首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Several studies have demonstrated the hybrid origin of Squalius alburnoides , a complex of diploid, triploid and tetraploid fish, with Squalius pyrenaicus as the maternal ancestor and an Anaecypris hispanica -like species as the paternal ancestor. The aim of this study was to assess patterns of genetic diversity and similarity between sympatric forms of the different ploidy levels of S. alburnoides and related parental species in the two largest basins that are part of its southern Iberian distribution, the Tejo and Guadiana, using microsatellites. High levels of genetic diversity were found in populations of S. alburnoides from both basins, reflecting the hybrid origin, the high diversity of forms in these river basins and the different modes of reproduction of the complex. Microsatellites indicated low values of genetic differentiation between the non-hybrid all-male form of S. alburnoides and A. hispanica , supporting the view that these forms share a common ancestor. In some instances, diploid and triploid hybrids from the same river basin were more closely related to each other than to their counterparts in the other basins, suggesting an ancient origin for the complex in these Iberian southern basins.  相似文献   

2.
Squalius alburnoides is a complex of minnows common to the Iberian Peninsula, consisting of two distinct forms. The most common form is comprised of diploid and polyploid asexual hybrids heterozygous for several diagnostic allozyme loci contributed by Squalius pyrenaicus or Squalius carolitertii and a missing ancestor. The other form is diploid and homozygous for the allele contributed by the missing ancestor at these same loci. Present results from analyses of sex ratio and cytochrome b sequences are not consistent with the evolutionary distinctiveness of this non-hybrid form and suggest that it represents an all-male lineage imbedded within an almost all-female complex. This all-male lineage allowed preservation of the ancestral paternal nuclear genome after the paternal ancestor became extinct in all or most drainages, withimportant evolutionary implications.  相似文献   

3.
The Iberian minnow Leuciscus alburnoides represents a complex of diploid and polyploid forms with altered modes of reproduction. In the present paper, we review the recent data on the origin, reproductive modes, and inter-relationships of the various forms of the complex, in order to predict its evolutionary potential. The complex follows the hybrid-origin model suggested for most other asexual vertebrates. Diploid and triploid females from the southern river basins exhibit reproductive modes that cannot be conveniently placed into the categories generally recognised for these vertebrate complexes, which imply continuous shifting between forms, where genomes derived from both parental ancestors are cyclically lost, gained or replaced. Replacement of nuclear genomes allow the introduction of novel genetic material, that may compensate for the disadvantages of asexual reproduction. Contrasting with most other vertebrate complexes, L. alburnoides males are fertile and play an important role in the dynamics of the complex. Moreover, diploid hybrid males may have initiated a tetraploidization process, when a diploid clonal sperm fertilised a diploid egg. This direct route to tetraploidy by originating fish with the right constitution for normal meiosis (symmetric), may eventually lead to a new sexually reproducing polyploid species. This case-study reinforces the significance of hybridisation and polyploidy in evolution and diversification of vertebrates.  相似文献   

4.
The hybrid minnow Rutilus alburnoides comprises diploid and polyploid females and males. Previous studies revealed that diploid and triploid females exhibit altered oogenesis that does not involve random segregation and recombination of the genomes of the two ancestors, constituting unisexual lineages. In the present study, we investigated the reproductive mode of hybrid males from the Tejo basin, using experimental crosses and flow cytometric analysis of blood and sperm. The results suggest that diploid hybrids produced fertile unreduced sperm, transmitting their hybrid genome intact to offspring. Triploid hybrids also produced unreduced sperm, but it was not possible to obtain data concerning their fertility. Finally, tetraploid hybrids produced fertile diploid sperm, which exhibited Mendelian segregation. Tetraploid R. alburnoides may reestablish biparental reproduction, as individuals of both sexes with the appropriate constitution for normal meiosis (two haploid genomes from each parental species) are likely to occur in natural populations. Tetraploids probably have arisen from syngamy of diploid eggs and diploid sperm produced by diploid hybrid males. Diploid hybrid males may therefore play a significant role in the dynamics of the complex, starting the evolutionary process that may ultimately lead to a new sexually reproducing species.  相似文献   

