首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Reaction of 1-O-acetyl-2,3,5-tri-O-benzyl-4-thio-L-lyxofuranose with silylated pyrimidine bases and subsequent deprotection with boron tribromide led to 4′-thio-L-lyxo pyrimidine nucleosides. The 5-bromo-6-methyl derivative was prepared from methyl 2,3,5-tri-O-acetyl-4-thio-L-lyxofuranoside. Deacetylation was performed with sodium methoxide. The anomers were separated by HPLC and their configurations assigned by NMR spectroscopy and X-ray structural analyses. The biological activity of the nucleosides was tested.

  相似文献   

2.
A series of 4′-thio-L-xylofuranosyl nucleosides were prepared and evaluated as potential anticancer and antiviral agents. The details of a convenient and high-yielding synthesis of the carbohydrate precursor 1-O-acetyl-2,3,5-tri-O-benzyl-4- thio-L-xylofuranose (6) are presented. Proof of structure and configuration at all chiral centers of the nucleosides was obtained by proton and carbon NMR. All target compounds were evaluated in a series of human cancer cell lines in culture and as antiviral agents.  相似文献   

3.
Abstract

1-O-Acetyl-2-deoxy-3,5-di-O-toluoyl-4-thio-D-erythro-pentofuranose and 2-deoxy-1,3,5-tri-O-acetyl-4-thio-L-threo-pentofuranose were coupled with 5-azacytosine to obtain α and β anomers of nucleosides. All four nucleosides were reduced to the corresponding dihydro derivatives and deblocked to give target compounds. All eight target compounds were evaluated in a series of human cancer cell lines in culture. Only 2′-deoxy-4′-thio-5-azacytidine () was found to be cytotoxic in all the cell lines and was further evaluated in vivo. Details of the synthesis and biological activity are reported.  相似文献   

4.
Quinoxaline and benzimidazole derivatives obtained from L-rhamnose and L-fucose under deoxygenated, weakly acidic, heated conditions were studied using GLC, HPLC, and NMR.

Four quinoxalines and one benzimidazole were obtained from L-rhamnose (RHA-I, II, III, III′, and IV) and L-fucose (FUA-I, II, III, IV, and V) in an acidic solution (MeOH-AcOH-H2I = 8 : 1 : 2) at 80°C. The total yield of the products as sugar was about 80% from either rhamnose or fucose.

The structure of RHA-I was (2′S)-2-methyl-3-(2′-hydroxypropyl)quinoxaline; RHA-II, (2′R,3′S)-2-(2′,3′-dihydroxybutyl)quinoxaline; RHA-III, (1′S,2′S,3′S)-2-(1′2′3′-trihydroxybutyl)quinoxaline[2-(L-arabino-1′,2′,3′-trihydroxybutyl)quinoxaline]; RHA-III′, 2-(L-ribo-1′,2′,3′-trihydroxybutyl)quinoxaline; and RHA-IV, 2-(L-manno-1′,2′,3′,4′-tetrahydroxypentyl)-benzimidazole, and the structure of FUA-I was the same as RHA-I; FUA-II, (2′S, 3′S)-2-(2′, 3′-dihydroxybutyl)quinoxaline; FUA-III, (1′R, 2′R, 3′S)-2-(1′,2′,3′-trihydroxybutyl)quinoxaline [2-(L-xylo-1′,2′,3′-trihydroxybutyl)quinoxaline; FUA-IV, 2-(L-lyxo-1′,2′,3′-trihydroxybutyl)-quinoxaline; and FUA-V, 2-(L-galacto-1′,2′,3′,4′-tetrahydroxypentyl)benzimidazole. These results suggest no significant difference for the pathways of quinoxaline and benzimidazole formation between L-rhamnose and L-fucose. Possible pathways are proposed for each sugar.  相似文献   

