首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
为观察小鼠组织中过氧化氢酶的活性与年龄的关系,采用高锰酸钾滴定法测定不同年龄(1、4、18月龄)小鼠肝、肾、肺、心、脾、胃、脑组织中过氧化氢酶的活性。结果显示:小鼠过氧化氢酶在不同组织中活性不同,活性高低顺序基本表现为:肝>肾>肺>心、脾、胃>脑;小鼠肺、心、脾、胃、脑各组织中过氧化氢酶的活性在1~4月龄间随年龄增加而增加,在4~18月龄间随年龄增加而降低;小鼠肝、肾组织中过氧化氢酶的活性在1~4月龄间与年龄相关性不显著,在4~18月龄间随年龄增加而降低。结果表明,小鼠肝、肾、肺、心、脾、胃、脑等组织中过氧化氢酶的活性随年龄变化而变化,机体过氧化氢酶活性的降低与机体衰老密切相关。  相似文献   

3.
The contents of hexoses and hexosamines in brain, liver, and kidney of streptozotocin diabetic mice are significantly increased in comparison to the controls. These differences for hexoses contents in the heart are not significant. N-acetyl-beta-D-glucosaminidase and beta-D-glucosidase activities in brain, liver and kidney of diabetic mice are significantly higher when compared to the controls. However, beta-D-galactosidase activity is significantly lower in brain, liver, spleen and kidney of the diabetic mice, in comparison to the controls and similar in heart. alpha-D-Mannosidase activity of diabetic mice is significantly increased in spleen and heart and significantly decreased in liver and kidney. alpha-L-Fucosidase of diabetic mice shows higher activities, with significant differences, in liver and spleen; however, in heart and kidney the activities are significantly lower. Brain sialyltransferase and galactosyltransferase activities are significantly increased in diabetic mice; but for heart and kidney these differences are not significant. The activity for brain and kidney fucosyltransferase is not significant and that for the other assayed organs is significantly higher in comparison to the controls.  相似文献   

4.
Lysosomal proteases are actively involved into pathogenesis of malignant tumors. Impairments in the interaction between proteases and their inhibitors are implicated in the processes of tumor invasion and metastasis. Among proteases associated with malignant growth, cysteine cathepsins B and L and aspartic cathepsin D are considered to play the major role in the tumor development. The present study was designed to investigate the activity of cathepsins B, L, and D during the development and treatment of murine experimental leukemias and to determine correlation between these proteases and course of pathological process as well as efficiency of the chemotherapeutic treatment. P-388 leukemia was characterized by a more aggressive development and unfavorable prognosis than L1210/1 leukemia. In mice with P-388 leukemia the activity of lysosomal cathepsins B, D, and L in the tumor tissue, liver and spleen, as well as the activity of cathepsins B and L in serum were lower than activities of these enzymes in mice with L1210/1 leukemia. Changes in the activity of cathepsins in liver and spleen of leukemic mice reflected a level of aggressiveness of the tumor development and invasion of these organs with tumor cells. Treatment of these experimental leukemias resulted in the increase of cathepsin B, L and D activity in the tumor tissue, liver, spleen and the increase in cathepsin B and L activity in serum. The highest protease activity was detected in the groups of mice characterized by the highest inhibition of the tumor growth. These data demonstrate that lysosomal proteases are involved in the progression of murine experimental leukemias and elimination of tumor cells in the result of treatment. Thus, determination of the activity of cysteine and aspartic proteases can be used for evaluation of cancer malignancy, tumor sensitivity for chemotherapy and efficiency of treatment.  相似文献   

5.
Effect of cigarette smoke on lipid peroxidation (LPX) and antioxidant enzymes like catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and glutathione-S-transferase (GST) in various organs like brain, heart, lung, liver and kidney of the albino rats exposed to cigarette smoke for 30 min/day for a period of 30 days were assayed. It was observed that the lipid peroxide levels in liver, lung and kidney were enhanced in case of animals exposed to cigarette smoke, whereas brain and heart did not show any change as compared to control animals. The activity of the antioxidant enzymes was also elevated in liver, lung and kidney of the test animals whereas, brain and heart did not show any change in the activities of all of these antioxidant enzymes except glutathione-s-transferase which was increased in brain also. The level of reduced glutathione (GSH) was lowered in liver, lung and kidney of the tested animals when compared with the control animals but there was no significant change in brain and heart. The results of our study suggest that cigarette smoke induces lipid peroxidation in liver, lung and kidney, and the antioxidant enzymes levels were enhanced in order to protect these tissues against the deleterious effect of the oxygen derived free radicals. The depletion of reduced glutathione in these organs could be due to it's utilization by the tissues to mop off the free radicals.  相似文献   