5.
The hybrid minnow Squalius alburnoides comprises diploid and polyploid forms with altered modes of reproduction. In the present paper, we report a cross where a triploid female generated both large, triploid and small, haploid eggs simultaneously, which were fertilized with S. pyrenaicus sperm. Although the large eggs were rarer (15%), they originated offspring with higher survivorship, so that tetraploids were dominant among the surviving siblings. The cross yielded apparently all female progeny. Inheritance patterns were inferred using four microsatellite markers and NORs (Nucleolus Organizer Regions) phenotypes, and suggested that haploid eggs were probably produced by an atypical hybridogenesis, in which the elimination of the unmatched genome permitted random segregation and recombination between the homospecific genomes, while the triploid eggs were clonal. The present results suggest that the occurrence of triploid unreduced eggs may be a new route for the natural tetraploidization in the complex.  相似文献   

6.
The endemic Iberian minnow Squalius alburnoides is a complex of fishes of hybrid origin including both males and females with distinct ploidy levels and varying proportions of the parental genomes. In this paper we demonstrated that in contrast to many vertebrate hybrid lineages the sperm of triploid hybrid males of S. alburnoides is viable and fully functional. Flow cytometry and analysis of sequences of a fragment of the beta-actin nuclear gene applied to progenitors and offspring evidenced that these males produced their sperm clonally, as already described for diploid hybrids. The presence of different types of fertile males (nonhybrid diploids with normal meiosis and both diploid and triploid hybrids) coupled with hybridogenetic meiosis in females endows this vertebrate complex with a high level of independence from other species and contributes to maintain its genetic variability.  相似文献   

7.
The generic position of the Iberian unisexual fish complex alburnoides is reassessed based on genetic evidence of a hybrid ancestry and of a monophyletic relationship with endemic Leuciscus taxa. There is a continuous movement of genes between the different forms of the complex and the main mode of reproduction is by meiotic hybridogenesis. Thus its return to the original generic position Leuciscus is recommended. © 1999 The Fisheries Society of the British Isles  相似文献   

8.
Polyploidy, hybridization and variation in mating systems are central issues for a deeper understanding of animal evolution. The Iberian species Squalius alburnoides represents an example combining all three phenomena. Previous studies showed that S. alburnoides populations are mainly composed of triploid and diploid hybrid forms (mainly females), and that the tetraploid forms are rare or absent. Both populations from the Douro drainage reveal a distinct scenario: tetraploid individuals represent 85.6-97.5% of the population, with no sex ratio bias observed. Based on the flow cytometry measurements of blood and spermatozoa cells, microsatellite loci and experimental crosses, we describe here, for the first time, two symmetric allotetraploid populations (CCAA) that resumed normal meiosis after undergoing intermediate processes of non-sexual reproduction to give rise to a new sexually reproducing polyploid species. Prezygotic (habitat selection and assortative mating) and postzygotic mechanisms (nonviable embryos) are responsible for the reproductive isolation from other forms of the S. alburnoides complex (e.g. CA, CAA). This example illustrates how hybrid polyploid complexes may lead to speciation.  相似文献   

9.
The karyotype of the endangered fish Anaecypris hispanica was revisited using advanced cytogenetic techniques to elucidate its putative relationship with the paternal ancestor of the hybrid complex Squalius alburnoides and to clarify some of the recently described cytogenetic patterns of the complex. The results of chromomycin A3 and Ag staining, as well as fluorescent in situ hybridization with 28S and 5S rDNA and the (TTAGGG)n telomeric probes, were compared with the patterns observed in specimens of the all-male nonhybrid lineage of S. alburnoides complex, which is considered to reconstitute the nuclear genome of the probably extinct paternal ancestor. Several cytogenetic features observed in A. hispanica specimens were indeed shared by S. alburnoides nuclear nonhybrid males, supporting the hypothesis of a close evolutionary link between A. hispanica and the paternal ancestor of the complex. The genomic rearrangements involving 28S rDNA sites previously described in the S. alburnoides complex and in its maternal ancestor (S. pyrenaicus) were not detected in A. hispanica; they are, therefore, probably due to mechanisms related to hybridization and polyploidy.  相似文献   

