首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 556 毫秒
1.
Hepatitis B virus surface antigen(HBsAg),a specific antigen on the membrane of Hepatitis B virus (HBV)-infected cells,provides a perfect target for therapeutic drugs.The development of reagents with high affinity and specificity to the HBsAg is of great significance to the early-stage diagnosis and treatment of HBV infection.Herein,we report the selection of RNA aptamers that can specifically bind to HBsAg protein and HBsAg-positive hepatocytes.One high affinity aptamer,HBs-A22,was isolated from an initial ...  相似文献   

2.
Currently, the development of effective diagnostic reagents as well as treatments against Hepatitis C virus (HCV) remains a high priority. In this study, we have described the development of an alive cell surface -Systematic Evolution of Ligands by Exponential Enrichment (CS-SELEX) technique and screened the functional ssDNA aptamers that specifically bound to HCV envelope surface glycoprotein E2. Through 13 rounds of selection, the CS-SELEX generated high-affinity ssDNA aptamers, and the selected ssDNA aptamer ZE2 demonstrated the highest specificity and affinity to E2-positive cells. HCV particles could be specifically captured and diagnosed using the aptamer ZE2. A good correlation was observed in HCV patients between HCV E2 antigen-aptamer assay and assays for HCV RNA quantities or HCV antibody detection. Moreover, the selected aptamers, especially ZE2, could competitively inhibit E2 protein binding to CD81, an important HCV receptor, and significantly block HCV cell culture (HCVcc) infection of human hepatocytes (Huh7.5.1) in vitro. Our data demonstrate that the newly selected ssDNA aptamers, especially aptamer ZE2, hold great promise for developing new molecular probes, as an early diagnostic reagent for HCV surface antigen, or a therapeutic drug specifically for HCV.  相似文献   

3.
Jo M  Ahn JY  Lee J  Lee S  Hong SW  Yoo JW  Kang J  Dua P  Lee DK  Hong S  Kim S 《Oligonucleotides》2011,21(2):85-91
The development of reagents with high affinity and specificity to small molecules is crucial for the high-throughput detection of chemical compounds, such as toxicants or pollutants. Aptamers are short and single-stranded (ss) oligonucleotides able to recognize target molecules with high affinity. Here, we report the selection of ssDNA aptamers that bind to Bisphenol A (BPA), an environmental hormone. Using SELEX process, we isolated high affinity aptamers to BPA from a 10(15) random library of 60 mer ssDNAs. The selected aptamers bound specifically to BPA, but not to structurally similar molecules, such as Bisphenol B with one methyl group difference, or 4,4'-Bisphenol with 2 methyl groups difference. Using these aptamers, we developed an aptamer-based sol-gel biochip and detected BPA dissolved in water. This novel BPA aptamer-based detection can be further applied to the universal and high-specificity detection of small molecules.  相似文献   

4.
Hepatitis B virus surface antigen(HBsAg),a specific antigen on the membrane of Hepatitis B virus (HBV)-infected cells,provides a perfect target for therapeutic drugs.The development of reagents with high affinity and specificity to the HBsAg is of great significance to the early-stage diagnosis and treatment of HBV infection.Herein,we report the selection of RNA aptamers that can specifically bind to HBsAg protein and HBsAg-positive hepatocytes.One high affinity aptamer,HBs-A22,was isolated from an initial 115 mer library of ~1.1×10 15 random-sequence RNA molecules using the SELEX procedure.The selected aptamer HBs-A22 bound specifically to hepatoma cell line HepG2.2.15 that expresses HBsAg but did not bind to HBsAg-devoid HepG2 cells.This is the first reported RNA aptamer which could bind to a HBV specific antigen.This newly isolated aptamer could be modified to deliver imaging,diagnostic,and therapeutic agents targeted at HBV-infected cells.  相似文献   

