首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.

Background

Host-microbe and microbe-microbe interactions are often governed by the complex exchange of metabolites. Such interactions play a key role in determining the way pathogenic and commensal species impact their host and in the assembly of complex microbial communities. Recently, several studies have demonstrated how such interactions are reflected in the organization of the metabolic networks of the interacting species, and introduced various graph theory-based methods to predict host-microbe and microbe-microbe interactions directly from network topology. Using these methods, such studies have revealed evolutionary and ecological processes that shape species interactions and community assembly, highlighting the potential of this reverse-ecology research paradigm.

Results

NetCooperate is a web-based tool and a software package for determining host-microbe and microbe-microbe cooperative potential. It specifically calculates two previously developed and validated metrics for species interaction: the Biosynthetic Support Score which quantifies the ability of a host species to supply the nutritional requirements of a parasitic or a commensal species, and the Metabolic Complementarity Index which quantifies the complementarity of a pair of microbial organisms’ niches. NetCooperate takes as input a pair of metabolic networks, and returns the pairwise metrics as well as a list of potential syntrophic metabolic compounds.

Conclusions

The Biosynthetic Support Score and Metabolic Complementarity Index provide insight into host-microbe and microbe-microbe metabolic interactions. NetCooperate determines these interaction indices from metabolic network topology, and can be used for small- or large-scale analyses. NetCooperate is provided as both a web-based tool and an open-source Python module; both are freely available online at http://elbo.gs.washington.edu/software_netcooperate.html.  相似文献   