10.
The Squalius alburnoides complex was produced by hybridization between female S. pyrenaicus (PP genome) and an hypothetical paternal ancestor related with Anaecypris hispanica (AA genome). This study examined a diversity of mating types and found that there is the potential for considerable gene exchange among diploid, triploid and tetraploid hybrids. Using microsatellites, genomes were attributed to Squalius pyrenaicus (P) or reconstituted “nuclear non-hybrid” S. alburnoides (A), and subsequently confirmed in hybrids. Recombination of AA genomes in the “nuclear non-hybrid males” and recombination of the homogametic genomes (AA or PP) after exclusion of the heterogametic genome in triploid females (PAA) were observed by analysing parents and progeny of breeding experiments. Reproduction of tetraploids, generating a symmetric tetraploid genotype (PPAA) in the progeny, suggests a process that could potentially lead to the formation of a new bisexual species. Present results also support: (i) previously hypothesized pathways, in which PPA S. alburnoides females exclude the A genome, exhibit meiotic recombination between the P genomes and generate haploid eggs; (ii) reconstitution of the diploid maternal ancestor genome (PP) as well as of the unknown paternal ancestor (AA); (iii) the occurrence of the same genomic reproductive mechanisms when Anaecypris hispanica is involved; and (iv) the existence of an A. hispanica-like ancestor as the paternal ancestor of S. alburnoides.  相似文献   

11.
Liu S  Qin Q  Xiao J  Lu W  Shen J  Li W  Liu J  Duan W  Zhang C  Tao M  Zhao R  Yan J  Liu Y 《Genetics》2007,176(2):1023-1034
This study provides genetic evidences at the chromosome, DNA content, DNA fragment and sequence, and morphological levels to support the successful establishment of the polyploid hybrids of red crucian carp x blunt snout bream, which belonged to a different subfamily of fish (Cyprininae subfamily and Cultrinae subfamily) in the catalog. We successfully obtained the sterile triploid hybrids and bisexual fertile tetraploid hybrids of red crucian carp (RCC) (female symbol) x blunt snout bream (BSB) (male symbol) as well as their pentaploid hybrids. The triploid hybrids possessed 124 chromosomes with two sets from RCC and one set from BSB; the tetraploid hybrids had 148 chromosomes with two sets from RCC and two sets from BSB. The females of tetraploid hybrids produced unreduced tetraploid eggs that were fertilized with the haploid sperm of BSB to generate pentaploid hybrids with 172 chromosomes with three sets from BSB and two sets from RCC. The ploidy levels of triploid, tetraploid, and pentaploid hybrids were confirmed by counting chromosomal number, forming chromosomal karyotype, and measuring DNA content and erythrocyte nuclear volume. The similar and different DNA fragments were PCR amplified and sequenced in triploid, tetraploid hybrids, and their parents, indicating their molecular genetic relationship and genetic markers. In addition, this study also presents results about the phenotypes and feeding habits of polyploid hybrids and discusses the formation mechanism of the polyploid hybrids. It is the first report on the formation of the triploid, tetraploid, and pentaploid hybrids by crossing parents with a different chromosome number in vertebrates. The formation of the polyploid hybrids is potentially interesting in both evolution and fish genetic breeding.  相似文献   

12.
The Squalius alburnoides complex (Steindachner) is one of the most intricate hybrid polyploid systems known in vertebrates. In this complex, the constant switch of the genome composition in consecutive generations, very frequently involving a change on the ploidy level, promotes repetitive situations of potential genomic shock. Previously in this complex, it was showed that in response to the increase in genome dosage, triploids hybrids could regulate gene expression to a diploid state. In this work we compared the small RNA profiles in the different genomic compositions interacting in the complex in order to explore the miRNA involvement in gene expression regulation of triploids. Using high-throughput arrays and sequencing technologies we were able to verify that diploid and triploid hybrids shared most of their sequences and their miRNA expression profiles were high correlated. However, an overall view indicates an up-regulation of several miRNAs in triploids and a global miRNA expression in triploids higher than the predicted from an additive model. Those results point to a participation of miRNAs in the cellular functional stability needed when the ploidy change.  相似文献   

13.
从ATPase8-6基因研究杂交多倍体鱼线粒体母性遗传   总被引:3,自引:0,他引:3  
郭新红  刘少军  刘筠 《动物学报》2004,50(3):408-413
异源四倍体鲫鲤是世界上首例人工培育的两性可育并形成群体的且能自然繁殖的四倍体鱼。本文采用质粒克隆测序法测定了红鲫、异源四倍体鲫鲤、三倍体湘云鲫和三倍体湘云鲤的ATPase8和ATPase6基因全序列 ,结合鲤鱼、日本白鲫和斑马鱼的同源序列 ,对不同倍性水平鲤科鱼类的ATPase8和ATPase6基因进行了比较 ,分析了碱基组成、变异情况以及核苷酸和氨基酸序列差异。红鲫、鲤鱼、异源四倍体鲫鲤、日本白鲫、三倍体湘云鲫和三倍体湘云鲤之间的序列差异为 0 0 % - 1 3 4 % ,它们与外群斑马鱼之间的序列差异为 2 7 9% -31 0 %。用MEGA软件中的MP法、ME法、NJ法和UPGMA法构建分子系统树 ,得到了相似的拓扑结构。结果分析表明 ,人工杂交多倍体异源四倍体鲫鲤、三倍体湘云鲫和三倍体湘云鲤在线粒体ATPase8和ATPase6基因上具有严格的母性遗传特征。值得注意的是 ,异源四倍体鲫鲤经过 1 1代的繁育后 ,与其原始母本红鲫仍然保持了非常高的同源性 ,说明了新的异源四倍体基因库在线粒体ATPase8和ATPase6基因上拥有稳定的遗传特性。对不同倍性鲤科鱼类线粒体ATPase8和ATPase6基因的研究表明 ,ATPase8和ATPase6基因是杂交鱼后代遗传变异研究的一个很好的分子标记  相似文献   