6.
7.
Total and specific activity of cathepsin D (EC. 3.4.23.5) were measured in rat liver and brain from 1 to 98 days of age. The activity of cathepsin D in the liver of adult and newborn rats was the same while in the rat brain it was higher in adult than in newborn rats. In the liver maximum specific activity of cathepsin D occurred on the 10th postnatal day and minimum on the fourth day of age. In the brain maximum specific activity of the enzyme occurred on the 14th postnatal day. Total activity of cathepsin D increased after birth in rat liver and brain. These results are discussed in relation to the functional role of cathepsin D in the rat liver and the brain.  相似文献   

8.
From soluble extract of rat kidney we have previously identified an endothelin degradation enzyme that rapidly and specifically cleaves off the C-terminal tryptophan of endothelin-1, resulting in a peptide that is three orders of magnitude weaker in potency than endothelin-1 in causing smooth muscle contraction. The tissue distribution of this enzyme was examined, and the soluble extracts of rat kidney were found to contain the highest enzyme activity, followed by the spleen and the liver. In contrast, no enzyme activity was detected in the soluble extracts of brain, heart, and lung. The biochemical properties of the partially purified enzyme from kidney were further investigated. The optimal pH of the enzyme was between 5 and 7. The endothelin degrading activity was effectively blocked by thiol protease inhibitors such as benzyloxycarbonyl-Phe-Ala-diazomethyl ketone and p-hydroxymercuribenzoic acid, as well as by phenylmethylsulfonyl fluoride, but not by metalloprotease and other serine protease inhibitors. This enzyme displayed a clear difference in substrate specificity when compared with other thiol proteases such as cathepsin B, cathepsin H, and cathepsin L, known to be present in the kidney. These results suggest that a novel protease with endothelin degrading activity is widely distributed in a number of tissues.  相似文献   

9.
Two unique cathepsin D-type proteases apparently present only in rat thoracic duct lymphocytes and in rat lymphoid tissues are described. One, termed H enzyme, has an apparent molecular weight of similar to95,000; the other, termed L enzyme, has an apparent molecular weight of similar to45,000, in common with that of most cathepsins D from other tissues and species. Both enzymes differ from cathepsin D, however, by a considerably greater sensitivity to inhibition by pepstatin and by a smaller degree of inhibition by an antiserum which inhibits rat liver cathepsin D. H enzyme is converted to L enzyme by treatment with beta-mercaptoethanol; the relationship between the two enzymes remains unknown. H and L enzyme have been detected in rat lymphoid tissues and in mouse spleen, but they are not present in other rat tissues (liver, kidney, adrenals), rabbit tissues, calf thymus, bovine spleen, or human tonsils. As measured on acid-denatured bovine hemoglobin as substrate, both enzymes have pH activity curves identical with that of rat liver cathepsin D, with optimal activity at pH 3.6. Activity on human serum albumin is much less and also shows an optimum at pH 3.6; hence, neither enzyme has the properties of cathepsin E. Thiol-reactive inhibitiors have no effect on the activity of H and L enzyme; thus they do not belong to the B group of cathepsins. Additional information, discussed in this paper, leads us to conclude that partially purified H and L enzymes are cathepsin D-type proteases.  相似文献   

10.
The developmental pattern in experimental rat granuloma tissue and the distribution in the tissues of a few animals (monkey, rabbit, guinea pig anrat) of a peptidase acting on a synthetic collagenase substrate, 4-phenylazobenzyloxycarbonyl-L-Pro-L-Leu-Gly-L-Pro-D-Arg (Pz-peptide) has been studied. Maximum enzyme activity was found in 4-month-old rats and on the fourth day of implantation of the cotton wick. Pz-peptidase appears to have a ubiquitous distribution in animal tissues; the highest enzyme activity was generally found in liver, intestine and kidney of the animals. The total activity in other organs (spleen, heart, lungs and brain) was much less compared to that of liver, intestine or kidney.  相似文献   

