首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Oxidative stress has been known to be involved in the mechanism of toxic effects of various agents on many cellular systems. In this study we investigated the role of reactive oxygen species (ROS) in 2,3,7,8-tetrachlorodibenzo- p -dioxin (TCDD)-induced neuronal cell toxicity using SK-N-SH human neuroblastoma cells. TCDD inhibited proliferation of the cells in a dose-dependent manner, which was revealed by MTT staining, counting of cells stained with trypan blue and [ 3 H]thymidine uptake assay. TCDD also suppressed the basal generation of ROS in a time- and concentration-dependent manner assessed by 2',7'-dichlorofluorescein fluorescence. In addition, TCDD induced a dose-dependent inhibition of lipid peroxidation, a biomarker of oxidative stress, whereas it significantly increased the level of glutathione (GSH), an intracellular free radical scavenger in the cells. Moreover, TCDD altered the activities of major antioxidant enzymes; increase in superoxide dismutase (SOD) and catalase, but decrease in glutathione peroxidase (GSH-Px) and glutathione reductase (GSH-Red). Pretreatment with l -buthionine- S , R -sulfoximine (BSO, 50 &#119 M), an inhibitor of GSH synthesis, significantly prevented the TCDD-induced reduction in lipid peroxidation and cell proliferation. Interestingly, exogenous application of an oxidant, H 2 O 2 (50 &#119 M) markedly restored the inhibited cell proliferation induced by TCDD. Taken together, these results suggest that alteration of cellular redox balance may mediate the TCDD-induced inhibition of proliferation in human neuronal cells.  相似文献   

2.
Cellular Antioxidant Properties of Human Natural Killer Enhancing Factor B   总被引:1,自引:0,他引:1  
The protein, NKEF (natural killer enhancing factor), has been identified as a member of an antioxidant family of proteins capable of protecting against protein oxidation in cell-free assay systems. The mechanism of action for this family of proteins appears to involve scavenging or suppressing formation of protein thiyl radicals. In the present study we investigated the antioxidant protective properties of the NKEF-B protein overexpressed in an endothelial cell line (ECV304). Nkef-B-transfected cells displayed significantly lower levels of reactive oxygen species (ROS) compared with control or vector-transfected cells. Tert-Butylhydroperoxide-induced ROS was 15% lower in nkef-8-transfected cells and cytotoxicity was slightly, though not significantly, lower. NKEF-B had no effect on ROS induced by menadione or xanthine plus xanthine oxidase. NKEF-B overexpression resulted in slightly (≈ 10%) lower levels of cellular glutathione (GSH) and had no effect on rate or extent of GSH depletion following either diethylmaleate (DEM) or buthionine sulfoximine (BSO) treatment. Lipid peroxidation, assessed as thiobarbituric acid-reactive substances, was 40% lower in nkef-B-transfected cells compared with vector-only-transfected cells. DEM-induced lipid peroxidation was suppressed by NKEF-B at DEM concentrations of 20 μM to 1 mM. At 10 mM DEM, lipid peroxidation was unaffected by NKEF-B. NKEF-B expression also protected cells against menadione-induced inhibition of [3H]-thymidine uptake. The NKEF-B protein appears most effective in suppressing basal low-level oxidative injury such as that produced during normal metabolism. These results indicate that overexpression of the NKEF-B protein promotes resistance to oxidative stress in this endothelial cell line.  相似文献   

