首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
A series of 4′-thio-L-xylofuranosyl nucleosides were prepared and evaluated as potential anticancer and antiviral agents. The details of a convenient and high-yielding synthesis of the carbohydrate precursor 1-O-acetyl-2,3,5-tri-O-benzyl-4- thio-L-xylofuranose (6) are presented. Proof of structure and configuration at all chiral centers of the nucleosides was obtained by proton and carbon NMR. All target compounds were evaluated in a series of human cancer cell lines in culture and as antiviral agents.  相似文献   

2.
Reaction of 1-O-acetyl-2,3,5-tri-O-benzyl-4-thio-L-lyxofuranose with silylated pyrimidine bases and subsequent deprotection with boron tribromide led to 4′-thio-L-lyxo pyrimidine nucleosides. The 5-bromo-6-methyl derivative was prepared from methyl 2,3,5-tri-O-acetyl-4-thio-L-lyxofuranoside. Deacetylation was performed with sodium methoxide. The anomers were separated by HPLC and their configurations assigned by NMR spectroscopy and X-ray structural analyses. The biological activity of the nucleosides was tested.

  相似文献   

3.
Abstract

The efficient synthesis of oligonucleotides containing 2′-O-β-D-ribofuranosyl (and β-D-ribopyranosyl)nucleosides, 2′-O-α-D-arabinofuranosyl (and α-L-arabinofuranosyl)nucleosides, 2′-O-β-D-erythrofuranosylnucleosides, and 2′-O-(5′-amino-5-deoxy-β-D-ribofuranosyl)nucleosides have been developed.  相似文献   

4.
Abstract

A series of heterocyclic carboxamides have been designed as mimics for the natural nucleic acid bases. The nucleosides 1-(2′-deoxy-β-d-ribofuranosyl)imidazole-4-carboxamide (1), 1-(2′ -deoxy-β-d-ribofuranosyl)pyrazole-3-carboxamide (2), and 1-(2′ -deoxy-β-d-ribofuranosyl)pyrrole-3-carboxamide (3) were synthesized and their structures confirmed by spectroscopic and analytical means.

  相似文献   

5.
Abstract

A convenient synthesis of 2′-deoxy-2-fluoroadenosine from commercially available 2-fluoroadenine is described. The coupling reaction of silylated 2-fluoroadenine with phenyl 3,5-bis[O-(t-butyldimethylsilyl)]-2-deoxy-1-thio-D-erythro-pentofuranoside gave the corresponding 2-fluoro-2′-deoxyadenosine derivative (α/β =1:1) in good yield. The α- and β-anomers were separated by chromatography, and then desilylated to give compounds 1a and 1b.  相似文献   

6.
Abstract

Interesting and very promising antisense properties of 2′-deoxy-2′-fluoroarabinonucleic acids ((a) Wilds, C.J.; Damha, M.J. 2′-Deoxy-2′-fluoroarabinonucleosides and oligonucleotides (2′F-ANA): synthesis and physicochemical studies. Nucl. Acids Res. 2000, 28, 3625–3635; (b) Viazovkina, E.; Mangos, M.; Elzagheid, M.I.; Damha, M.J. Current Protocols in Nucleic Acid Chemistry 2002, 4.15.1–4.15.21) (2′F-ANA) has encouraged our research group to optimize the synthetic procedures for 2′-deoxy-2′-fluoro-β-D-arabinonucleosides (araF-N). The synthesis of araF-U, araF-T, araF-A and araF-C is straightforward, (Tann, C.H.; Brodfuehrer, P.R.; Brundidge, S.P.; Sapino, C., Jr. Howell H.G. Fluorocarbohydrates in synthesis. An efficient synthesis of 1-(2-deoxy-2-fluoro-β-D-arabinofuranosyl)-5-iodouracil (β-FIAU) and 1-(2-deoxy-2-fluoro-β-D-arabinofuranosyl)thymine (β-FMAU). J. Org. Chem. 1985, 50, 3644–3647; Howell, H.G.; Brodfuehrer, P.R.; Brundidge, S.P.; Benigni, D.A.; Sapino, C., Jr. Antiviral nucleosides. A stereospecific, total synthesis of 2′-fluoro-2′-deoxy-β-D-arabinofuranosyl nucleosides. J. Org. Chem. 1988, 53, 85–88; Maruyama, T.; Takamatsu, S.; Kozai, S.; Satoh, Y.; Izana, K. Synthesis of 9-(2-deoxy-2-fluoro-β-D-arabinofuranosyl)adenine bearing a selectively removable protecting group. Chem. Pharm. Bull. 1999, 47, 966–970) however, the synthesis of the guanine analogue is more complicated and affords poor to moderate yields of araF-G (4) ((a) Elzagheid, M.I.; Viazovkina, E.; Masad, M.J. Synthesis of protected 2′-deoxy-2′-fluoro-β-D-arabinonucleosides. Synthesis of 2′-fluoroarabino nucleoside phosphoramidites and their use in the synthesis of 2′F-ANA. Current Protocols in Nucleic Acid Chemistry 2002, 1.7.1–1.7.19; (b) Tennila, T.; Azhayeva, E.; Vepsalainen, J.; Laatikainen, R.; Azhayev, A.; Mikhailopulo, I. Oligonucleotides containing 9-(2-deoxy-2-fluoro-β-D-arabinofuranosyl)-adenine and -guanine: synthesis, hybridization and antisense properties. Nucleosides, Nucleotides and Nucl. Acids 2000, 19, 1861–1884). Here we describe an efficient synthesis of araF-G (4) that involves coupling of 2-deoxy-2-fluoro-3,5-di-O-benzoyl-α-D- arabinofuranosyl bromide (1) with 2-chlorohypoxanthine (2) to afford 2-chloro-β-araF-I (3) in 52% yield. Nucleoside (3) was transformed into araF-G (4) by treatment with methanolic ammonia (150°C, 6 h) in 67% yield.  相似文献   