2.
Light is an essential environmental factor required for photosynthesis, but it also mediates signals to control plant development and growth and induces stress tolerance. The photosynthetic organelle (chloroplast) is a key component in the signalling and response network in plants. This theme issue of Philosophical Transactions of the Royal Society of London B: Biology provides updates, highlights and summaries of the most recent findings on chloroplast-initiated signalling cascades and responses to environmental changes, including light and biotic stress. Besides plant molecular cell biology and physiology, the theme issue includes aspects from the cross-disciplinary fields of environmental adaptation, ecology and agronomy.Oxygenic photosynthetic organisms carry out the most intriguing reaction on Earth, namely the conversion of light energy from the sun into chemical energy, which also results in oxygen as a by-product. The photosynthetic end products (sugars) drive most processes in living cells on Earth. As photosynthetic organisms represent the basis of our daily life (food, energy, materials), effects on their primary productivity have an impact on the society in various aspects, for instance economy, ecological sustainability and even our lifestyle. Photosynthetic organisms, particularly plants which are essentially sessile, have to constantly deal with changes in a wide range of abiotic and biotic factors in their immediate environment on a seasonal as well as daily basis. The chloroplast is a light-driven energy factory, but besides this primary mission it perceives signals from surroundings to adjust plant development and induce adaptation to ever-changing environmental cues.The signalling cascades start from various chloroplast processes but merge later or crosstalk with each other and with other signalling cascades (figure 1). For example, acclimation of plants to excess light conditions may also simultaneously increase the tolerance to other abiotic stress factors [1]. Recently, chloroplasts were also recognized to perceive and mediate signals that promote tolerance against plant pathogens (immune defence) or that are involved in hormone perception [2]. Resolving the crosstalk between the cascades is most important for understanding physiological responses in plants under ever-changing environments, and for predicting how plants survive under natural growth conditions. Open in a separate windowFigure 1.Overview of light-induced chloroplast signalling and response mechanisms, covered by papers in this theme issue. Chl, chlorophyll; NPQ, non-photochemical quenching; ROS, reactive oxygen species; ST, state transition; Trx, thioredoxin. (Online version in colour.)This theme issue of Philosophical Transactions of the Royal Society of London B: Biology covers the most recent findings and updates on the molecular short-term mechanisms used by the chloroplast to adjust its function to changes in light conditions, and on the signalling pathways that induce long-term adaptive responses, such as stress tolerance and immune defence in plants (figure 1). It focuses on the current understanding of the crosstalk between signalling networks activated by chloroplasts and mitochondria, light receptors and those induced by biotic stress. It also focuses on the variation of the adaptive mechanisms in natural population and on their agricultural and ecological impacts. Thus, besides plant molecular cell biology and physiology, the theme issue includes aspects from the cross-disciplinary fields of environmental adaptation, ecology and agronomy. It consists of 10 research articles and nine reviews covering the following four topics: (i) short-term adaptive responses in chloroplasts, (ii) chloroplast-to-nucleus signalling and crosstalk with other signalling pathways, (iii) natural variation of regulatory mechanisms to allow for adaptation and (iv) agricultural and ecological perspective of light responses in chloroplasts.Light signals perceived by chlorophyll (Chl) in the thylakoid membrane and by photoreceptors in the cytosol activate various short-term adaptive responses including enzyme regulation, photoprotection and repair (figure 1). Ebenhöh et al. [3] propose a mathematical model for relative contributions of non-photochemical quenching (NPQ) and state transition (ST) in light acclimation. The paper by Cazzaniga et al. [4] identifies photoreceptor-dependent chloroplast movement as an additional pathway used to dissipate the excess absorbed energy, whereas Ruban & Belgio [5] investigate NPQ in relation to maximum light intensity tolerated by plants. Bertrand et al. [6] investigate the different mechanisms involved in NPQ relaxation in diatoms. Nikkanen & Rintamäki [7] and Kirchhoff [8] review the current knowledge on chloroplast processes regulated by thioredoxins under changing light environment and processes in the thylakoid membrane associated with the photosystem II repair cycle in high light stress, respectively.Together with adjustments of metabolic processes and induction of photoprotective mechanisms, light initiates signalling to the nucleus for gene expression, resulting in various long-term adaptive responses, including development and growth, stress and programmed cell death (figure 1). Larkin [9] provides an updated insight into the impact of the GENOMES UNCOUPLED genes on plastid-to-nucleus signalling and reviews the influence of plastids on light receptor signalling and development, whereas the contribution by Blanco et al. [10] searches for new components integrating mitochondrial and plastid retrograde signals that regulate plant energy metabolism. Alsharafa et al. [11] investigate the kinetics of events involved in initiation of high light acclimation, and Tikkanen et al. [12] show that chloroplast signalling interacts with both reactive oxygen species (ROS) and hormonal signalling. ROS signalling is also highlighted in the papers by Heyno et al. (hydrogen peroxide) [13] and by Zhang et al. (singlet oxygen) [14]. Foyer et al. [15] introduce a chloroplast protein belonging to the WHIRLY family and propose that the redox state of the photosynthetic electron transport chain triggers the movement of this protein from the chloroplast to the nucleus where it regulates the gene expression leading to cross tolerance, including light acclimation and immune defence. Gorecka et al. [16] identify novel components for crosstalk of immune reaction-induced signalling networks with two short-term photoprotective mechanisms, ST and NPQ. Trotta et al. [17] further review the increasing evidence for crosstalk between light-induced chloroplast signalling and immune reactions in plants.To allow for adaptation to a changing environment, natural selection of existing genetic variation takes place. Flood, Yin et al. [18] report natural variation in photosystem II protein phosphorylation in the model plant Arabidopsis thaliana and propose a possible role in the adaptation to diverse environments. In addition, Serõdio et al. [19] review the current knowledge of adaptation of macroalgal chloroplasts to life in sea slug following ingestion. Finally, the review by Darko et al. [20] uses selected examples to show how artificial lighting can be used to improve plant growth in agriculture and for production of functional food and materials, whereas Demmig-Adams et al. [21] provide an ecophysiological perspective of light responses in the chloroplast to optimize its function and of the whole plant in a changing environment.This research on light-induced signalling and response is developing in many directions, as reflected by the broad field coverage of the papers of this theme issue. It highlights and summarizes the present knowledge from the individual chloroplast reactions to the variation of the adaptive mechanisms in natural populations and on their agricultural and ecological impacts.  相似文献   

3.
We describe the first dynamic programming algorithm that computes the expected degree for the network, or graph G = (V, E) of all secondary structures of a given RNA sequence a = a 1, …, a n. Here, the nodes V correspond to all secondary structures of a, while an edge exists between nodes s, t if the secondary structure t can be obtained from s by adding, removing or shifting a base pair. Since secondary structure kinetics programs implement the Gillespie algorithm, which simulates a random walk on the network of secondary structures, the expected network degree may provide a better understanding of kinetics of RNA folding when allowing defect diffusion, helix zippering, and related conformation transformations. We determine the correlation between expected network degree, contact order, conformational entropy, and expected number of native contacts for a benchmarking dataset of RNAs. Source code is available at http://bioinformatics.bc.edu/clotelab/RNAexpNumNbors.  相似文献   