5.
Gastric cancer is one of the most prevailing cancers with high morbidity and mortality. Limitations in the current diagnosis and therapy, specially lacking of specific molecular therapeutic targets, ask for the development of new strategies. Aptamer, a newly developed adaptive molecule, could be used in clinical detection and therapy because of its high affinity and specificity. As no aptamer has ever been developed in preventing gastric cancer so far, we were the first who cloned such an aptamer specifically targeting gastric cancer. The aptamer was selected by systematic evolution of ligands by exponential enrichment with gastric cancer cell-line HGC-27 as target cell line and immortalized gastric epithelial cell-line GES-1 as control cell line. The affinity and specificity of candidate aptamers were examined by flow cytometry, confocal imagining and aptamer-based histochemistry staining. After 19 cycles of systematic evolution of ligands by exponential enrichment and subsequent cloning and sequencing, an aptamer with the highest affinity and specificity (nominated as AGC03) among candidates was screened out from a random single-stranded DNA pool. Moreover, AGC03 could not only specifically bind to gastric cancer cells (the equilibrium dissociation constant value was 16.49 ± 0.40 nM) in vitro, but also recognize cancer cells in human cancer tissue. Our most important finding is that AGC03 could even be internalized into cells automatically. In conclusion, we obtained a novel aptamer specifically targeting gastric cancer, which is an effective tool for both gastric cancer diagnosis and drug delivery.  相似文献   

6.
分子医学着眼于从疾病的分子层面出发,为个性化精准诊疗提供解决方案。然而,在众多疾病的诊疗中由于缺乏有力的分子识别工具,目前从分子水平上理解和研究疾病仍受到制约。核酸适配体是通过指数富集的配体系统进化(SELEX)技术在体外筛选得到的单链寡核苷酸,具有高选择性、高亲和力、易细胞内化、良好的组织渗透和快速的组织积累能力。近年来,由于其易合成、成本低、稳定性高且免疫原性低,核酸适配体作为分子工具应用于疾病的诊疗一体化受到广泛关注。本综述围绕分子医学中的核酸适配体,讨论了核酸适配体在疾病诊断中的应用,包括基于核酸适配体的肿瘤标志物发现、液体活检、分子成像。介绍了核酸适配体在癌症治疗中的应用包括基于核酸适配体的抑制剂、核酸适配体药物偶联物、纳米药物和核酸适配体介导的免疫治疗。最后对核酸适配体在临床诊疗和产业化面临的问题进行了讨论,包括基于应用场景的筛选方法、核酸适配体与靶标复合物结构、亲和力的机制以及核酸适配体在血液循环中的稳定性等方面。  相似文献   

7.
Gu S  Liu J  Zhang H  Gu B  Lai H  Zhou H  He C  Chen Y 《Molecular biology reports》2012,39(8):8197-8208
Diagnosis and monitoring of hepatitis C virus (HCV) infection relies mainly on the detection of HCV antibodies and HCV RNA. HCV antibody test has a longer window period and is not applicable in the immunosuppressed population. Although HCV RNA test reduces the window period, it is still not widely recommended because of its high cost and requirement of specific equipment. HCV core antigen is another direct virological marker which has been investigated in recent years. HCV core antigen assay is as simple as the HCV antibodies assay and can detect HCV infection only 1 day delay compared to the HCV RNA assay. In order to evaluate the application of HCV core antigen test in HCV diagnosis and management, we performed this meta-analysis. Twenty five articles were finally included in meta-analysis. All statistical analyses were performed with MetaDisc 1.4 and Stata 11.0. The pooled sensitivity of HCV core antigen assay was 0.84 (95 % CI, 0.83-0.85), and the pooled specificity was 0.98 (95 % CI, 0.97-0.98). HCV core antigen assays may not displace HCV RNA assays to be a definitive diagnosis of HCV infection until now. Considering the higher sensitivity (0.926) and specificity (0.991) of subgroup, HCV-cAg detection is a promising method as a confirmatory test for HCV antibody positive, therapy-naive individuals. Explored by meta-regression and subgroup analysis, possible sources of heterogeneity of specificity was found, while the heterogeneity of sensitivity was still significant.  相似文献   

8.
Hepatitis C virus (HCV) core protein is essential for virus assembly. HCV core protein was expressed and purified. Aptamers against core protein were raised through the selective evolution of ligands by the exponential enrichment approach. Detection of HCV infection by core aptamers and the antiviral activities of aptamers were characterized. The mechanism of their anti-HCV activity was determined. The data showed that selected aptamers against core specifically recognize the recombinant core protein but also can detect serum samples from hepatitis C patients. Aptamers have no effect on HCV RNA replication in the infectious cell culture system. However, the aptamers inhibit the production of infectious virus particles. Beta interferon (IFN-β) and interferon-stimulated genes (ISGs) are not induced in virally infected hepatocytes by aptamers. Domains I and II of core protein are involved in the inhibition of infectious virus production by the aptamers. V31A within core is the major resistance mutation identified. Further study shows that the aptamers disrupt the localization of core with lipid droplets and NS5A and perturb the association of core protein with viral RNA. The data suggest that aptamers against HCV core protein inhibit infectious virus production by disrupting the localization of core with lipid droplets and NS5A and preventing the association of core protein with viral RNA. The aptamers for core protein may be used to understand the mechanisms of virus assembly. Core-specific aptamers may hold promise for development as early diagnostic reagents and potential therapeutic agents for chronic hepatitis C.  相似文献   

