首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
N. Berne  T. Fabryova  B. Istaz  P. Cardol  B. Bailleul 《BBA》2018,1859(7):491-500
In changing light conditions, photosynthetic organisms develop different strategies to maintain a fine balance between light harvesting, photochemistry, and photoprotection. One of the most widespread photoprotective mechanisms consists in the dissipation of excess light energy in the form of heat in the photosystem II antenna, which participates to the Non Photochemical Quenching (NPQ) of chlorophyll fluorescence. It is tightly related to the reversible epoxidation of xanthophyll pigments, catalyzed by the two enzymes, the violaxanthin deepoxidase and the zeaxanthin epoxidase. In Phaeomonas sp. (Pinguiophyte, Stramenopiles), we show that the regulation of the heat dissipation process is different from that of the green lineage: the NPQ is strictly proportional to the amount of the xanthophyll pigment zeaxanthin and the xanthophyll cycle enzymes are differently regulated. The violaxanthin deepoxidase is already active in the dark, because of a low luminal pH, and the zeaxanthin epoxidase shows a maximal activity under moderate light conditions, being almost inactive in the dark and under high light. This light-dependency mirrors the one of NPQ: Phaeomonas sp. displays a large NPQ in the dark as well as under high light, which recovers under moderate light. Our results pinpoint zeaxanthin epoxidase activity as the prime regulator of NPQ in Phaeomonas sp. and therefore challenge the deepoxidase-regulated xanthophyll cycle dogma.  相似文献   

2.
Li Y  Walton DC 《Plant physiology》1987,85(4):910-915
Experiments were designed to obtain evidence about the possible role of xanthophylls as abscisic acid (ABA) precursors in water-stressed leaves of Phaseolus vularis L. Leaves were exposed to 14CO2 and the specific activities of several major leaf xanthophylls and stress-induced ABA were determined after a chase in 12CO2 for varying periods of time. The ABA specific radioactivities were about 30 to 70% of that of lutein and violaxanthin regardless of the chase period. The specific activity of neoxanthin, however, was only about 15% of that of ABA. The effects of fluridone on xanthophyll and ABA levels and the extent of labeling of both from 14CO2 were determined. Fluridone did not inhibit the accumulation of ABA when leaves were stressed once, although subsequent stresses in the presence of fluridone did lead to a reduced ABA accumulation. The incorporation of 14C from 14CO2 into ABA and the xanthophylls was inhibited by fluridone and to about the same extent. The incorporation of 18O into ABA from violaxanthin which had been labeled in situ by means of the violaxanthin cycle was measured. The results indicated that a portion of the ABA accumulated during stress was formed from violaxanthin which had been labeled with 18O. The results of these experiments are consistent with a preformed xanthophyll(s) as the major ABA precursor in water-stressed bean leaves.  相似文献   

3.
Non-photochemical fluorescence quenching (NPQ) is mainly associated with the transthylakoid proton gradient (ΔpH) and xanthophyll cycle. However, the exact mechanism of NPQ is different in different oxygenic photosynthetic organisms. In this study, several inhibitors were used to study NPQ kinetics in the sea ice alga Chlamydomonas sp. ICE-L and to determine the functions of ΔpH and the xanthophyll cycle in the NPQ process. NH4Cl and nigericin, uncouplers of ΔpH, inhibited NPQ completely and zeaxanthin (Z) was not detected in 1 mM NH4Cl-treated samples. Moreover, Z and NPQ were increased in the samples containing N,N’-dicyclohexyl-carbodiimide (DCCD) under low light conditions. We conclude that ΔpH plays a major role in NPQ, and activation of the xanthophyll cycle is related to ΔpH. In dithiothreitol (DTT)-treated samples, no Z was observed and NPQ decreased. NPQ was completely inhibited when NH4Cl was added suggesting that part of the NPQ process is related to the xanthophyll cycle and the remainder depends on ΔpH. Moreover, lutein and β-carotene were also essential for NPQ. These results indicate that NPQ in the sea ice alga Chlamydomonas sp. ICE-L is mainly dependent on ΔpH which affects the protonation of PSII proteins and de-epoxidation of the xanthophyll cycle, and the transthylakoid proton gradient alone can induce NPQ.  相似文献   

