首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background  

Animal mitochondrial introns are rare. In sponges and cnidarians they have been found in the cox 1 gene of some spirophorid and homosclerophorid sponges, as well as in the cox 1 and nad 5 genes of some Hexacorallia. Their sporadic distribution has raised a debate as to whether these mobile elements have been vertically or horizontally transmitted among their hosts. The first sponge found to possess a mitochondrial intron was a spirophorid sponge from the Tetillidae family. To better understand the mode of transmission of mitochondrial introns in sponges, we studied cox 1 intron distribution among representatives of this family.  相似文献   

2.

Background  

Major modifications to the pharyngeal jaw apparatus are widely regarded as a recurring evolutionary key innovation that has enabled adaptive radiation in many species-rich clades of percomorph fishes. However one of the central predictions of this hypothesis, that the acquisition of a modified pharyngeal jaw apparatus will be positively correlated with explosive lineage diversification, has never been tested. We applied comparative methods to a new time-calibrated phylogeny of labrid fishes to test whether diversification rates shifted at two scales where major pharyngeal jaw innovations have evolved: across all of Labridae and within the subclade of parrotfishes.  相似文献   

3.

Aim

Diversity dynamics remain controversial. Here, we examine these dynamics, together with the ecological factors governing them, across mammalian clades of different ages and sizes, representing different phylogenetic scales. Specifically, we investigate whether the dynamics are bounded or unbounded, biotically or abiotically regulated, stochastic or ecologically deterministic.

Location

Worldwide.

Time period

150 Myr.

Major taxa studied

Mammals.

Methods

Integrating the newest phylogenetic and distributional data by means of several distinct methods, we study the ecology of mammalian diversification within a predictive framework, inspired by classic theory. Specifically, we evaluate the effects of several classes of factors, including climate, topography, geographical area, rates of climatic‐niche evolution, and regional coexistence between related and unrelated species. Next, we determine whether the relative effects of these factors change systematically across clades representing different phylogenetic scales.

Results

We find that young clades diversify at approximately constant rates, medium‐sized clades show diversification slowdowns, and large clades are mostly saturated, suggesting that diversification dynamics change as clades grow and accumulate species. We further find that diversification slowdowns intensify with the degree of regional coexistence between related species, presumably because increased competition for regional resources suppresses the diversification process. The richness at which clades eventually saturate depends on climate; clades residing in tropical climates saturate at low richness, implying that niches become progressively densely packed towards the tropics.

Main conclusions

The diversification process is influenced by a variety of ecological factors, whose relative effects change across phylogenetic scales, producing scale‐dependent dynamics. Different segments of the same phylogeny might therefore support seemingly conflicting results (bounded or unbounded, biotically or abiotically regulated, stochastic or ecologically deterministic diversification), which might have contributed to several outstanding controversies in the field. These conflicts can be reconciled, however, when accounting for phylogenetic scale, which might, in turn, produce a more integrated understanding of global diversity dynamics.  相似文献   

4.

Background  

Past studies in the legume family (Fabaceae) have uncovered several evolutionary trends including differential mutation and diversification rates across varying taxonomic levels. The legume tribe Psoraleeae is shown herein to exemplify these trends at the generic and species levels. This group includes a sizable diversification within North America dated at approximately 6.3 million years ago with skewed species distribution to the most recently derived genus, Pediomelum, suggesting a diversification rate shift. We estimate divergence dates of North American (NAm) Psoraleeae using Bayesian MCMC sampling in BEAST based on eight DNA regions (ITS, waxy, matK, trnD-trnT, trnL-trnF, trnK, trnS-trnG, and rpoB-trnC). We also test the hypothesis of a diversification rate shift within NAm Psoraleeae using topological and temporal methods. We investigate the impact of climate change on diversification in this group by (1) testing the hypothesis that a shift from mesic to xeric habitats acted as a key innovation and (2) investigating diversification rate shifts along geologic time, discussing the impact of Quaternary climate oscillations on diversification.  相似文献   

5.

Background  

Molecular studies have revealed that many putative 'species' are actually complexes of multiple morphologically conservative, but genetically divergent 'cryptic species'. In extreme cases processes such as non-adaptive diversification (speciation without divergent selection) could mask the existence of ancient lineages as divergent as ecologically and morphologically diverse radiations recognised as genera or even families in related groups. The identification of such ancient, but cryptic, lineages has important ramifications for conservation, biogeography and evolutionary biology. Herein, we use an integrated multilocus genetic dataset (allozymes, mtDNA and nuclear DNA) to test whether disjunct populations of the widespread nominal Australian gecko species Crenadactylus ocellatus include distinct evolutionary lineages (species), and to examine the timing of diversification among these populations.  相似文献   

6.

Background  

Rodent and primate pregnancy-specific glycoprotein (PSG) gene families have expanded independently from a common ancestor and are expressed virtually exclusively in placental trophoblasts. However, within each species, it is unknown whether multiple paralogs have been selected for diversification of function, or for increased dosage of monofunctional PSG. We analysed the evolution of the mouse PSG sequences, and compared them to rat, human and baboon PSGs to attempt to understand the evolution of this complex gene family.  相似文献   

7.