14.
鲤鲫人工多倍体谱系中同工酶和蛋白的基因表达   总被引:7,自引:0,他引:7  
通过对红鲤、红鲫、镜鲤、鲤鲫杂种二倍体一代,二代,鲤鲫杂种三倍体,鲤鲫复合三倍体,鲤鲫杂种四倍体一代,二代的同工酶及蛋白电泳谱型和扫描数据分析表明,在鲤鲫人工多倍体谱系中,亲代的等位基因在杂交子代中共有四种表达模式;(1)两亲本基因在子代中共同表达,即共显表达;(2)父本的基因表达受到部分或完全的抑制,即母本的基因优先得到表达;(3)母本的基因表达受到抑制,父本的基因得到表达;(4)双亲本的基因表达均受到一定程度的抑制或都不表达。其中第一种表达模式是主要的模式。根据以上基因在杂交子代中的表达特点,可用同工酶和蛋白电泳图谱将鲤鲫人工多倍体谱系的各种生物型逐一加以区分。  相似文献   

15.
Rutilus alburnoides complex is a common and widely distributed Iberian cyprinid, whose natural populations include mainly diploid and triploid forms. The Guadiana populations of R. alburnoides were studied to determine whether habitat segregation and morphological differences exist between these forms. The ploidy level of each specimen was determined by measuring erythrocyte DNA content using flow cytometry. Evidence of spatial segregation between diploid males and the two female forms was found. Diploid males were best represented in the River Degebe, which was shallow, with higher temperatures (especially during the spring and summer), and silt and sandy substrate. Diploid females were found in deeper water, on steeper gradients and coarse substrata, while triploid females preferred higher current velocity and a high proportion of instream cover, especially during the spring. The ecological differences may reduce competitive interactions, and should promote a stable coexistence of the different forms. Morphological distinction between fish of different ploidy levels was not established, but differences were found between the males and females. Discriminant analysis allowed, with a 10% error, the separation of both sexes through six morphological characteristics that could be recorded in the field.  相似文献   

16.
Jakovlić I  Gui JF 《Genetica》2011,139(6):789-804
Carassius auratus is an invasive species in European waters, comprising a complex of diploid and polyploid forms with different modes of reproduction. However, the evolutionary history and relationships between the diploids and polyploids are still unresolved. In this study, 51.5% diploids and 48.5% triploids, including four triploid males, were discovered among the 363 individuals sampled in Croatia. We used eight microsatellite loci and mitochondrial displacement loop sequences to analyze the structure and origin of populations; and to attempt to infer the evolutionary history of the two different forms in Croatia. Microsatellite analyses revealed high allelic and clonal diversity, corroborating that high propagule vectors can compensate for the negative effects of genetic bottlenecks in successful invasive species. The absence of significant population structuring confirmed recent origin and rapid spreading of populations. No evidence was found for the existence of native European populations. Distances between individuals using both nuclear and mtDNA markers revealed the absence of substantial clustering on the ploidy level, while the split between the different ploidies on population level was only partial, suggesting that the reproductive isolation between the two forms is either of a very recent origin, or that there exists uni-, or bidirectional gene flow between the diploid and triploid forms.  相似文献   