11.
The concentrations of cathepsins B and H in various tissues and peripheral blood cells of rats were determined by means of sensitive immunoassays. The minimum detectable amounts of cathepsins B and H were 30 pg and 20 pg/assay, respectively, and the presence of endogenous thiol proteinase inhibitors did not interfere with the immunoassays. Cathepsin B was found at high levels in the kidney, vagina, spleen, and adrenal gland, and cathepsin H at high levels in the kidney, vagina, liver, lung, and spleen. Low levels of cathepsins B and H were present in the heart, skeletal muscle, and testis. The ratios of cathepsins B and H in various organs were different: the brain and adrenal gland contained much higher levels of cathepsin B than of cathepsin H, whereas the lung and liver contained higher levels of cathepsin H than of cathepsin B. In several organs such as the kidney, spleen, liver, and lungs, the level of cathepsins B plus H was much higher than that of thiol proteinase inhibitors (TPI-alpha + TPI-beta), whereas in tissues containing large amounts of TPI-alpha, such as the skin, esophagus and stomach, the level of inhibitors was higher than that of cathepsins B plus H. Of the peripheral blood cells tested, macrophages had the highest contents of cathepsins B and H, and so their level of cathepsins B plus H was much higher than that of TPI-alpha plus TPI-beta, whereas lymphocytes and neutrophils contained comparable amounts of proteinases and inhibitors.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
1. The activities in rat tissues of 3-oxo acid CoA-transferase (the first enzyme involved in acetoacetate utilization) were found to be highest in kidney and heart. In submaxillary and adrenal glands the activities were about one-quarter of those in kidney and heart. In brain it was about one-tenth and was less in lung, spleen, skeletal muscle and epididymal fat. No activity was detectable in liver. 2. The activities of acetoacetyl-CoA thiolase were found roughly to parallel those of the transferase except for liver and adrenal glands. The high activity in the latter two tissues may be explained by additional roles of thiolase, namely, the production of acetyl-CoA from fatty acids. 3. The activities of the two enzymes in tissues of mouse, gerbil, golden hamster, guinea pig and sheep were similar to those of rat tissues. The notable exception was the low activity of the transferase and thiolase in sheep heart and brain. 4. The activities of the transferase in rat tissues did not change appreciably in starvation, alloxan-diabetes or on fat-feeding, where the rates of ketone-body utilization are increased. Thiolase activity increased in kidney and heart on fat-feeding. 5. The activity of 3-hydroxybutyrate dehydrogenase did not change in rat brain during starvation. 6. The factors controlling the rate of ketone-body utilization are discussed. It is concluded that the activities of the relevant enzymes in the adult rat do not control the variations in the rate of ketone-body utilization that occur in starvation or alloxan-diabetes. The controlling factor in these situations is the concentration of the ketone bodies in plasma and tissues.  相似文献   

13.
The effect of food supplementation with chromium (CrCl3 · 6H2O) on intensity of peroxide processes and activity of antioxidant enzymes has been investigated in some rat tissues. Food supplementation with 200 μg/kg CrCl3 · 6H2O for 30 days resulted in the increase of tissue chromium. The tissue chromium content of chromium-treated rats decreased in the following order: spleen, heart, kidney, lung, brain, liver, skeletal muscles. All organs and tissues (except skeletal muscles) of chromium-treated rats were characterized by decreased content of lipid peroxidation (LPO) products: hydroperoxides and thiobarbituric acid reactive substances (TBARS). The maximal reduction in LPO products was observed in spleen, kidney, liver, and lung. Treatment with chromium also caused an increase in the activity of glutathione peroxidase, glutathione reductase, and calatase in all tissues and organs studied. In the brain and kidney an increase in the content of reduced glutathione was observed. Superoxide dismutase activity was higher in myocardium and skeletal muscles, basically equal in lung and liver, while in other organs (brain, kidney, spleen) of experimental animals it was lower than in control animals. Results of this study suggest that chromium exhibits tissue/organ-specific regulatory effects on enzymes of the antioxidant defense  相似文献   