5.
The seco C-nucleosides 3-(1,2,3,4,5-penta-O-acetyl-D-gluco- and D- galacto-pentitol-1-yl)-1H-1,2,4-triazoles (8 and 9) were obtained in a one pot by deamination and dethiolation of 4-amino-3-(D-gluco- and D-galacto-pentitol-1-yl)-5-mercapto-1,2,4-triazoles (1 and 2), respectively, using sodium nitrite in orthophosphoric acid and subsequent acetylation. Condensation of 1, 2, and 4-amino-3-(D-glycero-D-gulo-hexitol-1-yl)-5-mercapto-1,2,4-triazole (12) with phenacylbromide (11) afforded the corresponding 3-(D-gluco-, D-galacto-pentitol-1-yl) and 3-(D-glycero-D-gulo-hexitol-1-yl)-6-phenyl-7H-1,2,4- triazolo[3,4-b][1,3,4] thiadiazines (15, 16, and 17). Acetylation of 15–17 gave the penta- and hexa-O-acetyl derivatives 18–20, respectively. The structures were confirmed by using 1H, 13C, and 2D NMR spectra, DQFCOSY, HMQC, and HMBC experiments. The favored conformational structures were deduced from the vicinal coupling constants of the protons.  相似文献   

6.
L-Methionine γ-lyase (EC 4.4.1.11) catalyzes α,γ-elimination of O-substituted L-homoserines (i.e., ROCH2CH2CH(NH2)COOH; R = acetyl, succinyl, or ethyl) to produce α-ketobutyrate, ammonia, and the corresponding carboxylate or alcohol, and also their γ-replacement reactions with various thiols to produce the corresponding S-substituted L-homocysteines. The reactivities of O-substituted L-homoserines in α,γ-elimination relative to that of L-methionine were as follows: O-acetyl, 140%; O-succinyl, 17%; and O-ethyl-L-homoserine, 99%. However, the enzyme does not catalyze the synthesis of O-substituted L-homoserines from alcohol or carboxylic acids in a γ-replacement reaction. We have analyzed the α,γ-elimination of O-acetyl-L-homoserine in deuterium oxide by 1H-NMR. The [β-2H, γ-2H]-species of α-ketobutyrate was exclusively formed from O-acetyl-L-homoserine. The enzyme catalyzes deamination of L-vinylglycine to give the identically labeled α-ketobutyrate species. Incubation of the enzyme with O-acetyl-L-homoserine resulted in the appearance of a new absorption band at 480 nm, which was observed also with L-vinylglycine. These results strongly suggest that the α,γ-elimination and γ-replacement reactions of O-acetyl-L-homoserine proceed through the stabilized α-carbanion of a Schiff base between pyridoxal 5'-phosphate and vinylglycine, which has been suggested as the key intermediate of L-methionine γ-lyase-caralyzed reactions of S-substituted L-homocysteines [N. Esaki, T. Suzuki, H. Tanaka, K. Soda and R. R. Rando, FEBS Lett., 84, 309 (1977).  相似文献   

7.
To investigate the substrate specificity and regio-selectivity of coumarin glycosyltransferases in transgenic hairy roots of Polygonum multiflorum, esculetin (1) and eight hydroxycoumarins (29) were employed as substrates. Nine corresponding glycosides (1018) involving four new compounds, 6-chloro-4-methylcoumarin 7-O-β-D-glucopyranoside (15), 6-chloro-4-phenylcoumarin 7-O-β-D-glucopyranoside (16), 8-hydroxy-4-methylcoumarin 7-O-β-D-glucopyranoside (17), and 8-allyl-4-methylcoumarin 7-O-β-D-glucopyranoside (18), were biosynthesized by the hairy roots.  相似文献   

8.
D-Galactosyl-α-1,3-D-galactopyranose (1) was chemically prepared in a good yield by coupling phenyl 2,3,4,6-tetra-O-benzyl-1-thio-β-D-galactopyranoside (5) or 2,3,4,6-tetra-O-benzyl-α-D-galactopyranosyl bromide (8) with 1,2:5,6-di-O-cyclohexylidene-α-D-galactofuranose (3) with subsequent de-O-benzylation and de-O-cyclohexylidenation of the resulting protected α-1,3-disaccharide.  相似文献   

