首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
An Aspergillus parasiticus gene, designated apa-2, was identified as a regulatory gene associated with aflatoxin biosynthesis. The apa-2 gene was cloned on the basis of overproduction of pathway intermediates following transformation of fungal strains with cosmid DNA containing the aflatoxin biosynthetic genes nor-1 and ver-1. Transformation of an O-methylsterigmatocystin-accumulating strain, A. parasiticus SRRC 2043, with a 5.5-kb HindIII-XbaI DNA fragment containing apa-2 resulted in overproduction of all aflatoxin pathway intermediates analyzed. Specific enzyme activities associated with the conversion of norsolorinic acid and sterigmatocystin were increased approximately twofold. The apa-2 gene was found to complement an A. flavus afl-2 mutant strain for aflatoxin production, suggesting that apa-2 is functionally homologous to afl-2. Comparison of the A. parasiticus apa-2 gene DNA sequence with that of the A. flavus afl-2 gene (G. A. Payne, G. J. Nystorm, D. Bhatnagar, T. E. Cleveland, and C. P. Woloshuk, Appl. Environ. Microbiol. 59:156-162, 1993) showed that they shared > 95% DNA homology. Physical mapping of cosmid subclones placed apa-2 approximately 8 kb from ver-1.  相似文献   

2.
Aspergillus flavus mutant strain 649, which has a genomic DNA deletion of at least 120 kb covering the aflatoxin biosynthesis cluster, was transformed with a series of overlapping cosmids that contained DNA harboring the cluster of genes. The mutant phenotype of strain 649 was rescued by transformation with a combination of cosmid clones 5E6, 8B9, and 13B9, indicating that the cluster of genes involved in aflatoxin biosynthesis resides in the 90 kb of A. flavus genomic DNA carried by these clones. Transformants 5E6 and 20B11 and transformants 5E6 and 8B9 accumulated intermediate metabolites of the aflatoxin pathway, which were identified as averufanin and/or averufin, respectively.These data suggest that avf1, which is involved in the conversion of averufin to versiconal hemiacetal acetate, was present in the cosmid 13B9. Deletion analysis of 13B9 located the gene on a 7-kb DNA fragment of the cosmid. Transformants containing cosmid 8B9 converted exogenously supplied O-methylsterigmatocystin to aflatoxin, indicating that the oxidoreductase gene (ord1), which mediates the conversion of O-methylsterigmatocystin to aflatoxin, is carried by this cosmid. The analysis of transformants containing deletions of 8B9 led to the localization of ord1 on a 3.3-kb A. flavus genomic DNA fragment of the cosmid.  相似文献   

3.
An unusual mutation at the afl-1 locus, affecting aflatoxin biosynthesis in Aspergillus flavus 649, was investigated. The inability of strain 649 to produce aflatoxin was found to be the result of a large (greater than 60 kb) deletion that included a cluster of aflatoxin biosynthesis genes. Diploids formed by parasexual crosses between strain 649 and the aflatoxigenic strain 86 did not produce aflatoxin, indicating the dominant nature of the afl-1 mutation in strain 649. In metabolite feeding experiments, the diploids did not convert three intermediates in the aflatoxin pathway to aflatoxin. Northern (RNA blot) analysis of the diploids grown in medium conducive for aflatoxin production indicated that the aflatoxin pathway genes nor1, ver1, and omt1 were not expressed; however, there was low-level expression of the regulatory gene aflR. Pulsed-field electrophoresis gels indicated a larger (6 Mb) chromosome in strain 649 than the apparently homologous (4.9 Mb) chromosome in strain 86. The larger chromosome in strain 649 suggests that a rearrangement occurred in addition to the deletion. From these data, we proposed that a trans-sensing mechanism in diploids is responsible for the dominant phenotype associated with the afl-1 locus in strain 649. Such a mechanism is known in Drosophila melanogaster but has not been described for fungi.  相似文献   

4.
5.
6.
7.
8.
Aspergillus flavus isolates produce only aflatoxins B1 and B2, while Aspergillus parasiticus and Aspergillus nomius produce aflatoxins B1, B2, G1, and G2. Sequence comparison of the aflatoxin biosynthesis pathway gene cluster upstream from the polyketide synthase gene, pksA, revealed that A. flavus isolates are missing portions of genes (cypA and norB) predicted to encode, respectively, a cytochrome P450 monooxygenase and an aryl alcohol dehydrogenase. Insertional disruption of cypA in A. parasiticus yielded transformants that lack the ability to produce G aflatoxins but not B aflatoxins. The enzyme encoded by cypA has highest amino acid identity to Gibberella zeae Tri4 (38%), a P450 monooxygenase previously shown to be involved in trichodiene epoxidation. The substrate for CypA may be an intermediate formed by oxidative cleavage of the A ring of O-methylsterigmatocystin by OrdA, the P450 monooxygenase required for formation of aflatoxins B1 and B2.  相似文献   