14.
The complete nucleotide sequence of a novel cathepsin cDNA derived from mouse placenta was determined and is termed cathepsin M. The predicted protein of 333 amino acid is a member of the family C1A proteases and is related to mouse cathepsins L and P. Mouse cathepsin M is highly expressed in placenta, whereas no detectable levels were found in lung, spleen, heart, brain, kidney, thymus, testicle, liver, or embryo. Phylogenic analyses of the sequences of human and mouse cathepsins show that cathepsin M is most closely related to cathepsins P and L. However, the differences are sufficiently large to indicate that the enzymes will be found in other species. This is in contrast to human cathepsins L and V, which probably resulted from a gene duplication after divergence of mammalian species.  相似文献   

15.
The effect of three different concentrations of dimethoate on the activity of certain lysosomal enzymes, viz. beta-glucuronidase, beta-N-acetylglucosaminidase, cathepsin B and cathepsin D in serum, skin, liver, kidney and spleen and the stability of liver and kidney lysosomes was studied in female albino rats. The activity of beta-glucuronidase, beta-N-acetylglucosaminidase, cathepsin D was found to increase in serum and tissues in higher concentration (2.25 mg/100 g body weight) of dimethoate treated rats. A significant increase in the rate of release of beta-glucuronidase was found in the liver and kidney of higher concentration of dimethoate treated rats compared to controls. The results demonstrate that the activity of lysosomal enzymes increased in higher concentration of dimethoate treated rats than the lower concentration (0.56 mg/100 g body weight) of dimethoate treated rats.  相似文献   

16.
The effects of two peroxisome proliferators, p-chlorophenoxyisobutyric acid (clofibric acid) and 2,2'-(decamethylenedithio)diethanol (tiadenol), on cytosolic long-chain acyl-CoA hydrolase and peroxisomal beta-oxidation were studied in several organs of rat. Among organs of control rats, the brain had the highest activity of long-chain acyl-CoA hydrolase, followed by testis, and a low activity was found in other tissues. Administration of the peroxisome proliferators caused a marked increase in activity of long-chain acyl-CoA hydrolase in both liver and intestinal mucosa and a slight increase in the activity in kidney, but little affected acyl-CoA hydrolase activity in either brain, testis, heart, spleen and skeletal muscle. In accordance with the change in the activity of acyl-CoA hydrolase, the activity of peroxisomal beta-oxidation was markedly increased in liver, intestinal mucosa and kidney, and a slight increase was found in brain and testis, whereas peroxisome proliferators little affected the activity in other organs tested. Gel filtration of cytosol from intestinal mucosa showed that clofibric acid caused an appearance of a new peak in intestinal mucosa. Although cytosol of liver, intestinal mucosa, brain and testis contained two 4-nitrophenyl acetate esterases with different molecular weights (about 105,000 and about 55,000), these esterases are different from cytosolic long-chain acyl-CoA hydrolases of these four organs in respect of molecular weight. The administration of clofibric acid little affected cytosolic 4-nitrophenyl acetate esterases. Comparative studies on cytosolic long-chain acyl-CoA hydrolases from these four organs showed that liver hydrolase I (molecular weight of about 80,000) had properties similar to those of brain and testis enzymes. On the other hand, intestinal mucosa enzyme was different from either hepatic hydrolase I or II (molecular weight of about 40,000). The results from the present study suggest that inductions of peroxisomal beta-oxidation and cytosolic long-chain acyl-CoA hydrolases are essential responses of rats to peroxisome proliferators not only in liver but also in intestinal mucosa and that induced hydrolases are not attributable to non-specific esterases.  相似文献   

17.
J Kawai  E Okuno  R Kido 《Enzyme》1988,39(4):181-189
Kynureninase activity was measured in various organs of the rat by a sensitive assay method based on the use of an HPLC system. High activities were detected in liver, kidney and spleen, and much lower activities in adrenals, intestine, lung, heart, brain, skeletal muscle and pancreas. Kynureninase of liver, kidney and spleen showed the same molecular weight (110,000) and the same isoelectric point (pI 5.4). They also showed the same properties of heat stability and apparent optimum pH. The enzymes in kidney and spleen were localized in the cytosol. The developmental study showed increasing activities of the enzyme after birth and a maximum on the 60th day in both liver and spleen. The activity in kidney increased after birth and reached a plateau on the 30th day.  相似文献   

