary cilia assembly). The arrest occurs from within G1, excluding contributions from mitosis and cytokinesis. The arrest requires p38, p53 and p21, and is preceded by p38-dependent activation and centrosomal recruitment of p53. p53-deficient cells fail to arrest, leading to centrosome and spindle dysfunction and aneuploidy. We propose that loss of centrosome integrity activates a checkpoint that inhibits G1-S progression. This model satisfies the definition of a checkpoint in having three elements: a perturbation that is sensed, a transducer (p53) and a receiver (p21).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号