9.
A novel gene, fas-1A, directly involved in aflatoxin B1 (AFB1) biosynthesis, was cloned by genetic complementation of an Aspergillus parasiticus mutant strain, UVM8, blocked at two unique sites in the AFB1 biosynthetic pathway. Metabolite conversion studies localized the two genetic blocks to early steps in the AFB1 pathway (nor-1 and fas-1A) and confirmed that fas-1A is blocked prior to nor-1. Transformation of UVM8 with cosmids NorA and NorB restored function in nor-1 and fas-1A, resulting in synthesis of AFB1. An 8-kb SacI subclone of cosmid NorA complemented fas-1A only, resulting in accumulation of norsolorinic acid. Gene disruption of the fas-1A locus blocked norsolorinic acid accumulation in A. parasiticus B62 (nor-1), which normally accumulates this intermediate. These data confirmed that fas-1A is directly involved in AFB1 synthesis. The predicted amino acid sequence of fas-1A showed a high level of identity with extensive regions in the enoyl reductase and malonyl/palmityl transferase functional domains in the beta subunit of yeast fatty acid synthetase. Together, these data suggest that fas-1A encodes a novel fatty acid synthetase which synthesizes part of the polyketide backbone of AFB1. Additional data support an interaction between AFB1 synthesis and sclerotium development.  相似文献   

10.
At one end of the 70 kb aflatoxin biosynthetic pathway gene cluster in Aspergillus parasiticus and Aspergillus flavus reported earlier, we have cloned a group of four genes that constitute a well-defined gene cluster related to sugar utilization in A. parasiticus: (1) sugR, (2) hxtA, (3) glcA and (4) nadA. No similar well-defined sugar gene cluster has been reported so far in any other related Aspergillus species such as A. flavus, A. nidulans, A. sojae, A. niger, A. oryzae and A. fumigatus. The expression of the hxtA gene, encoding a hexose transporter protein, was found to be concurrent with the aflatoxin pathway cluster genes, in aflatoxin-conducive medium. This is significant since a close linkage between the two gene clusters could potentially explain the induction of aflatoxin biosynthesis by simple sugars such as glucose or sucrose.  相似文献   

11.
12.
Aspergillus nidulans produces the carcinogenic mycotoxin sterigmatocystin (ST), the next-to-last precursor in the aflatoxin (AF) biosynthetic pathway found in the closely related fungi Aspergillus flavus and Aspergillus parasiticus. We identified and characterized an A. nidulans gene, verA, that is required for converting the AF precursor versicolorin A to ST. verA is closely related to several polyketide biosynthetic genes involved in polyketide production in Streptomyces spp. and exhibits extended sequence similarity to A. parasiticus ver-1, a gene proposed to encode an enzyme involved in converting versicolorin A to ST. By performing a sequence analysis of the region 3' to verA, we identified two additional open reading frames, designated ORF1 and ORF2. ORF2 is closely related to a number of cytochrome P-450 monooxygenases, while ORF1 shares identity with the gamma subunit of translation elongation factor 1. Given that several steps in the ST-AF pathway may require monooxygenase activity and that AF biosynthetic genes are clustered in A. flavus and A. parasiticus, we suggest that verA may be part of a cluster of genes required for ST biosynthesis. We disrupted the verA coding region by inserting the A. nidulans argB gene into the center of the coding region and transformed an A. nidulans argB2 mutant to arginine prototrophy. Seven transformants that produced DNA patterns indicative of a verA disruption event were grown under ST-inducing conditions, and all of the transformants produced versicolorin A but negligible amounts of ST (200-fold to almost 1,000-fold less than the wild type), confirming the hypothesis that verA encodes an enzyme necessary for converting versicolorin A to ST.  相似文献   

13.
Production of aflatoxins (AF) by Aspergillus flavus and A. parasiticus is known to occur only at acidic pH. Although typical A. flavus isolates produced more AF as the external pH became increasingly acidic, an atypical strain from West Africa produced less. The lower AF production was not well correlated with decreases in expression of the aflatoxin pathway regulatory gene, aflR, or of two other biosynthesis genes.  相似文献   