3.
The effect of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on lipid peroxidation, 3H-Me-glucose (3H-Me-glu), and 14C-dehydroascorbic acid (14C-DHA) uptakes were studied in adipose tissue of male guinea pig. Under in vitro test conditions, using isolated adipose tissue in a culture medium (explant culture), TCDD reduced the uptake of 3H-Me-glu and 14C-DHA in a dose- and time-dependent fashion. The IC50 values of TCDD's action were 0.04 and 2 nM on 14C-DHA and 3H-Me-glu uptakes, respectively. TCDD (10 nM) also suppressed glucose transporting activity within 15 minutes in explant-cultured adipocytes. Cytochalasin B (CB) and nonlabeled D-glucose inhibited 14C-DHA uptake also in a dose-dependent manner. In addition, TCDD was found to induce lipid peroxidation in ex-plant-cultured adipose tissue. This effect of TCDD was similar to that of a typical lipid peroxidation inducer, CCl4, and it was dose and time dependent. TCDD caused a statistically significant rise in lipid peroxidation at a concentration as low as 0.1 nM after 60 minutes of treatment in explant culture. Unexpectedly, the Ah receptor partial antagonists, 4,7-phenanthroline and α-naphthoflavone, did not fully antagonize TCDD-induced lipid peroxidation in explant-cultured adipocytes. In vivo treatment of TCDD also induced lipid peroxidation. Among seven organs of male guinea pig tested, the levels of lipid peroxidation in adipose tissue and in liver increased at 1 and 40 days following a single i.p. dose of TCDD (1 μg/kg). The results of an in vivo time-course study indicated that such an effect of TCDD was most pronounced after 40 days of treatment. Finally, we have tested the protective role of some antioxidants on TCDD-induced lipid peroxidation under explant-culture conditions. The results indicated that DHA, but not ascorbic acid, could completely abolish TCDD-induced lipid peroxidation. The protective effect of DHA on TCDD-induced lipid peroxidation was stronger than that of α-tocopherol and uric acid, and this effect was blocked by CB. We conclude from these studies that TCDD acts in this guinea pig tissue through two different routes: one is the Ah receptor-dependent route causing the reduction of the level of glucose transporters and subsequent decrease of cellular uptake of DHA and the other, the Ah receptor-independent route causing the overall lipid peroxidation. Nevertheless, it appears likely that both events are antagonized by DHA. © 1997 John Wiley & Sons, Inc. J Biochem Toxicol 11: 269–278, 1997.  相似文献   

4.
Fumonisin B1 (FB1) is a mycotoxin produced by Fusarium verticillioides, which is a common infectant of corn and other cereal grains. Of concern to human health is also a possible airborne exposure to FB1-producing strains of F. verticillioides, which may grow in moisture-damaged buildings. In this study, we have characterized oxidative stress-related parameters induced by FB1 in three different neural cell lines, human SH-SY5Y neuroblastoma, rat C6 glioblastoma and mouse GT1-7 hypothalamic cells. The cells were exposed to graded doses of FB1 between 0.1 and 100 μM for 0-144 h after which the production of reactive oxygen species (ROS), lipid peroxidation, intracellular glutathione (GSH) levels and cell viability were measured. FB1 caused a dose-dependent increase of ROS production in C6 glioblastoma and GT1-7 hypothalamic cells but was without an effect in SH-SY5Y cells. Decreased GSH levels, increased MDA-formation, indicative of lipid peroxidation and necrotic cell death were observed in all cell lines after incubation with FB1. These findings indicate that FB1 induces oxidative stress in human, rat and mouse neural cell cultures.  相似文献   

5.
Diethyl maleate (DEM) (5 mM) and ethyl methanesulfonate (EMS) (35 mM) treatments rapidly depleted cellular reduced glutathione (GSH) below detectable levels (1 nmol/10(6) cells), and induced lipid peroxidation and necrotic cell death in freshly isolated rat hepatocytes. In hepatocytes incubated with 2.5 mM DEM and 10 mM EMS, however, the complete depletion of cellular GSH observed was not sufficient to induce lipid peroxidation or cell death. Instead, DEM- and EMS-induced lipid peroxidation and cell death were dependent on increased reactive oxygen species (ROS) production as measured by increases in dichlorofluorescein fluorescence. The addition of antioxidants (vitamin E succinate and deferoxamine) prevented lipid peroxidation and cell death, suggesting that lipid peroxidation is involved in the sequence of events leading to necrotic cell death induced by DEM and EMS. To investigate the subcellular site of ROS generation, the cytochrome P450 inhibitor, SKF525A, was found to reduce EMS-induced lipid peroxidation but did not protect against the loss of cell viability, suggesting a mitochondrial origin for the toxic lipid peroxidation event. In agreement with this conclusion, mitochondrial electron transport inhibitors (rotenone, thenoyltrifluoroacetone and antimycin A) increased EMS-induced lipid peroxidation and cell death, while the mitochondrial uncoupler, carbonyl cyanide m-chlorophenylhydrazone, blocked EMS- and DEM-mediated ROS production and lipid peroxidation. Furthermore, EMS treatment resulted in the significant loss of mitochondrial alpha-tocopherol shortly after its addition, and this loss preceded losses in cellular alpha-tocopherol levels. Treatment of hepatocytes with cyclosporin A, a mitochondrial permeability transition inhibitor, oxypurinol, a xanthine oxidase inhibitor, or BAPTA-AM, a calcium chelator, provided no protection against EMS-induced cell death or lipid peroxidation. Our results indicate that DEM and EMS induce cell death by a similar mechanism, which is dependent on the induction of ROS production and lipid peroxidation, and mitochondria are the major source for this toxic ROS generation. Cellular GSH depletion in itself does not appear to be responsible for the large increases in ROS production and lipid peroxidation observed.  相似文献   