4.
Plants protect themselves from excess absorbed light energy through thermal dissipation, which is measured as nonphotochemical quenching of chlorophyll fluorescence (NPQ). The major component of NPQ, qE, is induced by high transthylakoid ΔpH in excess light and depends on the xanthophyll cycle, in which violaxanthin and antheraxanthin are deepoxidized to form zeaxanthin. To investigate the xanthophyll dependence of qE, we identified suppressor of zeaxanthin-less1 (szl1) as a suppressor of the Arabidopsis thaliana npq1 mutant, which lacks zeaxanthin. szl1 npq1 plants have a partially restored qE but lack zeaxanthin and have low levels of violaxanthin, antheraxanthin, and neoxanthin. However, they accumulate more lutein and α-carotene than the wild type. szl1 contains a point mutation in the lycopene β-cyclase (LCYB) gene. Based on the pigment analysis, LCYB appears to be the major lycopene β-cyclase and is not involved in neoxanthin synthesis. The Lhcb4 (CP29) and Lhcb5 (CP26) protein levels are reduced by 50% in szl1 npq1 relative to the wild type, whereas other Lhcb proteins are present at wild-type levels. Analysis of carotenoid radical cation formation and leaf absorbance changes strongly suggest that the higher amount of lutein substitutes for zeaxanthin in qE, implying a direct role in qE, as well as a mechanism that is weakly sensitive to carotenoid structural properties.  相似文献   

5.
Li Y  Walton DC 《Plant physiology》1990,92(3):551-559
The leaves of dark-grown bean (Phaseolus vulgaris L.) seedlings accumulate considerably lower quantities of xanthophylls and carotenes than do leaves of light-grown seedlings, but they synthesize at least comparable amounts of abscisic acid (ABA) and its metabolites when water stressed. We observed a 1:1 relationship on a molar basis between the reduction in levels of violaxanthin, 9′-cis-neoxanthin, and 9-cis-violaxanthin and the accumulation of ABA, phaseic acid, and dihydrophaseic acid, when leaves from dark-grown plants were stressed for 7 hours. Early in the stress period, reductions in xanthophylls were greater than the accumulation of ABA and its metabolites, suggesting the accumulation of an intermediate which was subsequently converted to ABA. Leaves which were detached, but not stressed, did not accumulate ABA nor were their xanthophyll levels reduced. Leaves from plants that had been sprayed with cycloheximide did not accumulate ABA when stressed, nor were their xanthophyll levels reduced significantly. Incubation of dark-grown stressed leaves in an 18O2-containing atmosphere resulted in the synthesis of ABA with levels of 18O in the carboxyl group that were virtually identical to those observed in light-grown leaves. The results of these experiments indicate that violaxanthin is an ABA precursor in stressed dark-grown leaves, and they are used to suggest several possible pathways from violaxanthin to ABA.  相似文献   

6.
Eustigmatophyte algae represent an interesting model system for the study of the regulation of the excitation energy flow due to their use of violaxanthin both as a major light-harvesting pigment and as the basis of xanthophyll cycle. Fluorescence induction kinetics was studied in an oleaginous marine alga Nannochloropsis oceanica. Nonphotochemical fluorescence quenching was analyzed in detail with respect to the state of the cellular xanthophyll pool. Two components of nonphotochemical fluorescence quenching (NPQ), both dependent on the presence of zeaxanthin, were clearly resolved, denoted as slow and fast NPQ based on kinetics of their formation. The slow component was shown to be in direct proportion to the amount of zeaxanthin, while the fast NPQ component was transiently induced in the presence of membrane potential on subsecond timescales. The applicability of these observations to other eustigmatophyte species is demonstrated by measurements of other representatives of this algal group, both marine and freshwater.  相似文献   

7.
Changes in actual efficiency of PS II photochemistry, non-photochemical quenching (NPQ), content of xanthophylls and kinetics of de-epoxidation were studied in ABA-fed and non-ABA-fed leaves of rice and cabbage under NaCl stress. Salt stress induced more progressive decrease in actual efficiency of PS II photochemistry (ФPS II), higher reduction state of PS II, and a small significant increase in NPQ in NaCl-sensitive rice plants as compared with NaCl-tolerant cabbage plants, whereas exogenously supplied ABA alleviated the decrease in actual efficiency of PS II photochemistry (ФPS II), induced a lower reduction state of PS II, and caused higher capacity of NPQ in ABA-fed plants than in non-ABA-fed plants. As a result, there were higher activities of photosynthetic electron transport, higher capacity of energy dissipation, and lower cumulation of excess light in cabbage than in rice plants, and in ABA-fed leaves than in non-ABA-fed leaves. The effect of ABA was more efficient in cabbage than in rice plants. Addition of exogenous ABA resulted in enhancement of the size of the xanthophyll cycle pool, promotion of de-epoxidation of the xanthophyll cycle components, and a rise in the level of NPQ by altering the kinetics of de-epoxidation of the xanthophyll cycle. Protection from photodamage appears to be achieved by coordinated contributions by exogenous ABA and xanthophyll cycle-mediated NPQ. This variety of photoprotective mechanisms may be essential for conferring photodamage tolerance under NaCl stress.  相似文献   