9.
When Bacillus sp. K40T was cultured in the presence of L-fucose, 1,2-α-L-fucosidase was found to be produced specifically in the culture fluid. The enzyme was purified to homogeneity from a culture containing only L-fucose by chromatography on hydroxylapatite and chromatofocusing. The molecular weight of the enzyme was estimated to be 200,000 by gel filtration on Sephadex G-200. The enzyme was optimal at pH 5.5–7.0 and was stable at pH 6.0–9.0. The enzyme hydrolyzed the α(1 → 2)-L-fucosidic linkages in various oligosaccharides and glycoproteins such as lacto-N-fucopentaose (LNF)-I 〈O-α-L-fucose-(1 → 2)-O-β-D-galactose-(1 → 3)-N-acetyl-O-β-D-glucosamine-(1 → 3)-O-β-D-galactose-(1 → 4)-D-glucose〉, porcine gastric mucin, and porcine submaxillary mucin. The enzyme also acted on human erythrocytes, which was confirmed by the hemagglutination test using Ulex anti-H lectin. The enzyme did not hydrolyze α(1 → 3)-, α-(1 → 4)- and α-(1 → 6)-L-fucosidic linkages in LNF-III 〈O-β-D-galactose-(1 → 4)[O-α-L-fucose-(1 → 3)-]-N-acetyl-O-β-D-glucosamine-(1 → 3)-O-β-D-galactose-(1 → 4)-D-glucose〉, LNF-II 〈O-β-D-galactose-(1 → 3)[O-α-L-fucose-(1 → 4)-]-N-acetyl-O-β-D-galactose-(1 → 3)-O-β-D-galactose-(1 → 4)-D-glucose〉 or 6-O-α-L-fucopyranosyl-N-acetylglucosamine.  相似文献   

10.
An X-ray crystal structural analysis revealed that (2S,3S)-N-acetyl-2-amino-3-methylpentanoic acid (N-acetyl-L-isoleucine; Ac-L-Ile) and (2R,3S)-N-acetyl-2-amino-3-methylpentanoic acid (N-acetyl-D-alloisoleucine; Ac-D-aIle) formed a molecular compound containing one Ac-L-Ile molecule and one Ac-D-aIle molecule as an unsymmetrical unit. This molecular compound is packed with strong hydrogen bonds forming homogeneous chains consisting of Ac-L-Ile molecules or Ac-D-aIle molecules and weak hydrogen bonds connecting these homogeneous chains in a fashion similar to that observed for Ac-L-Ile and Ac-D-aIle. Recrystallization of an approximately 1:1 mixture of Ac-L-Ile and Ac-D-aIle from water gave an equimolar molecular compound due to its lower solubility than that of Ac-D-aIle or especially Ac-L-Ile. The results suggest that the equimolar mixture of Ac-L-Ile and Ac-D-aIle could be obtained from an Ac-L-Ile-excess mixture by recystallization from water.  相似文献   

11.
A variety of the lipophilic derivatives at C-1 and C-6 in N-[2-O-(2-acetamido-2,3-dideoxy-1-thio-β-d-glucopyranose-B-yl)-d-lactoy]-l-alanyl-(N1-fatty acyl)-d-isoglutamine methyl esters were synthesized from 2N-acetyl-1-S-acetyl-4,6-O-isopropylidene-1-thiomuramoyl-l-alanyl-d-isogluta-mine methyl ester. Their immunoadjuvant activity in guinea-pigs, and the protective effect in mice infected with Escherichia coli (E-77156) were examined.  相似文献   

12.
dl-(1,3/2)-3-Acetamido-1,2-di-O-benzylcyclohex-4-enediol (IIIa) and dl-(1,3/4)-1-acetamido-3,4-di-O-benzylcyclohex-5-enediol (IIIb) were synthesized from dl-trans-1,2-di-O-benzylcyclohex-3-enediol (I) via the corresponding azide derivatives (IIa-b) prepared by bromination and subsequent treatment with sodium azide in N,N-dimethylformamide. Compounds (IIIa and IIIb) were converted into a variety of deoxyinosamine and deoxyinosadiamine derivatives via epoxides (VIII and IX) or by cis-hydroxylation with osmium tetroxide. Hexaacetyl-rac-inosamine-1 (XVIIIc) was synthesized from dl-(1,3,4/2,5)-3-acetamido-1,2-di-O-benzyl-5-bromocyclohexanetriol (VIa) via conduramine derivatives (XVIIa-c). Conformationai analysis of partially O-benzylated aminocyclitol derivatives were studied by means of NMR spectroscopy.  相似文献   