14.
A comparison of the invasion of flowers, aerial pegs, and kernels by wild-type and mutant strains of Aspergillus flavus or A. parasiticus along with aflatoxin analyses of kernels from different drought treatments have supported the hypothesis that preharvest contamination with aflatoxin originates mainly from the soil. Evidence in support of soil invasion as opposed to aerial invasion was the following. A greater percentage of invasion of kernels rather than flower or aerial pegs by either wild-type A. flavus or mutants. Significant invasion by an A. parasiticus color mutant occurred only in peanuts from soil supplemented with the mutant, whereas adjacent plants in close proximity but in untreated soil were only invaded by wild-type A. flavus or A. parasiticus. Aflatoxin data from drought-stressed, visibly undamaged peanut kernels showed that samples from soil not supplemented with a mutant strain contained a preponderance of aflatoxin B's (from wild-type A. flavus) whereas adjacent samples from mutant-supplemented soil contained a preponderance of B's plus G's (from wild-type and mutant A. parasiticus). Preliminary data from two air samplings showed an absence of propagules of A. flavus or A. parasiticus in air around the experimental facility.  相似文献   

15.
A comparison of the invasion of flowers, aerial pegs, and kernels by wild-type and mutant strains of Aspergillus flavus or A. parasiticus along with aflatoxin analyses of kernels from different drought treatments have supported the hypothesis that preharvest contamination with aflatoxin originates mainly from the soil. Evidence in support of soil invasion as opposed to aerial invasion was the following. A greater percentage of invasion of kernels rather than flower or aerial pegs by either wild-type A. flavus or mutants. Significant invasion by an A. parasiticus color mutant occurred only in peanuts from soil supplemented with the mutant, whereas adjacent plants in close proximity but in untreated soil were only invaded by wild-type A. flavus or A. parasiticus. Aflatoxin data from drought-stressed, visibly undamaged peanut kernels showed that samples from soil not supplemented with a mutant strain contained a preponderance of aflatoxin B's (from wild-type A. flavus) whereas adjacent samples from mutant-supplemented soil contained a preponderance of B's plus G's (from wild-type and mutant A. parasiticus). Preliminary data from two air samplings showed an absence of propagules of A. flavus or A. parasiticus in air around the experimental facility.  相似文献   

16.
The nor mutant of Aspergillus flavus has a defective norsolorinic acid reductase, and thus the aflatoxin biosynthetic pathway is blocked, resulting in the accumulation of norsolorinic acid, a bright red-orange pigment. We developed a visual agar plate assay to monitor yeast strains for their ability to inhibit aflatoxin production by visually scoring the accumulation of this pigment of the nor mutant. We identified yeast strains that reduced the red-orange pigment accumulation in the nor mutant. These yeasts also reduced aflatoxin accumulation by a toxigenic strain of A. flavus. These yeasts may be useful for reducing aflatoxin contamination of food commodities.  相似文献   

17.
18.
19.
A heterologous transformation system was developed for Aspergillus flavus with efficiencies greater than 20 stable transformants per micrograms of DNA. Protoplasts of uracil-requiring strains of the fungus were transformed with plasmid and cosmid vectors containing the pyr-4 gene of Neurospora crassa. Transformants were selected for their ability to grow and sporulate on medium lacking uracil. Vector DNA appeared to integrate randomly into the genome of A. flavus with a tendency for multiple, tandem insertion. Transformants with single or multiple insertions were stable after five consecutive transfers on medium containing uracil. Uracil-requiring recipient strains were obtained either by UV-irradiating conidia and selecting colonies resistant to 5-fluoroorotic acid or by transferring the mutated pyr locus to strains by parasexual recombination. This is the first report of a transformation system for an aflatoxin-producing fungus. The transformation system and the availability of aflatoxin-negative mutants provide a new approach to studying the biosynthesis and regulation of aflatoxin.  相似文献   

20.
The origin of aflatoxin G1 was studied using mutant strains of Aspergillus parasiticus blocked early in the pathway and by tracing 14C-labelled aflatoxin B1 (AFB1) in wild-type A. flavus and A. parasiticus strains. Sterigmatocystin (ST) was a precursor of AFB1, AFG1 and AFG2 in the four mutants examined. The identity of AFG1 was confirmed by mass spectrometry. No evidence for conversion of AFB1 to AFG1 was found. A rigorously controlled study of conversions of radioactivity based on preparative thin-layer chromatography of aflatoxins demonstrated that low levels of aflatoxin interconversions previously reported in the literature might actually be artifacts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号