8.
Changes in the photobiology and photosynthetic pigments of the seagrass Zostera marina from Chesapeake Bay (USA) were examined under a range of natural and manipulated irradiance regimes. Photosynthetic activity was assessed using chlorophyll-a fluorescence, and photosynthetic pigments were measured by HPLC. Large changes in the violaxanthin, zeaxanthin, and antheraxanthin content were concomitant with the modulation of non-photochemical quenching (NPQ). Photokinetics (Fv/Fm, rapid light curves (RLC), and non-photochemical quenching) varied as a result of oscillating irradiance and were highly correlated to xanthophyll pigment content. Zeaxanthin and antheraxanthin concentrations increased under elevated light conditions, while violaxanthin increased in darkened conditions. Unusually high concentrations of antheraxanthin were found in Z. marina under a wide range of light conditions, and this was associated with the partial conversion of violaxanthin to zeaxanthin. These results support the idea that xanthophyll intermediate pigments induce a photoprotective response during exposure to high irradiances in this seagrass.  相似文献   

9.
In this work we characterize the changes induced by iron deficiency in the pigment composition of sugar beet (Beta vulgaris L.) leaves. When sugar beet plants were grown hydroponically under limited iron supply, neoxanthin and β-carotene decreased concomitantly with chlorophyll a, whereas lutein and the carotenoids within the xanthophyll cycle were less affected. Iron deficiency caused major increases in the lutein/chlorophyll a and xanthophyll cycle pigments/chlorophyll a molar ratios. Xanthophyll cycle carotenoids in Fe-deficient plants underwent epoxidations and de-epoxidations in response to ambient light conditions. In dark adapted Fe-deficient plants most of the xanthophyll cycle pigment pool was in the epoxidated form violaxanthin. We show, both by HPLC and by in vivo 505 nanometers absorbance changes, that in Fe deficient plants and in response to light, the de-epoxidated forms antheraxanthin and zeaxanthin were rapidly formed at the expense of violaxanthin. Several hours after returning to dark, the xanthophyll cycle was shifted again toward violaxanthin. The ratio of variable to maximum chlorophyll fluorescence from intact leaves was decreased by iron deficiency. However, in iron deficient leaves this ratio was little affected by light conditions which displace the xanthophyll cycle toward epoxidation or de-epoxidation. This suggests that the functioning of the xanthophyll cycle is not necessarily linked to protection against excess light input.  相似文献   

10.
Arabidopsis plants overexpressing beta-carotene hydroxylase 1 accumulate over double the amount of zeaxanthin present in wild-type plants. The final amplitude of non-photochemical quenching (NPQ) was found to be the same in these plants, but the kinetics were different. The formation and relaxation of NPQ consistently correlated with the de-epoxidation state of the xanthophyll cycle pool and not the amount of zeaxanthin. These data indicate that zeaxanthin and violaxanthin antagonistically regulate the switch between the light harvesting and photoprotective modes of the light harvesting system and show that control of the xanthophyll cycle pool size is necessary to optimize the kinetics of NPQ.  相似文献   

11.
Seven-day-old kidney bean and cabbage seedlings were treated with 0.1–0.3 M NaCl solutions for 3 days. Chlorophyll content decreased in NaCl-treated Phaseolus seedlings, but did not significantly decrease in Brassica seedlings. Photochemical efficiency of photosystem II at dark-adapted state was similar in both Phaseolus and Brassica. The de-epoxidation state of violaxanthin increased more than sixfold in Phaseolus but showed no significant change in Brassica seedlings during NaCl treatment under low light. Maximum de-epoxidation state of violaxanthin in vivo tested in high light (2000 μmol quanta/(m2 s) increased in salt-stressed Phaseolus but decreased in Brassica seedlings. The nonphotochemical quenching (NPQ) also increased in Phaseolus but decreased in Brassica. This suggests that xanthophyll cycle pigments influence the NPQ in both Phaseolus and Brassica, but in an opposite way. The increase in the de-epoxidation state of violaxanthin in salt-stressed Phaseolus even under low light may be considered an early light signal to protect the pigment-protein complexes from salt-stress induced photodamage. It is proposed that in salt-stressed Brassica, the de-epoxidation is retarded and/or the epoxidation is accelerated leading to the accumulation of violaxanthin and a lower de-epoxidation state. Thus, light-induced violoxanthin cycle operation largely controls the photoprotection of photosynthetic apparatus in kidney bean leaves. Published in Russian in Fiziologiya Rastenii, 2006, Vol. 53, No. 1, pp. 113–121. The text was submitted by the authors in English.  相似文献   