6.
The study was designed to determine the cytoprotective and immunomodulatory properties of Geriforte, an indigenous herbomineral compound, using lymphocytes as a model system. The possible involvement of free radicals and the ability of Geriforte to inhibit the oxidative process induced by tert-butylhydroperoxide (tert-BHP) was also investigated. The production of free radicals (evaluated by fluorescent probe fluorescein-diacetate), level of malondialdehyde (MDA, as index of lipid peroxidation), and levels of anti-oxidants – reduced glutathione (GSH) and glutathione peroxidase (GPx) were determined. There was an increase in cytotoxicity and apoptosis significantly in the presence of tert-BHP (100 μM) over control. Addition of tert-BHP resulted in a marked increase in free radical production and MDA level with a concomitant decrease in GSH level in lymphocytes. Geriforte supplementation reduced cytotoxicity and apoptosis induced by tert-BHP. Further, Geriforte inhibited tert-BHP induced lipid peroxidation and maintained higher anti-oxidant levels. tert-BHP significantly inhibited the lymphocyte proliferation stimulated by mitogens (Lipopolysaccharide/Concanavalin A) and enhanced DNA fragmentation. Geriforte relieved the inhibitory effect of tert-BHP on lymphocyte proliferation and decreased DNA fragmentation appreciably. The results indicate that Geriforte possesses cytoprotective and immunomodulatory properties which could be due to its anti-oxidant activity.  相似文献   

7.
The induction of oxidative stress by TCDD in various brain regions of rats has been investigated after subchronic exposure. TCDD was administered by gavage to female Sprague-Dawley rats at daily doses of 0, 10, 22, and 46 ng/kg for 13 weeks. The brains were dissected to cerebral cortex (Cc), hippocampus (H), cerebellum (C), and brain stem (Bs); the production of superoxide anion (SA) and lipid peroxides and the activities of the antioxidant enzymes superoxide dismutase (SOD), catalase, and glutathione peroxidase (GSH-Px) were determined in those regions. TCDD caused dose-dependent increases in the production of SA and lipid peroxidation in Cc and H and those were associated with dose-dependent suppressions of SOD. While a TCDD dose of 10 ng/kg/d resulted in significant increases in catalase and GSH-Px activities in Cc and H, doses of 22 and 46 ng/kg/d resulted in dose-dependent suppressions of these two enzymes in the same regions. In the C and Bs, TCDD treatment did not result in significant production of SA and lipid peroxidation but it resulted in dose-dependent increases in the activities of various antioxidant enzymes. These results suggest that Cc and H are vulnerable to TCDD-induced oxidative stress after subchronic exposure, and that C and Bs are protected against that effect.  相似文献   

8.
4-Hydroxynonenal (HNE) is one of the major end products of lipid peroxidation and may have either physiological or pathological significance regulating cell proliferation. We studied some biochemical effects of HNE, at various concentrations (0.1-100 μM), on Jurkat T cells incubated thereafter for 24, 48 and 72 h. HNE at low concentrations significantly enhanced the proliferation index, whereas at higher concentrations progressively blocked cell proliferation. Caspase 3 activity increased significantly at HNE concentrations between 1 and 10 μM and decreased at higher concentrations. Superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and glutathione reductase (GSH-Rd) increased progressively with HNE concentrations, particularly GSH-Px. Glucose-6-phosphate dehydrogenase (G6PDH) showed a different pattern, increasing at low HNE (1-5 μM) concentrations and rapidly declined thereafter. These results show that HNE may induce growth inhibition of Jurkat T cells and regulate the activity of typical antioxidant enzymes. Furthermore, the protective effect of doubling the foetal calf serum still points out the risk that cultured cells undergo oxidative stress during incubation.  相似文献   