17.
The increased interest in asexual organisms calls for in-depth studies of asexual complexes that actively give rise to new clones. We present an extensive molecular study of the Otiorhynchus scaber (Coleoptera, Curculionidae) weevil system. Three forms have traditionally been recognized: diploid sexuals, triploid, and tetraploid parthenogens. All forms coexist in a small central area, but only the polyploid parthenogens have colonized marginal areas. Analyzing the phylogenetic relationship, based on three partial mitochondrial genes, of 95 individuals from 19 populations, we find that parthenogenesis and polyploidy have originated at least three times from different diploid lineages. We observe two major mitochondrial lineages, with over 2.5% sequence divergence between the most basal groups within them, and find that current distribution and phylogenetic relationships are weakly correlated. Quite unexpectedly, we also discover diploid clones that coexist with, and are morphologically indistinguishable from, the diploid sexual females. Our results support that these diploid clones are derived directly from the diploid sexuals. We also find that it is mainly an increase in ploidy level and not the benefits of asexual reproduction that confers to polyploid parthenogens the advantage over their diploid sexual relatives.  相似文献   

18.
Guo X  Liu S  Liu Y 《Genetics》2006,172(3):1745-1749
In this study, we report the complete mitochondrial DNA (mtDNA) sequences of the allotetraploid and triploid crucian carp and compare the complete mtDNA sequences between the triploid crucian carp and its female parent Japanese crucian carp and between the triploid crucian carp and its male parent allotetraploid. Our results indicate that the complete mtDNA nucleotide identity (98%) between the triploid crucian carp and its male parent allotetraploid was higher than that (93%) between the triploid crucian carp and its female parent Japanese crucian carp. Moreover, the presence of a pattern of identity and difference at synonymous sites of mitochondrial genomes between the triploid crucian carp and its parents provides direct evidence that triploid crucian carp possessed the recombination mtDNA fragment (12,759 bp) derived from the paternal fish. These results suggest that mtDNA recombination was derived from the fusion of the maternal and paternal mtDNAs. Compared with the haploid egg with one set of genome from the Japanese crucian carp, the diploid sperm with two sets of genomes from the allotetraploid could more easily make its mtDNA fuse with the mtDNA of the haploid egg. In addition, the triple hybrid nature of the triploid crucian carp probably allowed its better mtDNA recombination. In summary, our results provide the first evidence of mtDNA combination in polyploid fish.  相似文献   

19.
The proportion of polyploid plant species increases at higher latitudes, and it has been suggested that original postglacial Arctic immigrants of some large groups, including grasses, were polyploid. We analyzed noncoding nuclear and chloroplast DNA of all North American diploid Puccinellia (Poaceae) and a subset of arctic polyploids to hypothesize evolutionary relationships among diploids and to evaluate the parentage of polyploids. Diploids formed three lineages: one uniting arctic species P. arctica and P. banksiensis; a second comprising arctic species P. tenella, P. alaskana, P. vahliana, and P. wrightii; and a third uniting the two temperate species P. lemmonii and P. parishii. The arctic species P. angustata (hexaploid) and P. andersonii (primarily octoploid) apparently derive from the P. arctica-P. banksiensis lineage based on ITS and chloroplast sequences, and share an ancestor with arctic triploid/tetraploid P. phryganodes based on nrDNA sequences. Sequence comparisons also suggest tetraploid P. bruggemannii evolved from two arctic lineages: P. vahliana-P. wrightii and P. arctica-P. banksiensis. These patterns and the predominance of arctic rather than temperate diploid species support the idea that diploid Puccinellia recolonized the Arctic from northern glacial refugia like Beringia, and also formed stabilized polyploid hybrids during these refugial events or subsequently during postglacial colonization.  相似文献   

20.
远缘杂交形成的二倍体鱼和多倍体鱼生殖细胞染色体研究   总被引:3,自引:0,他引:3  
本文采用性腺染色体制片及组织学切片方法,系统地研究了不同发育时期的鲫鲤杂交第二代(F2) (2n=100)、异源四倍体鲫鲤(4n=200)、三倍体鲫鱼(3n=150))、雌核发育二倍体鲫鲤第二代(G2)(2n=100)及鲤鱼(Cypninus carpio L)(2n=100)(对照组)生殖细胞的染色体特征.研究结果表明,对照组中鲤鱼精原细胞染色体数与体细胞染色体数一致,为二倍体精原细胞(2n=100),而远缘杂交形成的二倍体鱼和多倍体鱼的生殖细胞中则观察到明显的染色体数加倍现象,其中,鲫鲤杂交第二代(F2)精巢生殖细胞染色体数加倍现象特别丰富,占检测的染色体分裂相的21.6%,为其产生不减半的二倍体配子提供了直接的细胞学证据,同时也说明远缘杂交是导致生殖细胞染色体数加倍的一个重要因素.该研究在探讨多倍体鱼的发生及鱼类遗传育种方面具有重要意义.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号