9.
Aptamers are short non-coding, single-stranded oligonucleotides (RNA or DNA) developed through Systematic Evolution of Ligands by Exponential enrichment (SELEX) in vitro. Similar to antibodies, aptamers can bind to specific targets with high affinity, and are considered promising therapeutic agents as they have several advantages over antibodies, including high specificity, stability, and non-immunogenicity. Furthermore, aptamers can be produced at a low cost and easily modified, and are, therefore, called “chemical antibodies”. In the past years, a variety of aptamers specifically bound to both breast cancer biomarkers and cells had been selected. Besides, taking advantage of nanomaterials, there were a number of aptamer-nanomaterial conjugates been developed and widely investigated for diagnostics and targeted therapy of breast cancer. In this short review, we first present a systematical review of various aptamer selection methods. Then, various aptamer-based diagnostic and therapeutic strategies of breast cancer were provided. Finally, the current problems, challenges, and future perspectives in the field were thoroughly discussed.  相似文献   

10.
Electrochemical aptamer-based sensors   总被引:1,自引:0,他引:1  
The valuable properties of aptamers, such as specificity, sensitivity, stability, cost-effectiveness and design flexibility, have favoured their use as biorecognition elements in biosensor development. These synthetic affinity probes can be developed for almost any target molecule, covering a wide range of applications in fields such as clinical diagnosis and therapy, environmental monitoring and food control. The combination of aptamers with high-performance electrochemical transducers, with their inherent high sensitivities, fast response times and simple equipment, has already provided several electrochemical aptamer-based sensors. Moreover, the small size and versatility of aptamers allow efficient immobilisations in high-density monolayers, an important feature towards miniaturisation and integration of compact electrochemical devices. This review describes the state-of-the-art of electrochemical aptamer-based sensors, entering into the details of the different strategies and types of electrochemical transduction and also considering their advantages when applied to the analysis of complex matrices.  相似文献   

11.
Aptamers, composed of single-stranded DNA or RNA oligonucleotides that interact with target molecules through a specific three-dimensional structure, are selected from pools of combinatorial oligonucleotide libraries. With their high specificity and affinity for target proteins, ease of synthesis and modification, and low immunogenicity and toxicity, aptamers are considered to be attractive molecules for development as anticancer therapeutics. Two aptamers - one targeting nucleolin and a second targeting CXCL12 - are currently undergoing clinical trials for treating cancer patients, and many more are under study. In this mini-review, we present the current clinical status of aptamers and aptamer-based cancer therapeutics. We also discuss advantages, limitations, and prospects for aptamers as cancer therapeutics. [BMB Reports 2015; 48(4): 234-237]  相似文献   

12.
Epidermal growth factor receptor (EGFR/HER1/c-ErbB1), is overexpressed in many solid cancers, such as epidermoid carcinomas, malignant gliomas, etc. EGFR plays roles in proliferation, invasion, angiogenesis and metastasis of malignant cancer cells and is the ideal antigen for clinical applications in cancer detection, imaging and therapy. Aptamers, the output of the systematic evolution of ligands by exponential enrichment (SELEX), are DNA/RNA oligonucleotides which can bind protein and other substances with specificity. RNA aptamers are undesirable due to their instability and high cost of production. Conversely, DNA aptamers have aroused researcher’s attention because they are easily synthesized, stable, selective, have high binding affinity and are cost-effective to produce. In this study, we have successfully identified DNA aptamers with high binding affinity and selectivity to EGFR. The aptamer named TuTu22 with Kd 56 ± 7.3 nM was chosen from the identified DNA aptamers for further study. Flow cytometry analysis results indicated that the TuTu22 aptamer was able to specifically recognize a variety of cancer cells expressing EGFR but did not bind to the EGFR-negative cells. With all of the aforementioned advantages, the DNA aptamers reported here against cancer biomarker EGFR will facilitate the development of novel targeted cancer detection, imaging and therapy.  相似文献   