18.
We have previously shown that mouse muscle and liver contain catalytically active and inactive ecto-5'-nucleotidase (eNT) variants and that eNT activity in these tissues increases in laminin alpha2 (merosin)-deficient Lama2dy mice. These results prompted us to study whether: (1) the increase of eNT activity depends on the change in the content of merosin between healthy and dystrophic organs; (2) the active and inactive eNT variants arise from the same or distinct mRNAs; (3) the enhancement of the activity is caused by an increase in the eNT mRNA content. Compared to healthy organs, the activity in dystrophic organs increased four-fold in muscle, 1.7-fold in liver, 1.4-fold in heart and not at all in kidney and lung. The level of immunolabelled eNT protein per unit of activity suggested a similar ratio of inactive to active eNT in healthy liver, kidney, heart and muscle, which increased greatly in lung. The size of the eNT subunit in liver, kidney, heart and muscle (72 kDa) decreased to 66 kDa in lung. The identification of a single RT-PCR product suggested that active and inactive eNT arise from the same mRNA and are generated by a differential post-translational processing. Compared to the content in muscle, the amount of eNT mRNA was 12-fold higher in liver and kidney, eight-fold in heart and five-fold in lung. The relative content of eNT mRNA was unaffected by the deficiency of merosin.  相似文献   

19.
The data on the influence of chromium in different tissues of rats at its consumption with mixed fodder in the form of CrCl3 x 6H2O on the intensity of peroxidation processes and activity of antioxidant enzymes are presented. The degree of high chromium content in the studied tissues of rats at its addition to mixed fodder in the amount of 200 microg/kg during 30 days was established. Chromium content in the rat tissues decreased in the order: the spleen, heart, kidneys, lungs, brain, liver, skeletal muscle. In all tissues of rats fed with mixed fodder with chromium addition, except for skeletal muscles, content of lipid peroxidation products--hydroperoxide and TBARS-products decreased. The content of lipid peroxidation products decreased in the spleen, kidneys, liver and lungs. Also in all organs and tissues of rats the activity of glutathione peroxidase, glutathione reductase and catalase increased at the action of chromium. In the brain and kidneys the level of reduced glutathione increased. Superoxide dismutase activity was significantly higher not only in the heart and skeletal muscles of animals and is probably equal in the lungs and liver, and in other organs--the brain, kidneys and spleen in animals of the studied group the enzyme activity was lower as compared to animals of the control group. Obtained results demonstrate the regulatory influence of chromium on free radical process in the rat tissues.  相似文献   

20.
Phospholipase D Activity of Rat Brain Neuronal Nuclei   总被引:2,自引:0,他引:2  
Abstract: Phospholipase D activity of rat brain neuronal nuclei, measured with exogenous phosphatidylcholine as substrate, was characterized. The measured activity of neuronal nuclei was at least 36-fold greater than the activity in glia nuclei. The pH optimum was 6.5, and unsaturated but not saturated fatty acids stimulated the enzyme. The optimal concentration of sodium oleate for stimulation of the enzyme activity was 1.2 m M in the presence of 0.75 m M phosphatidylcholine. This phospholipase D activity was cation independent. In the absence of NaF, used as a phosphatidic acid phosphatase inhibitor, the principal product was diglyceride; whereas in the presence of NaF, the principal product was phosphatidic acid. The phospholipase D, in addition to having hydrolytic activity, was able to catalyze a transphosphatidylation reaction. Maximum phosphatidylethanol formation was seen with 0.2–0.3 M ethanol. GTPγS, ATPγS, BeF2, AIF3, phosphatidic acid, and phosphatidylethanol inhibited the neuronal nuclei phospholipase D activity. The addition of the cytosolic fraction of brain, liver, kidney, spleen, and heart to the incubation mixtures resulted in inhibition of the phospholipase D activity. Phospholipase D activity was detectable in nuclei prepared from rat kidney, spleen, heart, and liver.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号