12.
Xanthophylls as modulators of membrane protein function   总被引:1,自引:0,他引:1  
This review discusses the structural aspect of the role of photosynthetic antenna xanthophylls. It argues that xanthophyll hydrophobicity/polarity could explain the reason for xanthophyll variety and help to understand their recently emerging function - control of membrane organization and the work of membrane proteins. The structure of a xanthophyll molecule is discussed in relation to other amphiphilic compounds like lipids, detergents, etc. Xanthophyll composition of membrane proteins, the role of their variety in protein function are discussed using as an example for the major light harvesting antenna complex of photosystem II, LHCII, from higher plants. A new empirical parameter, hydrophobicity parameter (H-parameter), has been introduced as an effective measure of the hydrophobicity of the xanthophyll complement of LHCII from different xanthophyll biosynthesis mutants of Arabidopsis. Photosystem II quantum efficiency was found to correlate well with the H-parameter of LHCII xanthophylls. PSII down-regulation by non-photochemical chlorophyll fluorescence quenching, NPQ, had optimum corresponding to the wild-type xanthophyll composition, where lutein occupies intrinsic sites, L1 and L2. Xanthophyll polarity/hydrophobicity alteration by the activity of the xanthophyll cycle explains the allosteric character of NPQ regulation, memory of illumination history and the hysteretic nature of the relationship between the triggering factor, ΔpH, and the energy dissipation process.  相似文献   

13.
Nonphotochemical quenching (NPQ) is the photoprotective dissipation of energy in photosynthetic membranes. The hypothesis that the DeltapH-dependent component of NPQ (qE) component of non-photochemical quenching is controlled allosterically by the xanthophyll cycle has been tested using Arabidopsis mutants with different xanthophyll content and composition of Lhcb proteins. The titration curves of qE against DeltapH were different in chloroplasts containing zeaxanthin or violaxanthin, proving their roles as allosteric activator and inhibitor, respectively. The curves differed in mutants deficient in lutein and specific Lhcb proteins. The results show that qE is determined by xanthophyll occupancy and the structural interactions within the antenna that govern allostericity.  相似文献   

14.
Here the mechanisms involved in excitation energy dissipation of Macrocystis pyrifera were characterized to explain the high nonphotochemical quenching of chlorophyll a (Chla) fluorescence (NPQ) capacity of this alga. We performed a comparative analysis of NPQ and xanthophyll cycle (XC) activity in blades collected at different depths. The responses of the blades to dithiothreitol (DTT) and to the uncoupler NH4Cl were also assayed. The degree of NPQ induction was related to the amount of zeaxanthin synthesized in high light. The inhibition of zeaxanthin synthesis with DTT blocked NPQ induction. A slow NPQ relaxation upon the addition of NH4Cl, which disrupts the transthylakoid proton gradient, was detected. The slow NPQ relaxation took place only in the presence of de-epoxidated XC pigments and was related to the epoxidation of zeaxanthin. These results indicate that in M. pyrifera, in contrast to higher plants, the transthylakoid proton gradient alone does not induce NPQ. The role of this gradient seems to be related only to the activation of the violaxanthin de-epoxidase enzyme.  相似文献   