7.
Partial acid hydrolysis of asterosaponin A, a steroidal saponin, afforded two new disaccharides in addition to O-(6-deoxy-α-d-glucopyranosyl)-(l→4)-6-deoxy-d-glucose which has been characterized in the preceding paper. The formers were demonstrated as O-(6-deoxy-α-d-galactopyranosyl)-(1→4)-6-deoxy-d-glucose and O-(6-deoxy-α-d-galactopyranosyl)-(l→4)-6-deoxy-d-galactose, respectively.

Accordingly, the structure of carbohydrate moiety being composed of two moles each of 6-deoxy-d-galactose and 6-deoxy-d-glucose, was established as O-(6-deoxy-α-d-galactopyranosyl)-(l→4)-O-(6-deoxy-α-d-galactopyranosyl)-(l→4)-O-(6-deoxy-α-d-glucopyranosyl)-(l→4)-6-deoxy-d-glucose, which is attached to the steroidal aglycone through an O-acetal glycosidic linkage.  相似文献   

8.
Abstract

1-O-Acetyl-2-deoxy-3,5-di-O-toluoyl-4-thio-d-erythro-pentofuranose and 2-deoxy-1,3,5-tri-O-acetyl-4-thio-l-threo-pentofuranose were coupled with 5-azacytosine to obtain α and β anomers of nucleosides.  相似文献   

9.
Abstract

We present procedures for nucleoside and oligonucleotide synthesis, binding affinity (T m) and structural analysis (CD spectra) of 2′-deoxy-2′,2″-difluoro-α-D-ribofuranosyl and 2′-deoxy-2′,2″-difluoro-β-D-ribofuranosyl oligothymidylates. Possible reasons for the thermal instability of duplexes formed between these compounds and RNA or DNA targets are discussed.  相似文献   

10.
An attempt was made to isolate the hypotensive substances from a hot water extract of kinkan. Eight flavonoid glycosides were isolated by repeated chromatography and by gel filtration after extracting with n-butanol and treating with lead subacetate. Their structures were established to be 6,8-di-C-glucosylapigenin (1), 3,6-di-C-glucosylacacetin (2), 2″-O-α-l-rhamnosyl-4′-O-methyl-vitexin (3), 2″-O-α-l-rhamnosyl-4′-O-methylisovitexin (4), 2″-O-α-l-rhamnosylvitexin (5), 2″-O-α-l-rhamnosylorientin (6), 2″-O-α-l-rhamnosyl-4′-O-methylorientin (7) and ponicilin (8) by UV. MS, 1-NMR and 13C-NMR spectroscopy, and by sugar analysis. Each component was intravenously injected in SHR-SP (0.5 ~ 1.0 mg/100 g of body weight), 1, 2, 5 and 6 were found to lower the rat blood pressure.

