首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
Sullivan C  Chen Y  Shan Y  Hu Y  Peng C  Zhang H  Kong L  Li S 《PloS one》2011,6(10):e26246
Hematopoiesis is a tightly regulated biological process that relies upon complicated interactions between blood cells and their microenvironment to preserve the homeostatic balance of long-term hematopoietic stem cells (LT-HSCs), short-term HSCs (ST-HSCs), multipotent progenitors (MPPs), and differentiated cells. Adhesion molecules like P-selectin (encoded by the Selp gene) are essential to hematopoiesis, and their dysregulation has been linked to leukemogenesis. Like HSCs, leukemic stem cells (LSCs) depend upon their microenvironments for survival and propagation. P-selectin plays a crucial role in Philadelphia chromosome-positive (Ph(+)) chronic myeloid leukemia (CML). In this paper, we show that cells deficient in P-selectin expression can repopulate the marrow more efficiently than wild type controls. This results from an increase in HSC self-renewal rather than alternative possibilities like increased homing velocity or cell cycle defects. We also show that P-selectin expression on LT-HSCs, but not ST-HSCs and MPPs, increases with aging. In the absence of P-selectin expression, mice at 6 months of age possess increased levels of short-term HSCs and multipotent progenitors. By 11 months of age, there is a shift towards increased levels of long-term HSCs. Recipients of BCR-ABL-transduced bone marrow cells from P-selectin-deficient donors develop a more aggressive CML, with increased percentages of LSCs and progenitors. Taken together, our data reveal that P-selectin expression on HSCs and LSCs has important functional ramifications for both hematopoiesis and leukemogenesis, which is most likely attributable to an intrinsic effect on stem cell self-renewal.  相似文献   

2.
Chronic myelogenous leukemia (CML) is characterized by its hallmark oncogene BCR-ABL and the progression from a chronic phase toward an acute leukemia, with a differentiation arrest of the leukemic clone. In the present study, we conducted a microarray analysis using an inducible model of BCR-ABL expression based on the TET-OFF system, and we found that osteopontin (OPN), a component of stem cell niche, is overexpressed in BCR-ABL-expressing cells. Studies using mutant forms of BCR-ABL demonstrated that the BCR-ABL-induced OPN overexpression was a tyrosine kinase-dependent event. Furthermore, OPN concentration was significantly increased in the serum of leukemic mice generated by transplantation of BCR-ABL-expressing bone marrow cells. Most importantly, a significant increase of OPN concentration was observed in the serum of CML patients as compared to controls. Overall these results show that OPN is deregulated by BCR-ABL oncogene and suggest that OPN could be involved in CML stem cell biology.  相似文献   

3.
We have recently shown that arsenic trioxide (As2O3) is a potent inducer of autophagic degradation of the BCR-ABL1 oncoprotein, which is the cause of chronic myeloid leukemia (CML) and Ph+ acute lymphoid leukemia (Ph+ ALL). Our recently published work has shown that pharmacological inhibition of autophagy or molecularly targeting of elements of the autophagic machinery partially reverses the suppressive effects of As2O3 on primitive leukemic precursors from CML patients. Altogether, our studies have provided direct evidence that arsenic-induced, autophagy-mediated, degradation of BCR-ABL1 is an important mechanism for the generation of the effects of As2O3 on BCR-ABL1 transformed leukemic progenitors. These studies raise the potential of future clinical-translational efforts employing combinations of arsenic trioxide with autophagy-modulating agents to promote elimination of early leukemic progenitors and, possibly, leukemia-initiating stem cells.  相似文献   