9.
Nitric oxide (NO) is a short-lived, readily diffusible intracellular messenger molecule associated with multiple organ-specific regulatory functions. Endogenous stimulation or exogenous administration of NO have been shown to inhibit production of reactive oxygen species (ROS) and expression of oxidant-mediated molecular or tissue injury. Potassium bromate (KBrO3) is one such potent renal oxidant that acts through generation of ROS-mediated lipid peroxidation, and causes increased ornithine decarboxylase activity, enhanced rate of DNA synthesis and depletion of the antioxidant armoury of the tissue. In this study, we elucidate the effect of exogenous NO administration, using the NO donor glyceryl trinitrate (GTN), on KBrO3-induced nephrotoxicity, oxidative stress and cell proliferation. KBrO3 administration at a dose of 125 mg/kg body weight results in significant (P < 0.001) depletion in renal glutathione (GSH) content, and glutathione reductase (GR) activity with a concomitant increase in microsomal lipid peroxidation, and blood urea nitrogen (BUN) and creatinine levels. Parallel to these changes, we found significant enhancement in ornithine decarboxylase (ODC) activity and rate of renal DNA synthesis. Subsequent administration of GTN resulted in dose-dependent amelioration of GSH content and GR activity with concomitant inhibition of lipid peroxidation, and BUN and creatinine levels. In addition, GTN administration to KBrO3-intoxicated rats resulted in significant dose-dependent down regulation of enhanced ODC activity and rate of [3H]-thymidine incorporation in renal DNA, providing support for the protective role of NO in attenuation of KBrO3-induced oxidative stress and cell proliferation. Enhancement of oxidative tissue injury and cell proliferation on administration of the NO inhibitor, L-NAME, further demonstrates the protective efficacy of endogenous NO. These data suggest that NO inhibits KBrO3-induced tissue injury, oxidative stress and proliferative response in the rat kidney.  相似文献   

10.
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD), a potent developmental teratogen inducing oxidative stress and sublethal changes in multiple organs, provokes developmental renal injuries. In this study, we investigated TCDD-induced biochemical changes and the therapeutic efficacy of photobiomodulation (670 nm; 4 J/cm(2)) on oxidative stress in chicken kidneys during development. Eggs were injected once prior to incubation with TCDD (2 pg/g or 200 pg/g) or sunflower oil vehicle control. Half of the eggs in each dose group were then treated with red light once per day through embryonic day 20 (E20). Upon hatching at E21, the kidneys were collected and assayed for glutathione peroxidase, glutathione reductase, catalase, superoxide dimutase, and glutathione-S-transferase activities, as well as reduced glutathione and ATP levels, and lipid peroxidation. TCDD exposure alone suppressed the activity of the antioxidant enzymes, increased lipid peroxidation, and depleted available ATP. The biochemical indicators of oxidative and energy stress in the kidney were reversed by daily phototherapy, restoring ATP and glutathione contents and increasing antioxidant enzyme activities to control levels. Photobiomodulation also normalized the level of lipid peroxidation increased by TCDD exposure. The results of this study suggest that 670 nm photobiomodulation may be useful as a noninvasive treatment for renal injury resulting from chemically induced cellular oxidative and energy stress.  相似文献   

11.
Unilamellar liposomes are used as a simple two-compartment model to study the interaction of antioxidants. The vesicle membrane can be loaded with lipophilic compounds such as carotenoids or tocopherols, and the aqueous core space with hydrophilic substances like glutathione (GSH) or ascorbate, mimicking the interphase between an aqueous compartment of a cell and its surrounding membrane.

Unilamellar liposomes were used to investigate the interaction of GSH with the carotenoids lutein, β-carotene and lycopene in preventing lipid peroxidation. Lipid peroxidation was initiated with 2,2'-azo-bis-[2,4-dimethylvaleronitrile] (AMVN). Malondialdehyde (MDA) formation was measured as an indicator of oxidation; additionally, the loss of GSH was followed. In liposomes without added antioxidant, MDA levels of 119 ± 6 nmol/mg phospholipid were detected after incubation with AMVN for 2 h at 37°C. Considerably lower levels of 57 ± 8 nmol MDA/mg phospholipid were found when the liposomal vesicles had been loaded with GSH. Upon incorporation of β-carotene, lycopene or lutein, the resistance of unilamellar liposomes towards lipid peroxidation was further modified. An optimal further protection was observed with 0.02 nmol β-carotene/mg phospholipid or 0.06 nmol lycopene/mg phospholipid. At higher levels both these carotenoids exhibited prooxidant effects. Lutein inhibited lipid peroxidation in a dose-dependent manner between 0.02 and 2.6 nmol/mg phospholipid. With increasing levels of lycopene and lutein the consumption of encapsulated GSH decreased moderately, and high levels of β-carotene led to a more pronounced loss of GSH.