Among these compounds, 2, 3, 4, 6 and 7 were new flavone glycosides.  相似文献   

11.
Abstract

A group of unnatural 1-(2-deoxy-β-D-ribofuranosyl)-2,4-difluorobenzenes possessing a 5-I or 5-CF3 substituent, that were originally designed as thymidine mimics, were coupled via their 5′-OH group to a cyclosaligenyl (cycloSal) ring system having a variety of C-3 substituents (Me, OMe, H). The 5′-O-cycloSal-pronucleotide concept was designed to effect a thymidine kinase-bypass, thereby providing a method for the intracellular delivery and generation of the 5′-O-monophosphate for nucleosides that are poorly phosphorylated. The 5′-O-cycloSal pronucleotide phosphotriesters synthesized in this study were obtained as a 1:1 mixture of two diastereomers that differ in configuration (S P or R P) at the asymmetric phosphorous center. The (S P)- and (R P)-diastereomers for the 5′-O-3-methylcycloSal- and 5′-O-3-methoxycycloSal derivatives of 1-(2-deoxy-β-D-ribofuranosyl)-2,4-difluoro-5-iodobenzene were separated by silica gel flash column chromatography. This class of cycloSal pronucleotide compounds generally exhibited weak cytotoxic activities in a MTT assay (CC50 values in the 10?3 to 10?4 M range), against a number of cancer cell lines (143B, 143B-LTK, EMT-6, Hela, 293), except for cyclosaligenyl-5′-O-[1′-(2,4-difluoro-5-iodophenyl)-2′-deoxy-β-D-ribofuranosyl]phosphate that was more potent (CC50 values in the 10?5 to 10?6 M range), than the reference drug 5-iodo-2′-deoxyuridine (IUDR) which showed CC50 values in the 10?3 to 10?5 M range.  相似文献   

12.
A variety of the lipophilic derivatives at C-1 and C-6 in N-[2-O-(2-acetamido-2,3-dideoxy-1-thio-β-d-glucopyranose-B-yl)-d-lactoy]-l-alanyl-(N1-fatty acyl)-d-isoglutamine methyl esters were synthesized from 2N-acetyl-1-S-acetyl-4,6-O-isopropylidene-1-thiomuramoyl-l-alanyl-d-isogluta-mine methyl ester. Their immunoadjuvant activity in guinea-pigs, and the protective effect in mice infected with Escherichia coli (E-77156) were examined.  相似文献   

13.
Methyl 2,5-di-O-p-nitrobenzoyl-β-d-ribofuranoside was prepared via methyl 2,3-O-ethoxyethylidene-β-d-ribofuranoside from d-ribose. It was condensed with 3,4,6-tri-O-acetyl-2-deoxy-2-(2′,4′-dinitroanilino)-α-d-glucopyranosyl bromide and 3,4-di-O-acetyl-2,6-dideoxy-2-(2′,4′-dinitroanilino)-6-phthalimido-α-d-glucopyranosyl bromide by a modified Königs-Knorr reaction to give neobiosamine analogs. The condensation reaction gave α-glucosides as the minor product, and the corresponding β-glucoside as the major product.  相似文献   

14.
Abstract

The first synthesis of nitro-multideoxy-sugar containing nucleosides was achieved. 1-(4,6-O-Benzylidene-3-deoxy-3-nitro-β-D-glucopyranosyl)uracil (3) was converted in 75% yield into 1-(4,6-O-benzylidene-2,3-dideoxy-3-nitro-arabinohexopyranosyl)uracil (7) by acetylation followed by NaBH4 reduction in methanol. De-O-benzylidenation with CF3CO2H afforded crystalline 1-(2,3-dideoxy-3-nitro-β-D-arabinohexopyranosyl)uracil (S) was obtained in 87% yield. Raney Ni reduction of 8 afforded the corresponding 3′-amino-nucleoside 9. Acetylation of 8 followed by NaBH4 treatment afforded an 8:1 mixture from which 1-(2,3,4-trideoxy-3-nitro-β-D-threohexopyranosyl)-uracil (14) was obtained in pure crystalline form. After Raney Ni reduction of the mixture, 1-(3-amino-2,3,4-trideoxy-β-d-threo-hexopyranosyl)uracil (16) and its erythro epimer 21 were isolated. 1-(4,6-O-Benzylidene-2,3-dideoxy-3-nitro-β-d-lyxohexopyranosyl)uracil (24) was prepared in 72% yield from 1-(4,6-O-benzylidene-3-deoxy-3-nitro-β-d-galactopyranosyl)uracil (4) by acetylation and subsequent reduction with NaBH4. De-O-benzylid-enation of 23 afforded 1-(2,3,4-trideoxy-3-nitro-β-d-lyxohexopyranosyl)uracil (25) in 83% yield. Schmidt-Rutz reaction of 25 followed by NaBH4 reduction afforded a mixture of threo and elythro isomers of 2′,3′,4′-trideoxy-3′-nitro-hexopyranosyluracil, from which pure 16 and 21 were obtained.