13.
ABSTRACT

Tyrosinase is the key enzyme that controls melanin formation. We found that a hot water extract of the lyophilized fruiting body of the fungus Lyophyllum decastes inhibited tyrosinase from Agaricus bisporus. The extract was fractionated by ODS column chromatography, and an active compound was obtained by purification through successive preparative HPLC using an ODS and a HILIC column. Using spectroscopic data, the compound was identified to be an uncommon amino acid, 6-hydroxytryptophan. 6-Hydroxy-L-tryptophan and 6-hydroxy-D-tryptophan were prepared through a Fenton reaction from L-tryptophan and D-tryptophan, respectively. The active compound was determined to be 6-hydroxy-L-tryptophan by comparison of their circular dichroism spectra and retention time on HPLC analysis of the Nα-(5-fluoro-2,4-dinitrophenyl)-L-leuciamide derivative with those of 6-hydroxy-L-tryptophan and 6-hydroxy-D-tryptophan. A Lineweaver–Burk plot of the enzyme reaction in the presence of 6-hydroxy-L-tryptophan indicated that this compound was a competitive inhibitor. The IC50 values of 6-hydroxy-L-tryptophan was 0.23 mM.  相似文献   

14.
In order to clarify the substrate specificity of the α-L-mannosidase activity of naringinase (Sigma), the following disaccharides and phenol glycosides were freshly prepared: methyl 2-O-(α-L-mannopyranosyl)­β-D-glucoside (1), methyl 3-O-(α-L-mannopyranosyl)-α-D-glucoside (2), methyl 4-O-(α-L-mannopyranosyl)-α-D-glucoside (3), methyl 5-O-(α-L-mannopyranosyl)-β-D-glucoside (4), methyl 6-O-(α-L-mannopyranosyl)-α-D­glucoside (5), 6-O-(α-L-mannpyranosyl)-D-galactose (6), p-nitrophenyl α-L-mannoside (7), and 4-methyl umbelliferone α-L-mannoside (8).These compounds, except for 3 and 5, were hydrolyzed with naringinase.  相似文献   

15.
The synthesis of dideoxy-6-azathymidine 4′-thionucleoside 1-(2,3-dideoxy-4-thio-β-D-erythro-pentofuranosyl)-(6-azathymidine) (2), and the L-nucleoside, 1-(4-thio-β-L-erythro-pentofuranosyl)-(6-azathymidine) (3) and their evaluation against a wide panel of antiviral assays are described. The L-thionucleoside (3) was devoid of antiviral activity. The dideoxy-thionucleoside (2) was moderately active against vaccinia virus (VV) and the herpes simplex virus strains HSV-1 (strain KOS) and HSV-2 (strain G) (MIC 12 μM) and retained inhibitory activity vs a thymidine kinase-deficient strain HSV-1/TK, suggesting that (2) is not dependent on viral TK-catalysed phosphorylation for antiviral activity and/or may use an alternative metabolic activation pathway.  相似文献   

16.
The growth of Brevibacterium flavum No. 2247A was inhibited by α-amino-β-hydroxy-valeric acid (AHV), and the inhibition was partially reversed by L-isoleucine.

AHV resistant strain ARI-129, which was isolated on a medium supplemented with 2 mg/ml of AHV, produced 11 g/liter of L-isoleucine.

No difference was observed in threonine dehydratase between No. 2247A and ARI–129. Homoserine dehydrogenase from ARI–129 was insensitive to the feedback inhibition by L-isoleucine and L-threonine.

O-Methyl-L-threonine resistant mutant, strain AORI–126, which was derived from ARI–129, produced 14.5 g/liter of L-isoleucine. Specific activity of threonine dehydratase from AORI–126 increased about two-fold higher than those from No. 2247A and ARI–129, whereas degree of inhibition of the enzyme by L-isoleucine was the same among three strains.