13.
即时检测(point-of-care testing,POCT)是一种检测成本低、检测速度快、准确度高、能自我采样获得临床诊断结果的新型诊断技术。该技术在临床诊断、病情监控与疫情防控等领域发挥了重要作用。核酸适配体是一种能够特异性识别多种靶标的分子探针,具有易合成、批间差异小、易实现信号放大等突出优势,是生物医学传感器中重要的分子识别元件。本文概述了核酸适配体探针的现有筛选方法和进展,总结了核酸适配体POCT传感器信号放大策略,着重介绍了各类核酸适配体传感器在POCT领域的应用现状,并对核酸适配体POCT传感器的发展前景进行了展望。  相似文献   

14.
Aptamers are single stranded DNA or RNA oligonucleotides that have high affinity and specificity towards a wide range of target molecules. Aptamers have low molecular weight, amenable to chemical modifications and exhibit stability undeterred by repetitive denaturation and renaturation. Owing to these indispensable advantages, aptamers have been implemented as molecular recognition element as alternative to antibodies in various assays for diagnostics. By amalgamating with a number of methods that can provide information on the aptamer-target complex formation, aptamers have become the elemental tool for numerous biosensor developments. In this review, administration of aptamers in applications involving assays of fluorescence, electrochemistry, nano-label and nano-constructs are discussed. Although detection strategies are different for various aptamer-based assays, the core of the design strategies is similar towards reporting the presence of specific target binding to the corresponding aptamers. It is prognosticated that aptamers will find even broader applications with the development of new methods of transducing aptamer target binding.  相似文献   

15.
胃腺癌是消化道最常见的恶性肿瘤之一,由于没有针对早期胃腺癌有效的诊断方法,目前胃腺癌手术治疗还主要针对中晚期患者,预后差. 本文应用cell-SELEX技术,筛选早期胃腺癌原代细胞的适配子,为早期胃腺癌的诊断提供新的思路. 从早期胃腺癌组织中分离得到早期胃腺癌原代细胞,应用体外合成全长88 bp中间含52 bp随机序列的单链DNA文库,通过对PCR扩增条件的优化,借助生物素-链霉亲和素磁珠系统,经cell-SELEX反复筛选,可获得针对早期胃腺癌原代细胞的特异性适配子.经12轮cell-SELEX筛选,ssDNA文库与早期胃腺癌原代细胞的亲和力由1 560上升到4 336,表明亲和力较高的适配子得到逐步富集. 经克隆和测序,应用软件分析可知,30个克隆子中编号为C17和C27的2个序列完全一致,具同源性,二级结构预测可知单链DNA形成不同的茎环结构可能是适配子与早期胃腺癌原代细胞作用的结构基础. 特异性分析显示,胃腺癌原代细胞组与正常胃粘膜上皮细胞、空白对照组之间荧光强度值差异非常显著(P<001);正常胃粘膜上皮细胞组与空白对照组之间差异不显著(P>005). 经亲和力测定,各适配子与早期胃腺癌原代细胞的解离系数达到nmol/L,具有很高的亲和力.利用cell-SELEX技术成功筛选到早期胃腺癌原代细胞的适配子,为胃腺癌的早期诊断与治疗药物靶点方面的研究奠定了实验基础.  相似文献   

16.
Carcinoembryonic antigen (CEA) is a glycoprotein antigen generally used for diagnosis, prognosis and treatment monitoring of several types of tumors, including colorectal cancer. Nucleic acid aptamers are DNA or RNA oligonucleotides capable of binding with high specificity and affinity to a molecular target. The aim of this study was to obtain aptamers specific to CEA for use as radiopharmaceuticals in colorectal cancer diagnosis. Five aptamers were selected through the Systematic Evolution of Ligands by EXponencial Enrichment (SELEX) and tested using T84 (CEA+) and Hela (CEA−) cells. Apta 3 and Apta 5 showed the best results presenting high specificity and affinity for T84 cells, with dissociation constants (Kd) of 60.4 ± 5.7 nM and 37.8 ± 5.8 nM, respectively. These results indicate that Apta 3 and Apta 5 are promising candidates for identifying tumor cells that overexpress CEA.  相似文献   