Background  

Cichlid fishes are classic examples of adaptive radiation because of their putative tendency to explosively diversify after invading novel environments. To examine whether ecological opportunity increased diversification (speciation minus extinction) early in a species-rich cichlid radiation, we determined if Heroine cichlids experienced a burst of diversification following their invasion of Central America.  相似文献   

8.

Background  

A full understanding of the patterns and processes of biological diversification requires the dating of evolutionary events, yet the fossil record is inadequate for most lineages under study. Alternatively, a molecular clock approach, in which DNA or amino acid substitution rates are calibrated with fossils or geological/climatic events, can provide indirect estimates of clade ages and diversification rates. The utility of this approach depends on the rate constancy of molecular evolution at a genetic locus across time and across lineages. Although the nuclear ribosomal internal transcribed spacer region (nrITS) is increasingly being used to infer clade ages in plants, little is known about the sources or magnitude of variation in its substitution rate. Here, we systematically review the literature to assess substitution rate variation in nrITS among angiosperms, and we evaluate possible correlates of the variation.  相似文献   

9.

Background and Aims

Tecophilaeaceae (27 species distributed in eight genera) have a disjunct distribution in California, Chile and southern and tropical mainland Africa. Moreover, although the family mainly occurs in arid ecosystems, it has colonized three Mediterranean-type ecosystems. In this study, the spatio-temporal history of the family is examined using DNA sequence data from six plastid regions.

Methods

Modern methods in divergence time estimation (BEAST), diversification (LTT and GeoSSE) and biogeography (LAGRANGE) are applied to infer the evolutionary history of Tecophilaeaceae. To take into account dating and phylogenetic uncertainty, the biogeographical inferences were run over a set of dated Bayesian trees and the analyses were constrained according to palaeogeographical evidence.

Key Results

The analyses showed that the current distribution and diversification of the family were influenced primarily by the break up of Gondwana, separating the family into two main clades, and the establishment of a Mediterranean climate in Chile, coinciding with the radiation of Conanthera. Finally, unlike many other groups, no shifts in diversification rates were observed associated with the dispersals in the Cape region of South Africa.

Conclusions

Although modest in size, Tecophilaeaceae have a complex spatio-temporal history. The family is now most diverse in arid ecosystems in southern Africa, but is expected to have originated in sub-tropical Africa. It has subsequently colonized Mediterranean-type ecosystems in both the Northern and Southern Hemispheres, but well before the onset of the Mediterranean climate in these regions. Only one lineage, genus Conanthera, has apparently diversified to any extent under the impetus of a Mediterranean climate.  相似文献   

10.

Aims  

The purpose of this study was to examine HRQOL depending on whether the participants have family members with disabilities or not. In addition, we examined the relationship between HRQOL and social networks among family caregivers in Japan.  相似文献   

11.

Aim

Patterns of evolutionary relatedness among co-occurring species are driven by scale-dependent contemporary and historical processes. Yet, we still lack a detailed understanding of how these drivers impact the phylogenetic structure of biological communities. Here, we focused on bats (one of the most species-rich and vagile groups of mammals) and tested the predictions of three general biogeographical hypotheses that are particularly relevant to understanding how palaeoclimatic stability, local diversification rates and geographical scales shaped their present-day phylogenetic community structure.

Location

World-wide, across restrictive geographical extents: global, east–west hemispheres, biogeographical realms, tectonic plates, biomes and ecoregions.

Time period

Last Glacial Maximum (~22,000 years ago) to the present.

Major taxa studied

Bats (Chiroptera).

Methods

We estimated bat phylogenetic community structure across restrictive geographical extents and modelled it as a function of palaeoclimatic stability and in situ net diversification rates.

Results

Limiting geographical extents from larger to smaller scales greatly changed the phylogenetic structure of bat communities. The magnitude of these effects is less noticeable in the western hemisphere, where frequent among-realm biota interchange could have been maintained through the adaptive traits of bats. Bat communities with high phylogenetic relatedness are generally more common in regions that have changed less in climate since the Last Glacial Maximum, supporting the expectation that stable climates allow for increased phylogenetic clustering. Finally, increased in situ net diversification rates are associated with greater phylogenetic clustering in bat communities.

Main conclusions

We show that the world-wide phylogenetic structure of bat assemblages varies as a function of geographical extents, dispersal barriers, palaeoclimatic stability and in situ diversification. The integrative framework used in our study, which can be applied to other taxonomic groups, has not only proved useful to explain the evolutionary dynamics of community assembly, but could also help to tackle questions related to scale dependence in community ecology and biogeography.  相似文献   

12.

Background  

It is hypothesized that one of the mechanisms promoting diversification in cichlid fishes in the African Great Lakes has been the well-documented pattern of philopatry along shoreline habitats leading to high levels of genetic isolation among populations. However lake habitats are not the only centers of cichlid biodiversity - certain African rivers also contain large numbers of narrowly endemic species. Patterns of isolation and divergence in these systems have tended to be overlooked and are not well understood.  相似文献   

13.