The data demonstrate that interactions between GSH and carotenoids may improve resistance of biological membranes towards lipid peroxidation. Different carotenoids exhibit specific properties, and the level for optimal protection varies between the carotenoids.  相似文献   

12.
The aromatic hydrocarbon receptor (AhR)-dependent pathway involved in 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-induced immunotoxicity has been studied extensively, but the AhR-independent molecular mechanism has not. In previous studies we found that the AhR is not expressed in L-MAT, a human lymphoblastic T-cell line. In this report, we provide the following evidence that the protein kinase C (PKC)theta activity is functionally involved in the AhR-independent signal transduction mechanism that participates in the TCDD-induced L-MAT cell apoptosis. First, only rottlerin, a novel PKC (nPKC)-selective inhibitor, blocked the apoptosis completely, in a dose-dependent manner. Second, PKCtheta was the major nPKC isoform (compared to PKCdelta) expressed in the L-MAT cell line. Third, a cell-permeable myristoylated PKCtheta pseudosubstrate peptide inhibitor also blocked the apoptosis completely, in a dose-dependent manner. Fourth, both rottlerin and myristoylated PKCtheta pseudosubstrate peptide inhibitor completely inhibited PKCtheta kinase activity in vitro at doses that effectively blocked TCDD-induced L-MAT cell apoptosis. TCDD treatment induced a time-dependent activation of nPKC kinase activity in L-MAT cells, and moreover, TCDD induced a translocation of PKCtheta from the cytosolic fraction to the particulate fraction in L-MAT cells. Finally, transient over-expression of a dominant negative PKCtheta (a kinase-dead mutant, K/R 409) in L-MAT cells conferred significant protection against TCDD-induced apoptosis.  相似文献   

13.
The effect of Schisandra fructus extract (SFE) on doxorubicin (Dox)-induced cardiotoxicity was investigated in H9c2 cardiomyocytes. Dox, which is an antineoplastic drug known to induce cardiomyopathy possibly through production of reactive oxygen species, induced significant cytotoxicity, intracellular reactive oxygen species (ROS), and lipid peroxidation. SFE treatment significantly increased cell survival up to 25%, inhibited intracellular ROS production in a time- and dose-dependent manner, and inhibited lipid peroxidation induced by Dox. In addition, SFE treatment induced expression of cellular glutathione S-transferases (GSTs), which function in the detoxification of xenobiotics, and endogenous toxicants including lipid peoxides. Analyses of 31,100 genes using Affymetrix cDNA microarrays showed that SFE treatment up-regulated expression of genes involved in glutathione metabolism and detoxification [GST theta 1, mu 1, and alpha type 2, heme oxygenase 1 (HO-1), and microsomal epoxide hydrolase (mEH)] and energy metabolism [carnitine palmitoyltransferase-1 (CPT-1), transaldolase, and transketolase]. These data indicated that SFE might increase the resistance to cardiac cell injury by Dox, at least partly, together with altering gene expression, especially induction of phase II detoxification enzymes.  相似文献   

14.
The depletion of cell calcium from isolated rat hepatocytes results in stimulated lipid peroxidation, loss of intracellular and mitochondrial GSH (reduced glutathione), and enhancement of both efflux and oxidation of GSH. These events are followed by cell injury and enhance the susceptibility of the cells to toxic chemicals. It is shown herein that an initial event in the generation of such injury is the depletion of cellular alpha-tocopherol. alpha-Tocopheryl succinate addition (25 microM) to the calcium-depleted cells markedly elevated the alpha-tocopherol content of the cells, inhibited the associated lipid peroxidation, and maintained intracellular GSH levels without affecting its efflux or redox status. This resulted in an enhanced formation of total glutathione after a 5-h incubation, which correlated with the alpha-tocopherol content of the cells, and was greater than that expected by a direct sparing action of vitamin E. Inhibition of hepatocyte glutathione biosynthesis by buthionine sulfoximine (0.5 mM) eliminated the enhancement of GSH formation by vitamin E. Analysis of endogenous and 35S-labelled precursors of glutathione biosynthesis by high-performance liquid chromatography demonstrated that the depletion of cellular alpha-tocopherol resulted in the efflux of glutathione precursors. It is concluded that cell injury associated with alpha-tocopherol depletion is partly the result of the efflux of glutathione precursors, and hence diminished biosynthesis and intracellular levels of GSH. These losses and resultant cell injury are preventable by maintenance of cellular alpha-tocopherol levels.  相似文献   