4.
Group contribution (GC) methods are conventionally used in thermodynamics analysis of metabolic pathways to estimate the standard Gibbs energy change (ΔrGo) of enzymatic reactions from limited experimental measurements. However, these methods are limited by their dependence on manually curated groups and inability to capture stereochemical information, leading to low reaction coverage. Herein, we introduce an automated molecular fingerprint-based thermodynamic analysis tool called dGPredictor that enables the consideration of stereochemistry within metabolite structures and thus increases reaction coverage. dGPredictor has comparable prediction accuracy compared to existing GC methods and can capture Gibbs energy changes for isomerase and transferase reactions, which exhibit no overall group changes. We also demonstrate dGPredictor’s ability to predict the Gibbs energy change for novel reactions and seamless integration within de novo metabolic pathway design tools such as novoStoic for safeguarding against the inclusion of reaction steps with infeasible directionalities. To facilitate easy access to dGPredictor, we developed a graphical user interface to predict the standard Gibbs energy change for reactions at various pH and ionic strengths. The tool allows customized user input of known metabolites as KEGG IDs and novel metabolites as InChI strings (https://github.com/maranasgroup/dGPredictor).  相似文献   

5.

Background

Popular bioinformatics approaches for studying protein functional dynamics include comparisons of crystallographic structures, molecular dynamics simulations and normal mode analysis. However, determining how observed displacements and predicted motions from these traditionally separate analyses relate to each other, as well as to the evolution of sequence, structure and function within large protein families, remains a considerable challenge. This is in part due to the general lack of tools that integrate information of molecular structure, dynamics and evolution.

Results

Here, we describe the integration of new methodologies for evolutionary sequence, structure and simulation analysis into the Bio3D package. This major update includes unique high-throughput normal mode analysis for examining and contrasting the dynamics of related proteins with non-identical sequences and structures, as well as new methods for quantifying dynamical couplings and their residue-wise dissection from correlation network analysis. These new methodologies are integrated with major biomolecular databases as well as established methods for evolutionary sequence and comparative structural analysis. New functionality for directly comparing results derived from normal modes, molecular dynamics and principal component analysis of heterogeneous experimental structure distributions is also included. We demonstrate these integrated capabilities with example applications to dihydrofolate reductase and heterotrimeric G-protein families along with a discussion of the mechanistic insight provided in each case.

Conclusions

The integration of structural dynamics and evolutionary analysis in Bio3D enables researchers to go beyond a prediction of single protein dynamics to investigate dynamical features across large protein families. The Bio3D package is distributed with full source code and extensive documentation as a platform independent R package under a GPL2 license from http://thegrantlab.org/bio3d/.

Electronic supplementary material

The online version of this article (doi:10.1186/s12859-014-0399-6) contains supplementary material, which is available to authorized users.  相似文献   

6.
7.
Assembly algorithms have been extensively benchmarked using simulated data so that results can be compared to ground truth. However, in de novo assembly, only crude metrics such as contig number and size are typically used to evaluate assembly quality. We present CGAL, a novel likelihood-based approach to assembly assessment in the absence of a ground truth. We show that likelihood is more accurate than other metrics currently used for evaluating assemblies, and describe its application to the optimization and comparison of assembly algorithms. Our methods are implemented in software that is freely available at http://bio.math.berkeley.edu/cgal/.  相似文献   

8.
9.
We study a subset of the movie collaboration network, http://www.imdb.com, where only adult movies are included. We show that there are many benefits in using such a network, which can serve as a prototype for studying social interactions. We find that the strength of links, i.e., how many times two actors have collaborated with each other, is an important factor that can significantly influence the network topology. We see that when we link all actors in the same movie with each other, the network becomes small-world, lacking a proper modular structure. On the other hand, by imposing a threshold on the minimum number of links two actors should have to be in our studied subset, the network topology becomes naturally fractal. This occurs due to a large number of meaningless links, namely, links connecting actors that did not actually interact. We focus our analysis on the fractal and modular properties of this resulting network, and show that the renormalization group analysis can characterize the self-similar structure of these networks.  相似文献   