Background

Adaptation of mammals to terrestrial life was facilitated by the unique vertebrate trait of body hair, which occurs in a range of morphological patterns. Keratin associated proteins (KRTAPs), the major structural hair shaft proteins, are largely responsible for hair variation.

Results

We exhaustively characterized the KRTAP gene family in 22 mammalian genomes, confirming the existence of 30 KRTAP subfamilies evolving at different rates with varying degrees of diversification and homogenization. Within the two major classes of KRTAPs, the high cysteine (HS) subfamily experienced strong concerted evolution, high rates of gene conversion/recombination and high GC content. In contrast, high glycine-tyrosine (HGT) KRTAPs showed evidence of positive selection and low rates of gene conversion/recombination. Species with more hair and of higher complexity tended to have more KRATP genes (gene expansion). The sloth, with long and coarse hair, had the most KRTAP genes (175 with 141 being intact). By contrast, the “hairless” dolphin had 35 KRTAPs and the highest pseudogenization rate (74% relative to the 19% mammalian average). Unique hair-related phenotypes, such as scales (armadillo) and spines (hedgehog), were correlated with changes in KRTAPs. Gene expression variation probably also influences hair diversification patterns, for example human have an identical KRTAP repertoire as apes, but much less hair.

Conclusions

We hypothesize that differences in KRTAP gene repertoire and gene expression, together with distinct rates of gene conversion/recombination, pseudogenization and positive selection, are likely responsible for micro and macro-phenotypic hair diversification among mammals in response to adaptations to ecological pressures.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-779) contains supplementary material, which is available to authorized users.  相似文献   

14.

Background  

Plant-feeding insects make up a large part of earth's total biodiversity. While it has been shown that herbivory has repeatedly led to increased diversification rates in insects, there has been no compelling explanation for how plant-feeding has promoted speciation rates. There is a growing awareness that ecological factors can lead to rapid diversification and, as one of the most prominent features of most insect-plant interactions, specialization onto a diverse resource has often been assumed to be the main process behind this diversification. However, specialization is mainly a pruning process, and is not able to actually generate diversity by itself. Here we investigate the role of host colonizations in generating insect diversity, by testing if insect speciation rate is correlated with resource diversity.  相似文献   

15.
16.

Background  

Members of the pacifastin family are serine peptidase inhibitors, most of which are produced as multi domain precursor proteins. Structural and biochemical characteristics of insect pacifastin-like peptides have been studied intensively, but only one inhibitor has been functionally characterised. Recent sequencing projects of metazoan genomes have created an unprecedented opportunity to explore the distribution, evolution and functional diversification of pacifastin genes in the animal kingdom.  相似文献   

17.

Background and Aims

Oil-producing flowers related to oil-bee pollination are a major innovation in Neotropical and Mexican Iridaceae. In this study, phylogenetic relationships were investigated among a wide array of New World genera of the tribes Sisyrinchieae, Trimezieae and Tigridieae (Iridaceae: Iridoideae) and the evolution of floral glandular structures, which are predominantly trichomal elaiophores, was examined in relation to the diversification of New World Iridaceae.

Methods

Phylogenetic analyses based on seven molecular markers obtained from 97 species were conducted to produce the first extensive phylogeny of the New World tribes of subfamily Iridoideae. The resulting phylogenetic hypothesis was used to trace the evolutionary history of glandular structures present in the flowers of numerous species in each tribe. Hypotheses of differential diversification rates among lineages were also investigated using both topological and Binary-State Speciation and Extinction methods.

Key Results and Conclusions

Floral glandular structures and especially trichomal elaiophores evolved multiple times independently in the American tribes of Iridoideae. The distribution pattern of species displaying glandular trichomes across the phylogeny reveals lability in the pollination system and suggests that these structures may have played a significant role in the diversification of the Iridoideae on the American continent.  相似文献   

18.

Introduction  

Although systemic autoimmune diseases (SAID) share many clinical and laboratory features, whether they also share some common features of pathogenesis remains unclear. We assessed plasma proteomic profiles among different SAID for evidence of common molecular pathways that could provide insights into pathogenic mechanisms shared by these diseases.  相似文献   

19.

Background  

A positive relationship between diversification (i.e., speciation) and nucleotide substitution rates is commonly reported for angiosperm clades. However, the underlying cause of this relationship is often unknown because multiple intrinsic and extrinsic factors can affect the relationship, and these have confounded previous attempts infer causation. Determining which factor drives this oft-reported correlation can lend insight into the macroevolutionary process.  相似文献   

20.

Background  

In the large angiosperm order Lamiales, a diverse array of highly specialized life strategies such as carnivory, parasitism, epiphytism, and desiccation tolerance occur, and some lineages possess drastically accelerated DNA substitutional rates or miniaturized genomes. However, understanding the evolution of these phenomena in the order, and clarifying borders of and relationships among lamialean families, has been hindered by largely unresolved trees in the past.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号