15.
Glutathione (GSH) is the primary source of reducing equivalents in most cells, contributes significantly to the cellular redox potential and can control differentiation, proliferation, and apoptosis. Using limb bud micromass cultures from Sprague Dawley rats and New Zealand White rabbits, GSH modulating agents, L-buthionine-S,R-sulfoximine (BSO) and diethyl maleate (DEM) altered the formation of Alcian blue positive chondrogenic foci. Limb bud micromass cultures were treated for 5 d with BSO (50 or 100 μM) or DEM (5–25 μM). GSH content was determined by HPLC analysis. In rat cultures, BSO treatment did not affect differentiation but did show GSH depletion. In rabbit cultures, BSO completely inhibited differentiation and significantly depleted GSH. Treatment of rat cultures with DEM resulted in the dose-dependent decrease of chondrogenic foci, which correlated with a dose-dependent depletion of GSH. DEM completely inhibited rabbit limb bud cell differentiation and depleted GSH by 44%. Inhibition of differentiation was confirmed in rabbit cultures by the reduction in BMP-4 content. Addition of N-acetylcysteine to rabbit micromass cultures restored chondrogenic foci differentiation seen following treatment with both DEM and BSO. These results show species differences in GSH depletion in rat vs. rabbit limb bud cells and implicate GSH and cysteine in affecting pathways involved in chondrocyte differentiation.  相似文献   

16.
Selenium is an essential trace element and it is well known that selenium is necessary for cell culture. However, the mechanism underlying the role of selenium in cellular proliferation and survival is still unknown. The present study using Jurkat cells showed that selenium deficiency in a serum-free medium decreased the selenium-dependent enzyme activity (glutathione peroxidases and thioredoxin reductase) within cells and cell viability. To understand the mechanism of this effect of selenium, we examined the effect of other antioxidants, which act by different mechanisms. Vitamin E, a lipid-soluble radical-scavenging antioxidant, completely blocked selenium deficiency-induced cell death, although alpha-tocopherol (biologically the most active form of vitamin E) could not preserve selenium-dependent enzyme activity. Other antioxidants, such as different isoforms and derivatives of vitamin E, BO-653 and deferoxamine mesylate, also exerted an inhibitory effect. However, the water-soluble antioxidants, such as ascorbic acid, N-acetyl cysteine, and glutathione, displayed no such effect. Dichlorodihydrofluorescein (DCF) assay revealed that cellular reactive oxygen species (ROS) increased before cell death, and sodium selenite and alpha-tocopherol inhibited ROS increase in a dose-dependent manner. The generation of lipid hydroperoxides was observed by fluorescence probe diphenyl-1-pyrenylphosphine (DPPP) and HPLC chemiluminescence only in selenium-deficient cells. These results suggest that the ROS, especially lipid hydroperoxides, are involved in the cell death caused by selenium deficiency and that selenium and vitamin E cooperate in the defense against oxidative stress upon cells by detoxifying and inhibiting the formation of lipid hydroperoxides.  相似文献   

17.
Intracellular glutathione (GSH) depletion induced by buthionine sulfoximine (BSO) caused cell death that seemed to be apoptosis in C6 rat glioma cells. Arachidonic acid (AA) promoted BSO-induced cell death by accumulating reactive oxygen species (ROS) or hydroperoxides. AA inhibited caspase-3 activation and internucleosomal DNA fragmentation during the BSO-induced GSH depletion. Furthermore, AA reduced intracellular ATP content, induced dysfunction of mitochondrial membrane and enhanced 8-hydroxy-2'-deoxyguanosine (8-OH-dG) production. There was significant increase of 12-lipoxygenase activity in the presence of AA under the BSO-induced GSH depletion in C6 cells. These results suggest that AA promotes cell death by changing to necrosis from apoptosis through lipid peroxidation initiated by lipid hydroperoxides produced by 12-lipoxygenase under the GSH depletion in C6 cells. Some ROS such as hydroperoxide produced by unknown pathway make hydroxy radicals and induce 8-OH-dG formation in the cells. The conversion of apoptosis to necrosis may be a possible event under GSH depleted conditions.  相似文献   