  相似文献   

15.
The preparation of 2′-deoxy-2′-siprodifluorocyclopropany-lnucleoside analogs has been achieved from α-d-glucose in several steps. The key step in the synthesis was the introduction of the difluorocyclopropane through a difluorocarbene type reaction at the 2′-position. Then, a series of novel 2′-deoxy-2′-spirodifluorocyclopropanyl nucleoside analogs were synthesized using the Vorbrüggen method. All the synthesized nucleosides were characterized and subsequently evaluated against hepatitis C and influenza A virus strains in vitro.  相似文献   

16.
The electrophoretically homogeneous glucomannan isolated from konjac flour was composed of d-glucose and d-mannose residues in the approximate ratio of 1: 1.6. Controlled acid hydrolysis gave 4-O-β-d-mannopyranosyl-d-mannose, 4-O-β-d-mannopyranosyl-d-glucoseT 4-O-β-d-glucopyranosyl-d-glucose(cellobiose), 4-O-β-d-glucopyranosyl-d-mannose(epicellobiose), O-β-d-mannopyranosyl-(1→4)-O-β-d-mannopyranosyl-(1→4)-d-mannose, O-β-d-glucopyranosyl- (1→4)-O-β-d-mannopyranosyl-(1→4)-d-mannose, O-β-d-mannopyranosyl-(1→4)-O-β-d-glucopy- ranosyl-(1→4)-d-mannose and O-β-d-glucopyranosyl-(1→4)-O-β-d-glucopyranosyl-(1→4)-d-mannose.  相似文献   

17.
To investigate the substrate specificity of β-l-rhamnosidase, the following β-l-rhamnopyranosides were synthesized: 1-(β-l-rhamnopyranosyl)-dl-glycerol (1), methyl β-l-rhamnopyranoside (2), methyl 2-O-(β-l-rhamnopyranosyl)-β-d-glucopyranoside (3) and methyl 2-O-β(β-l-rhamnopyranosyl)-α-l-arabinopyranoside (4). The synthesis of 3 was performed using l-quinovose with neighboring group participation, which lead stereoselectively to the β-l-quinovoside. The 2-OH of the l-quinovo-unit was selectively deblocked, oxidized to the keto group, and then stereoselectively reduced, whereby 3 was produced.  相似文献   

18.
N-Acetyl-6-O-phosphono-muramoyl-l-alanyl-d-isoglutamine methyl ester and a variety of its 1-α-O-acyl derivatives were synthesized from benzyl 2-acetamido-2-deoxy-3-O-[d-1-(methoxycar-bonyl)ethyl]-β-d-glucopyranoside. Their immunoadjuvant activity in guinea-pigs was examined.  相似文献   

19.
Abstract

1-O-Acetyl-2,3,5-tri-O-benzyl-4-thio-L-lyxofuranose 1 was transformed into O-benzyl- and O-acetyl-protected 1-(4-thio-L-lyxofuranosyl) nucleoside derivatives by use of the TMSOTf method. Debenzylation with boron tribromide or deacetylation with sodium methoxide yielded the corresponding pyrimidine (711, 17, 18, 26 and 27) and purine (29 and 34) nucleoside analogues. The anomeric configurations were determined by NMR spectroscopy and, in the case of the 5-halo- (79) and nitrouridine derivative 11 and the 6-methylcytidine derivative 27, by X-ray structural analyses. – The unprotected nucleosides were not antivirically inhibitory at 250 µM.  相似文献   

20.
Enzymatic transglycosylation using four possible monodeoxy analogs of p-nitrophenyl α-D-glucopyranoside (Glcα-O-pNP), modified at the C-2, C-3, C-4, and C-6 positions (2D-, 3D-, 4D-, and 6D-Glcα-O-pNP, respectively), as glycosyl donors and six equivalents of ethyl β-D-thioglucopyranoside (Glcβ-S-Et) as a glycosyl acceptor, to yield the monodeoxy derivatives of glucooligosaccharides were done. The reaction was catalyzed using purified Aspergillus niger α-glucosidase in a mixture of 50 mM sodium acetate buffer (pH 4.0)/CH3CN (1: 1 v/v) at 37°C. High activity of the enzyme was observed in the reaction between 2D-Glcα-O-pNP and Glcβ-S-Et to afford the monodeoxy analogs of ethyl β-thiomaltoside and ethyl β-thioisomaltoside that contain a 2-deoxy α-D-glucopyranose moiety at their glycon portions, namely ethyl 2-deoxy-α-D-arabino-hexopyranosyl-(1,4)-β-D-thioglucopyranoside and ethyl 2-deoxy-α-D-arabino-hexopyranosyl-(1,6)-β-D-thioglucopyranoside, in 6.72% and 46.6% isolated yields (based on 2D-Glcα-O-pNP), respectively. Moreover, from 3D-Glcα-O-pNP and Glcβ-S-Et, the enzyme also catalyzed the synthesis of the 3-deoxy analog of ethyl β-thioisomaltoside that was modified at the glycon α-D-glucopyranose moiety, namely ethyl 3-deoxy-α-D-ribo-hexopyranosyl-(1,6)-β-D-thioglucopyranoside, in 23.0% isolated yield (based on 3D-Glcα-O-pNP). Products were not obtained from the enzymatic reactions between 4D- or 6D-Glcα-O-pNP and Glcβ-S-Et.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号