15.
The objective of this study was to investigate whether abscisic acid (ABA), a second messenger in chilling stress responses, is involved in brassinosteroids (BRs)-induced chilling tolerance in suspension cultured cells from Chorispora bungeana. The suspension cells were treated with 24-epibrassinolide (EBR), ABA, ABA biosynthesis inhibitor fluridone (Flu) and EBR in combination with Flu. Their effects on chilling tolerance, reactive oxygen species (ROS) levels and antioxidant defense system were analyzed. The results showed that EBR treatment markedly alleviated the decrease of cell viability and the increases of ion leakage and lipid peroxidation induced by chilling stress, suggesting that application of EBR could improve the chilling tolerance of C. bungeana suspension cultures. In addition, similar results were observed when exogenous ABA was applied. Treatment with Flu alone and in combination with EBR significantly suppressed cell viability and increased ion leakage and lipid peroxidation under low temperature conditions, indicating that the inhibition of ABA biosynthesis could decrease the chilling tolerance of C. bungeana suspension cultures and the EBR-enhanced chilling tolerance. Further analyses showed that EBR and ABA enhanced antioxidant defense and slowed down the accumulation of ROS caused by chilling. However, Flu application differentially blocked these protective effects of EBR. Moreover, EBR was able to mimic the effect of ABA by markedly increasing ABA content in the suspension cells under chilling conditions, whereas the EBR-induced ABA accumulation was inhibited by the addition of Flu. Taken together, these results demonstrate that EBR may confer chilling tolerance to C. bungeana suspension cultured cells by enhancing the antioxidant defense system, which is partially mediated by ABA, resulting in preventing the overproduction of ROS to alleviate oxidative injury induced by chilling.  相似文献   

16.
Photosynthesis, photosystem II (PSII) photochemistry, photoinhibition and the xanthophyll cycle in the senescent flag leaves of wheat (Triticum aestivum L.) plants grown in the field were investigated. Compared to the non-senescent leaves, photosynthetic capacity was significantly reduced in senescent flag leaves. The light intensity at which photosynthesis was saturated also declined significantly. The light response curves of PSII photochemistry indicate that a down-regulation of PSII photochemistry occurred in senescent leaves in particular at high light. The maximal efficiency of PSII photochemistry in senescent flag leaves decreased slightly when measured at predawn but substantially at midday, suggesting that PSII function was largely maintained and photoinhibition occurred in senescent leaves when exposed to high light. At midday, PSII efficiency, photochemical quenching and the efficiency of excitation capture by open PSII centers decreased considerably, while non-photochemical quenching increased significantly. Moreover, compared with the values at early morning, a greater decrease in CO2 assimilation rate was observed at midday in senescent leaves than in control leaves. The levels of antheraxanthin and zeaxanthin via the de-epoxidation of violaxanthin increased in senescent flag leaves from predawn to midday. An increase in the xanthophyll cycle pigments relative to chlorophyll was observed in senescent flag leaves. The results suggest that the xanthophyll cycle was activated in senescent leaves due to the decrease in CO2 assimilation capacity and the light intensity for saturation of photosynthesis and that the enhanced formation of antheraxanthin and zeaxanthin at high light may play an important role in the dissipation of excess light energy and help to protect photosynthetic apparatus from photodamage. Our results suggest that the well-known function of the xanthophyll cycle to safely dissipate excess excitation energy is also important for maintaining photosynthetic function during leaf senescence.  相似文献   

17.
Non-photochemical quenching (NPQ) is a fast acting photoprotective response to high light stress triggered by over excitation of photosystem II. The mechanism for NPQ in the globally important diatom algae has been principally attributed to a xanthophyll cycle, analogous to the well-described qE quenching of higher plants. This study compared the short-term NPQ responses in two pennate, benthic diatom species cultured under identical conditions but which originate from unique light climates. Variable chlorophyll fluorescence was used to monitor photochemical and non-photochemical excitation energy dissipation during high light transitions; whereas whole cell steady state 77 K absorption and emission were used to measure high light elicited changes in the excited state landscapes of the thylakoid. The marine shoreline species Nitzschia curvilineata was found to have an antenna system capable of entering a deeply quenched, yet reversible state in response to high light, with NPQ being highly sensitive to dithiothreitol (a known inhibitor of the xanthophyll cycle). Conversely, the salt flat species Navicula sp. 110-1 exhibited a less robust NPQ that remained largely locked-in after the light stress was removed; however, a lower amplitude, but now highly reversible NPQ persisted in cells treated with dithiothreitol. Furthermore, dithiothreitol inhibition of NPQ had no functional effect on the ability of Navicula cells to balance PSII excitation/de-excitation. These different approaches for non-photochemical excitation energy dissipation are discussed in the context of native light climate.  相似文献   