18.
Oxidative stress has been shown to underlie neuropathological aspects of Alzheimer's disease (AD). 4-Hydroxy-2-nonenal (HNE) is a highly reactive product of lipid peroxidation of unsaturated lipids. HNE-induced oxidative toxicity is a well-described model of oxidative stress-induced neurodegeneration. GSH plays a key role in antioxidant defense, and HNE exposure causes an initial depletion of GSH that leads to gradual toxic accumulation of reactive oxygen species. In the current study, we investigated whether pretreatment of cortical neurons with acetyl-L-carnitine (ALCAR) and alpha-lipoic acid (LA) plays a protective role in cortical neuronal cells against HNE-mediated oxidative stress and neurotoxicity. Decreased cell survival of neurons treated with HNE correlated with increased protein oxidation (protein carbonyl, 3-nitrotyrosine) and lipid peroxidation (HNE) accumulation. Pretreatment of primary cortical neuronal cultures with ALCAR and LA significantly attenuated HNE-induced cytotoxicity, protein oxidation, lipid peroxidation, and apoptosis in a dose-dependent manner. Additionally, pretreatment of ALCAR and LA also led to elevated cellular GSH and heat shock protein (HSP) levels compared to untreated control cells. We have also determined that pretreatment of neurons with ALCAR and LA leads to the activation of phosphoinositol-3 kinase (PI3K), PKG, and ERK1/2 pathways, which play essential roles in neuronal cell survival. Thus, this study demonstrates a cross talk among the PI3K, PKG, and ERK1/2 pathways in cortical neuronal cultures that contributes to ALCAR and LA-mediated prosurvival signaling mechanisms. This evidence supports the pharmacological potential of cotreatment of ALCAR and LA in the management of neurodegenerative disorders associated with HNE-induced oxidative stress and neurotoxicity, including AD.  相似文献   

19.
Several agents known to conjugate with glutathione (GSH) were administered to phenobarbital-induced rats resulting in a more or less pronounced depletion of hepatic GSH. In vitro incubations showed that a large enhancement of spontaneous lipid peroxidation was observed when the GSH content was below 1 μmol/g liver. This effect was inhibited by addition of exogenous GSH in a concentration-dependent manner, the GSH-concentration yielding 50% inhibition (I50) being 1 μM. Using phorone (diisopropylidene acetone), which proved to be the most potent GSH-depletor, the time- and dose-dependence of the GSH-depletion and the consequent lipid peroxidation was studied. Again it was assured that the GSH concentration must reach a critical value of about 20% of the initial hepatic GSH content, before an enhanced lipid peroxidation is seen. Employing scavengers of excited oxygen species no evidence was found for the involvement of free oxygen radicals. Hepatoprotective agents and inhibitors of mixed-function oxidases exerted a more or less pronounced inhibitory action. Our findings are further support of our previous postulate that GSH depletion per se might lead to an increased lipid peroxidation, possibly due to its lack as a part of the cellular defence system against endogenous toxic intermediates.  相似文献   

20.
Hepatocyte susceptibility to glyoxal is dependent on cell thiamin content   总被引:1,自引:0,他引:1  
Glyoxal, a reactive dicarbonyl, is detoxified primarily by the glyoxalase system utilizing glutathione (GSH) and by the aldo-keto reductase enzymes which utilizes NAD[P]H as the co-factor. Thiamin (Vitamin B(1)) is an essential coenzyme for transketolase (TK) that is part of the pentose phosphate pathway which helps maintain cellular NADPH levels. NADPH plays an intracellular role in regenerating glutathione (GSH) from oxidized GSH (GSSG), thereby increasing the antioxidant defenses of the cell. In this study we have focused on the prevention of glyoxal toxicity by supplementation with thiamin (3mM). Thiamin was cytoprotective and restored NADPH levels, glyoxal detoxification and mitochondrial membrane potential. Hepatocyte reactive oxygen species (ROS) formation, lipid peroxidation and GSH oxidation were decreased. Furthermore, hepatocytes were made thiamin deficient with oxythiamin (3mM) as measured by the decreased hepatocyte TK activity. Under thiamin deficient conditions a non-toxic dose of glyoxal (2mM) became cytotoxic and glyoxal metabolism decreased; while ROS formation, lipid peroxidation and GSH oxidation was increased.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号