Among auxotrophic mutants derived from ARI–129, adenine and lysine auxotrophs produced more L-isoleucine than the parent did.

In the adenine auxotroph, L-isoleucine production was markedly reduced by the addition of excess adenine.  相似文献   

17.
In view of biological activities of azole nucleosides and apio‐dideoxynucleoside, novel apio nucleoside analogues (1 and 2) with thiazole and triazole base moiety were synthesized using 2,3‐O‐isopropylidene‐apio‐β‐d‐furanose (3), which was prepared from d‐mannose.  相似文献   

18.

A new phosmidosine analog 10, in which the proline and 8-oxoadenosine moieties were linked by an N-acyl sulfamate linkage, was successfully synthesized by the sulfamoylation of an 8-oxoadenosine derivative 5 followed by coupling with an L-proline derivative 8. An L-alanine-substituted derivative 13 and its derivative 14 without the alanyl residue were also synthesized. The morphological reversion activity of these synthetic compounds in v-src ts NRK cells and their antitumor activity in L1210 and KB cells were studied. As the result, neither L-proline- nor L-alanine-substituted phosmidosine analogs 10 and 13 showed any antitumor activity. Contrary to these results, the derivative 14 lacking the amino acid residue showed potent antitumor activities against cancer cells.  相似文献   

19.
Growth of Brevibacterium flavum FA-1-30 and FA-3-115, L-lysine producers derived from Br. flavum No. 2247 as S-(2-aminoethyl)-L-cysteine (AEC) resistant mutants, was inhibited by α-amino-β-hydroxyvaleric acid (AHV), and this inhibition was reversed by L-threonine. All the tested AHV resistant mutants derived from FA-1-30 accumulated more than 4 g/liter of L-threonine in media containing 10% glucose, and the best producer, FAB-44, selected on a medium containing 5 mg/ml of AHV produced about 15 g/liter of L-threonine. Many of AHV resistant mutants selected on a medium containing 2 mg/ml of AHV accumulated L-lysine as well as L-threonine, AHV resistant mutants derived from FA-3-115 produced 10.7 g/liter of L-threonine maximally. AEC resistant mutants derived from strains BB–82 and BB–69, which were L-threonine producers derived from Br. flavum No. 2247 as AHV resistant mutants, did not produce L-threonine more than the parental strains, and moreover, many of them did not accumulate L-threonine but L-lysine. Homoserine dehydrogenases of crude extracts from L-threonine producing AHV resistant mutants derived from FA–1–30 and FA–3–115 were insensitive to the inhibition by L-threonine, and those of L-threonine and L-lysine producing AHV resistant mutants from FA–1–30 were partially sensitive.

Correlation between L-threonine or L-lysine production and regulations of enzymatic activities of the mutants was discussed.  相似文献   

20.
Alcaligenes xylosoxydans subsp. xylosoxydans A-6 (Alcaligenes A-6) produced N-acyl-D-aspartate amidohydrolase (D-AAase) in the presence of N-acetyl-D-aspartate as an inducer. The enzyme was purified to homogeneity. The enzyme had a molecular mass of 56 kDa and was shown by sodium dodecyl sulfate (SDS)–polyacrylamide gel electrophoresis (PAGE) to be a monomer. The isoelectric point was 4.8. The enzyme had maximal activity at pH 7.5 to 8.0 and 50°C, and was stable at pH 8.0 and up to 45°C. N-Formyl (Km=12.5 mM), N-acetyl (Km=2.52 mM), N-propionyl (Km=0.194 mM), N-butyryl (Km=0.033 mM), and N-glycyl (Km =1.11 mM) derivatives of D-aspartate were hydrolyzed, but N-carbobenzoyl-D-aspartate, N-acetyl-L-aspartate, and N-acetyl-D-glutamate were not substrates. The enzyme was inhibited by both divalent cations (Hg2+, Ni2+, Cu2+) and thiol reagents (N-ethylmaleimide, iodoacetic acid, dithiothreitol, and p-chloromercuribenzoic acid). The N-terminal amino acid sequence and amino acid composition were analyzed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号