18.
 为了探讨温度和光强是如何影响离体紫黄质脱环氧化酶(VDE)活性, 阐明依赖叶黄素循环的热耗散与VDE活性关系, 该文以小麦(Triticum aestivum)为材料, 研究了不同光强(200、500、900和1 200 μmol&;#8226;m–2&;#8226;s–1)和不同温度(4、25、38和45 ℃) 交叉处理对小麦叶片VDE活性以及依赖叶黄素循环热耗散能力的影响。结果表明: 小麦叶片VDE活性在30 ℃最高, 说明30 ℃是小麦叶片VDE体外条件下的最适温度; 不同光强处理下小麦叶片VDE活性基本一致。与室温(25 ℃)处理的叶片相比, 低温(4 ℃)处理的叶片VDE活力没有明显下降, 而高温(45 ℃)处理则导致了叶片VDE活性急剧下降。小麦叶片热耗散(NPQ)以及依赖叶黄素循环的热耗散(qE)均随着处理光强的增加不断上升, 而qE/NPQ则随光强增加略微下降, 在1 200 μmol&;#8226;m–2&;#8226;s–1光强条件下qE/NPQ则急剧下降。该研究揭示VDE活性与依赖叶黄素循环热耗散能力的指标qE/NPQ的变化有一定的相关性, 但不完全一致。并针对此问题进行了讨论。  相似文献   

19.
In aquatic ecosystems, the superimposition of mixing events to the light diel cycle exposes phytoplankton to changes in the velocity of light intensity increase, from diurnal variations to faster mixing-related ones. This is particularly true in coastal waters, where diatoms are dominant. This study aims to investigate if coastal diatoms differently activate the photoprotective responses, xanthophyll cycle (XC) and non-photochemical fluorescence quenching (NPQ), to cope with predictable light diel cycle and unpredictable mixing-related light variations. We compared the effect of two fast light intensity increases (simulating mixing events) with that of a slower increase (corresponding to the light diel cycle) on the modulation of XC and NPQ in the planktonic coastal diatom Pseudo-nitzschia multistriata. During each light treatment, the photon flux density (PFD) progressively increased from darkness to five peaks, ranging from 100 to 650 µmol photons m−2 s−1. Our results show that the diel cycle-related PFD increase strongly activates XC through the enhancement of the carotenoid biosynthesis and induces a moderate and gradual NPQ formation over the light gradient. In contrast, during mixing-related PFD increases, XC is less activated, while higher NPQ rapidly develops at moderate PFD. We observe that together with the light intensity and its increase velocity, the saturation light for photosynthesis (Ek) is a key parameter in modulating photoprotection. We propose that the capacity to adequately regulate and actuate alternative photoprotective ‘safety valves’ in response to changing velocity of light intensity increase further enhances the photophysiological flexibility of diatoms. This might be an evolutionary outcome of diatom adaptation to turbulent marine ecosystems characterized by unpredictable mixing-related light changes over the light diel cycle.  相似文献   

20.
《BBA》2020,1861(2):148117
The xanthophyll cycle is a regulatory mechanism operating in the photosynthetic apparatus of plants. It consists of the conversion of the xanthophyll pigment violaxanthin to zeaxanthin, and vice versa, in response to light intensity. According to the current understanding, one of the modes of regulatory activity of the cycle is associated with the influence on a molecular organization of pigment-protein complexes. In the present work, we analyzed the effect of violaxanthin and zeaxanthin on the molecular organization of the LHCII complex, in the environment of membranes formed with chloroplast lipids. Nanoscale imaging based on atomic force microscopy (AFM) showed that the presence of exogenous xanthophylls promotes the formation of the protein supramolecular structures. Nanoscale infrared (IR) absorption analysis based on AFM-IR nanospectroscopy suggests that zeaxanthin promotes the formation of LHCII supramolecular structures by forming inter-molecular β-structures. Meanwhile, the molecules of violaxanthin act as “molecular spacers” preventing self-aggregation of the protein, potentially leading to uncontrolled dissipation of excitation energy in the complex. This latter mechanism was demonstrated with the application of fluorescence lifetime imaging microscopy. The intensity-averaged chlorophyll a fluorescence lifetime determined in the LHCII samples without exogenous xanthophylls at the level of 0.72 ns was longer in the samples containing exogenous violaxanthin (2.14 ns), but shorter under the presence of zeaxanthin (0.49 ns) thus suggesting a role of this xanthophyll in promotion of the formation of structures characterized by effective excitation quenching. This mechanism can be considered as a representation of the overall photoprotective activity of the xanthophyll cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号