10.
11.
Module network inference is an established statistical method to reconstruct co-expression modules and their upstream regulatory programs from integrated multi-omics datasets measuring the activity levels of various cellular components across different individuals, experimental conditions or time points of a dynamic process. We have developed Lemon-Tree, an open-source, platform-independent, modular, extensible software package implementing state-of-the-art ensemble methods for module network inference. We benchmarked Lemon-Tree using large-scale tumor datasets and showed that Lemon-Tree algorithms compare favorably with state-of-the-art module network inference software. We also analyzed a large dataset of somatic copy-number alterations and gene expression levels measured in glioblastoma samples from The Cancer Genome Atlas and found that Lemon-Tree correctly identifies known glioblastoma oncogenes and tumor suppressors as master regulators in the inferred module network. Novel candidate driver genes predicted by Lemon-Tree were validated using tumor pathway and survival analyses. Lemon-Tree is available from http://lemon-tree.googlecode.com under the GNU General Public License version 2.0.
This is a PLOS Computational Biology Software Article
  相似文献   

12.
To date, variation in nectar chemistry of flowering plants has not been studied in detail. Such variation exerts considerable influence on pollinator–plant interactions, as well as on flower traits that play important roles in the selection of a plant for visitation by specific pollinators. Over the past 60 years the Aquilegia genus has been used as a key model for speciation studies. In this study, we defined the metabolomic profiles of flower samples of two Aquilegia species, A. Canadensis and A. pubescens. We identified a total of 75 metabolites that were classified into six main categories: organic acids, fatty acids, amino acids, esters, sugars, and unknowns. The mean abundances of 25 of these metabolites were significantly different between the two species, providing insights into interspecies variation in floral chemistry. Using the PlantSEED biochemistry database, we found that the majority of these metabolites are involved in biosynthetic pathways. Finally, we explored the annotated genome of A. coerulea, using the PlantSEED pipeline and reconstructed the metabolic network of Aquilegia. This network, which contains the metabolic pathways involved in generating the observed chemical variation, is now publicly available from the DOE Systems Biology Knowledge Base (KBase; http://kbase.us).  相似文献   

13.
Serratia proteamaculans S4 (previously Serratia sp. S4), isolated from the rhizosphere of wild Equisetum sp., has the ability to stimulate plant growth and to suppress the growth of several soil-borne fungal pathogens of economically important crops. Here we present the non-contiguous, finished genome sequence of S. proteamaculans S4, which consists of a 5,324,944 bp circular chromosome and a 129,797 bp circular plasmid. The chromosome contains 5,008 predicted genes while the plasmid comprises 134 predicted genes. In total, 4,993 genes are assigned as protein-coding genes. The genome consists of 22 rRNA genes, 82 tRNA genes and 58 pseudogenes. This genome is a part of the project “Genomics of four rapeseed plant growth-promoting bacteria with antagonistic effect on plant pathogens” awarded through the 2010 DOE-JGI’s Community Sequencing Program.  相似文献   

14.
Protein interaction networks are important for the understanding of regulatory mechanisms, for the explanation of experimental data and for the prediction of protein functions. Unfortunately, most interaction data is available only for model organisms. As a possible remedy, the transfer of interactions to organisms of interest is common practice, but it is not clear when interactions can be transferred from one organism to another and, thus, the confidence in the derived interactions is low. Here, we propose to use a rich set of features to train Random Forests in order to score transferred interactions. We evaluated the transfer from a range of eukaryotic organisms to S. cerevisiae using orthologs. Directly transferred interactions to S. cerevisiae are on average only 24% consistent with the current S. cerevisiae interaction network. By using commonly applied filter approaches the transfer precision can be improved, but at the cost of a large decrease in the number of transferred interactions. Our Random Forest approach uses various features derived from both the target and the source network as well as the ortholog annotations to assign confidence values to transferred interactions. Thereby, we could increase the average transfer consistency to 85%, while still transferring almost 70% of all correctly transferable interactions. We tested our approach for the transfer of interactions to other species and showed that our approach outperforms competing methods for the transfer of interactions to species where no experimental knowledge is available. Finally, we applied our predictor to score transferred interactions to 83 targets species and we were able to extend the available interactome of B. taurus, M. musculus and G. gallus with over 40,000 interactions each. Our transferred interaction networks are publicly available via our web interface, which allows to inspect and download transferred interaction sets of different sizes, for various species, and at specified expected precision levels. Availability: http://services.bio.ifi.lmu.de/coin-db/.  相似文献   