17.
Nucleic Acid Aptamers (NAAs) are a class of synthetic DNA or RNA molecules that bind specifically to their target. We recently introduced an aptamer termed R1.2 against membrane Immunoglobulin M (mIgM) expressing B-cell neoplasms using Ligand Guided Selection (LIGS). While LIGS-generated aptamers are highly specific, their lower affinity prevents aptamers from being used for translational applications. Highly specific aptamers with higher affinity can increase targetability, boosting the application of aptamers as diagnostic and therapeutic molecules. Herein, we report that dimerization of R1.2, an aptamer generated from LIGS, leads to high affinity variants without compromising the specificity. Three dimeric aptamer analogues with variable linker lengths were designed to evaluate the effect of linker length in affinity. The optimized dimeric R1.2 against cultured B-cell neoplasms, four donor B-cell samples and mIgM-positive Waldenström's Macroglobulinemia (WM) showed specificity. Furthermore, confocal imaging of dimeric aptamer and anti-IgM antibody in purified B-cells suggests co-localization. Binding assays against IgM knockout Burkitt's Lymphoma cells utilizing CRISPR/Cas9 further validated specificity of dimeric R1.2. Collectively, our findings show that LIGS-generated aptamers can be re-engineered into dimeric aptamers with high specificity and affinity, demonstrating wide-range of applicability of LIGS in developing clinically practical diagnostic and therapeutic aptamers.  相似文献   

18.
Hepatitis C virus (HCV) translation begins within the internal ribosome entry site (IRES). We have previously isolated two RNA aptamers, 2-02 and 3-07, which specifically bind to domain II and domain III-IV of the HCV IRES, respectively, and inhibit IRES-dependent translation. To improve the function of these aptamers, we constructed two conjugated molecules of 2-02 and 3-07. These bound to the target RNA more efficiently than the two parental aptamers. Furthermore, they inhibited IRES-dependent translation about 10 times as efficiently as the 3-07 aptamer. This result indicates that combining aptamers for different target recognition sites potentiates the inhibition activity by enhancing the domain-binding efficiency.  相似文献   

19.
Many cases of influenza are reported worldwide every year. The influenza virus often acquires new antigenicity, which is known as antigenic shift; this results in the emergence of new virus strains, for which preexisting immunity is not found in the population resulting in influenza pandemics. In the event a new strain emerges, diagnostic tools must be developed rapidly to detect the novel influenza strain. The generation of high affinity antibodies is costly and takes time; therefore, an alternative detection system, aptamer detection, provides a viable alternative to antibodies as a diagnostic tool. In this study, we developed DNA aptamers that bind to HA1 proteins of multiple influenza A virus subtypes by the SELEX procedure. To evaluate the binding properties of these aptamers using colorimetric methods, we developed a novel aptamer-based sandwich detection method employing our newly identified aptamers. This novel sandwich enzyme-linked aptamer assay successfully detected the H5N1, H1N1, and H3N2 subtypes of influenza A virus with almost equal sensitivities. These findings suggest that our aptamers are attractive candidates for use as simple and sensitive diagnostic tools that need sandwich system for detecting the influenza A virus with broad subtype specificities.  相似文献   

20.
胃癌是世界上死亡率第三的重大疾病,而在早期阶段却有着良好的治愈率和生存率。因此,找到针对早期胃癌的特异性标志物从而提高早期胃癌的检出率,是目前亟待解决的问题。在本实验室的早期研究中,发现过氧化物酶4(peroxiredoxin-4,PRDX4)有极大的潜能作为早期胃癌的特异性标志物,并且由于蛋白质结构的特殊性,能够分泌至血清中,为早期胃癌的无创化诊断提供了可能。本文为寻找血清中PRDX4蛋白的特异性适配体,通过消减-SELEX方法找到9种适配体。经特异性和亲和力分析后,证实其中Ap-EGACS-11在9种适配体中具有最高的特异性和亲和力。随后在适配体的验证研究中证实,相对于进展期胃癌病人血清、结直肠癌病人血清和正常人血清,Ap-EGACS-11对早期胃癌病人血清的检出率最高。该结果表明,PRDX4具有早期胃癌特异性血清标志物的潜能,且Ap-EGACS-11可直接作为早期胃癌的检测试剂。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号