15.
High-throughput phenotyping is emerging as an important technology to dissect phenotypic components in plants. Efficient image processing and feature extraction are prerequisites to quantify plant growth and performance based on phenotypic traits. Issues include data management, image analysis, and result visualization of large-scale phenotypic data sets. Here, we present Integrated Analysis Platform (IAP), an open-source framework for high-throughput plant phenotyping. IAP provides user-friendly interfaces, and its core functions are highly adaptable. Our system supports image data transfer from different acquisition environments and large-scale image analysis for different plant species based on real-time imaging data obtained from different spectra. Due to the huge amount of data to manage, we utilized a common data structure for efficient storage and organization of data for both input data and result data. We implemented a block-based method for automated image processing to extract a representative list of plant phenotypic traits. We also provide tools for build-in data plotting and result export. For validation of IAP, we performed an example experiment that contains 33 maize (Zea mays ‘Fernandez’) plants, which were grown for 9 weeks in an automated greenhouse with nondestructive imaging. Subsequently, the image data were subjected to automated analysis with the maize pipeline implemented in our system. We found that the computed digital volume and number of leaves correlate with our manually measured data in high accuracy up to 0.98 and 0.95, respectively. In summary, IAP provides a multiple set of functionalities for import/export, management, and automated analysis of high-throughput plant phenotyping data, and its analysis results are highly reliable.Plant bioinformatics faces the challenge of integrating information from the related “omics” fields to elucidate the functional relationship between genotype and observed phenotype (Edwards and Batley, 2004), known as the genotype-phenotype map (Houle et al., 2010). One of the main obstacles is our currently limited ability of systemic depiction and quantification of plant phenotypes, representing the so-called phenotyping bottleneck phenomenon (Furbank and Tester, 2011). To get a comprehensive genotype-phenotype map, more accurate and precise phenotyping strategies are required to empower high-resolution linkage mapping and genome-wide association studies in order to uncover underlying genetic variants associated with complex phenotypic traits, which aim to improve the efficiency, effectiveness, and economy of cultivars in plant breeding (Cobb et al., 2013). In the era of phenomics, automatic high-throughput phenotyping in a noninvasive manner is applied to identify and quantify plant phenotypic traits. Plants are bred in fully automated greenhouses under predefined environmental conditions with controlled temperature, watering, and humidity. To meet the demand of data access, exchange, and sharing, several phenomics-related projects in the context of several consortia have been launched, such as the International Plant Phenotyping Network (http://www.plantphenomics.com/), the European Plant Phenotyping Network (http://www.plant-phenotyping-network.eu/), and the German Plant Phenotyping Network (http://www.dppn.de/).Thanks to the development of new imaging and transport systems, various automated or semiautomated high-throughput plant phenotyping systems are being developed and used to examine plant function and performance under controlled conditions. PHENOPSIS (Granier et al., 2006) is one of the pioneering platforms that was developed to dissect genotype-environment effects on plant growth in Arabidopsis (Arabidopsis thaliana). GROWSCREEN (Walter et al., 2007; Biskup et al., 2009; Jansen et al., 2009; Nagel et al., 2012) was designed for rapid optical phenotyping of different plant species with respect to different biological aspects. Other systems in the context of high-throughput phenotyping include Phenodyn/Phenoarch (Sadok et al., 2007), TraitMill (Reuzeau et al., 2005; Reuzeau, 2007), Phenoscope (Tisné et al., 2013), RootReader3D (Clark et al., 2011), GROW Map (http://www.fz-juelich.de/ibg/ibg-2/EN/methods_jppc/methods_node.html), and LemnaTec Scanalyzer 3D. These developments enable the phenotyping of specific organs (e.g. leaf, root, and shoot) or of whole plants. Some of them are even used for three-dimensional plant analysis (Clark et al., 2011). Consequently, several specific software applications (a comprehensive list can be found at http://www.phenomics.cn/links.php), such as HYPOTrace (Wang et al., 2009), HTPheno (Hartmann et al., 2011), LAMINA (Bylesjö et al., 2008), PhenoPhyte (Green et al., 2012), Rosette Tracker (De Vylder et al., 2012), LeafAnalyser (Weight et al., 2008), RootNav (Pound et al., 2013), SmartGrain (Tanabata et al., 2012), and LemnaGrid, were designed to extract a wide range of measurements, such as height/length, width, shape, projected area, digital volume, compactness, relative growth rate, and colorimetric analysis.The huge amount of generated image data from various phenotyping systems requires appropriate data management as well as an appropriate analytical framework for data interpretation (Fiorani and Schurr, 2013). However, most of the developed image-analysis tools are designed for a specific task, for specific plant species, or are not freely available to the research community. They lack flexibility in terms of needed adaptations to meet new analysis requirements. For example, it would be desirable that a system could handle imaging data from different sources (either from fully automated high-throughput phenotyping systems or from setups where images are acquired manually), different imaging modalities (fluorescence, near-infrared, and thermal imaging), and/or different species (wheat [Triticum aestivum], barley [Hordeum vulgare], maize [Zea mays], and Arabidopsis).In this work, we present Integrated Analysis Platform (IAP), a scalable open-source framework, for high-throughput plant phenotyping data processing. IAP handles different image sources and helps to organize phenotypic data by retaining the metadata from the input in the result data set. In order to measure phenotypic traits in new or modified setups, users can easily create new analysis pipelines or modify the predefined ones. IAP provides various user-friendly interfaces at different system levels to meet the demands of users (e.g. software developers, bioinformaticians, and biologists) with different experiences in software programming.  相似文献   

16.
Kosakonia sacchari sp. nov. is a new species within the new genus Kosakonia, which was included in the genus Enterobacter. K sacchari is a nitrogen-fixing bacterium named for its association with sugarcane (Saccharum officinarum L.). K sacchari bacteria are Gram-negative, aerobic, non-spore-forming, motile rods. Strain SP1T (=CGMCC1.12102T=LMG 26783T) is the type strain of the K sacchari sp. nov and is able to colonize and fix N2 in association with sugarcane plants, thus promoting plant growth. Here we summarize the features of strain SP1T and describe its complete genome sequence. The genome contains a single chromosome and no plasmids, 4,902,024 nucleotides with 53.7% GC content, 4,460 protein-coding genes and 105 RNA genes including 22 rRNA genes, 82 tRNA genes, and 1 ncRNA gene.Key words : endophyte, Enterobacter, Kosakonia, nitrogen fixation, plant growth-promoting bacteria, sugarcane  相似文献   

17.
18.
19.

Background

Searching the orthologs of a given protein or DNA sequence is one of the most important and most commonly used Bioinformatics methods in Biology. Programs like BLAST or the orthology search engine Inparanoid can be used to find orthologs when the similarity between two sequences is sufficiently high. They however fail when the level of conservation is low. The detection of remotely conserved proteins oftentimes involves sophisticated manual intervention that is difficult to automate.

Results

Here, we introduce morFeus, a search program to find remotely conserved orthologs. Based on relaxed sequence similarity searches, morFeus selects sequences based on the similarity of their alignments to the query, tests for orthology by iterative reciprocal BLAST searches and calculates a network score for the resulting network of orthologs that is a measure of orthology independent of the E-value. Detecting remotely conserved orthologs of a protein using morFeus thus requires no manual intervention. We demonstrate the performance of morFeus by comparing it to state-of-the-art orthology resources and methods. We provide an example of remotely conserved orthologs, which were experimentally shown to be functionally equivalent in the respective organisms and therefore meet the criteria of the orthology-function conjecture.

Conclusions

Based on our results, we conclude that morFeus is a powerful and specific search method for detecting remotely conserved orthologs. morFeus is freely available at http://bio.biochem.mpg.de/morfeus/. Its source code is available from Sourceforge.net (https://sourceforge.net/p/morfeus/).

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2105-15-263) contains supplementary material, which is available to authorized users.  相似文献   

20.
PARma is a complete data analysis software for AGO-PAR-CLIP experiments to identify target sites of microRNAs as well as the microRNA binding to these sites. It integrates specific characteristics of the experiments into a generative model. The model and a novel pattern discovery tool are iteratively applied to data to estimate seed activity probabilities, cluster confidence scores and to assign the most probable microRNA. Based on differential PAR-CLIP analysis and comparison to RIP-Chip data, we show that PARma is more accurate than existing approaches. PARma is available from http://www.bio.ifi.lmu.de/PARma  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号