4.
Roundabout (Robo) family proteins are immunoglobulin-type surface receptors critical for cellular migration and pathway finding of neuronal axons. We have previously shown that Robo4 was specifically expressed in hematopoietic stem and progenitor cells and its high expression correlated with long-term repopulating (LTR) capacity. To reveal the physiological role of Robo4 in hematopoiesis, we examined the effects of Robo4 disruption on the function of hematopoietic stem cells (HSCs) and progenitors. In Robo4-deficient mice, basic hematological parameters including complete blood cell count and differentiation profile were not affected. In contrast to the previous report, HSC/hematopoietic progenitor (HPC) frequencies in the bone marrow (BM) were perfectly normal in Robo4−/− mice. Moreover, Robo4−/− HSCs were equally competitive as wild-type HSCs in transplantation assays and had normal long-term repopulating (LTR) capacity. Of note, the initial engraftment at 4-weeks after transplantation was slightly impaired by Robo4 ablation, suggesting a marginal defect in BM homing of Robo4−/− HSCs. In fact, homing efficiencies of HSCs/HPCs to the BM was significantly impaired in Robo4-deficient mice. On the other hand, granulocyte-colony stimulating factor-induced peripheral mobilization of HSCs was also impaired by Robo4 disruption. Lastly, marrow recovery from myelosuppressive stress was equally efficient in WT- and Robo4-mutant mice. These results clearly indicate that Robo4 plays a role in HSC trafficking such as BM homing and peripheral mobilization, but is not essential in the LTR and self-renewal capacity of HSCs.  相似文献   

5.
The cellular targets of primary mutations and malignant transformation remain elusive in most cancers. Here, we show that clinically and genetically different subtypes of acute lymphoblastic leukemia (ALL) originate and transform at distinct stages of hematopoietic development. Primary ETV6-RUNX1 (also known as TEL-AML1) fusions and subsequent leukemic transformations were targeted to committed B-cell progenitors. Major breakpoint BCR-ABL1 fusions (encoding P210 BCR-ABL1) originated in hematopoietic stem cells (HSCs), whereas minor BCR-ABL1 fusions (encoding P190 BCR-ABL1) had a B-cell progenitor origin, suggesting that P190 and P210 BCR-ABL1 ALLs represent largely distinct tumor biological and clinical entities. The transformed leukemia-initiating stem cells in both P190 and P210 BCR-ABL1 ALLs had, as in ETV6-RUNX1 ALLs, a committed B progenitor phenotype. In all patients, normal and leukemic repopulating stem cells could successfully be separated prospectively, and notably, the size of the normal HSC compartment in ETV6-RUNX1 and P190 BCR-ABL1 ALLs was found to be unaffected by the expansive leukemic stem cell population.  相似文献   

6.
SDF-1 and CXCR4 in normal and malignant hematopoiesis   总被引:12,自引:0,他引:12  
Over recent years it has become apparent that the chemokine SDF-1 and its receptor CXCR4 play pivotal roles in normal hematopoiesis. They are essential for the normal ontogeny of hematopoiesis during embryogenesis and continue to play a key role in retaining hematopoietic progenitors within the bone marrow microenvironment in the adult. As a result of this role disruption of SDF-1/CXCR4 interactions results in mobilization of hematopoietic progenitors and standard mobilization protocols disrupt this axis. Similarly SDF-1/CXCR4 interactions are required for homing and engraftment of hematopoietic stem cells during transplantation. SDF-1 regulates the localisation of leukemic cells and like their normal counterparts most leukemic cells respond to SDF-1 with increased adhesion, survival and proliferation. However in some instances leukemic cell responses to SDF-1 can be disregulated, the impact of which on the progression of disease in not known. In this review we discuss the pleiotropic roles of SDF-1/CXCR4 interactions in human hematopoietic stem cell ontogeny, bone marrow homing and engraftment, mobilization and how these interactions impact on malignant hematopoiesis.  相似文献   

7.
Development of drug resistance has become a major obstacle for tyrosine kinase inhibitors (TKIs) in the treatment of Philadelphia chromosome-positive (Ph+) chronic myelogenous leukemia (CML) and other cancers. The BCR-ABL-T315I mutant does not respond to clinically available TKIs, although some newly developed anti-BCR-ABL-T315I TKIs are now being tested in patients. TKIs transiently inhibit kinase activity of BCR-ABL, but do not reduce the level of the BCR-ABL protein. Elimination of mutant BCR-ABL protein would provide a new therapeutic strategy for treating Ph+ leukemia. We recently showed that inhibition of heat shock protein 90 (Hsp90) by a novel Hsp90 inhibitor, IPI-504, causes BCR-ABL protein degradation, decreased numbers of leukemia stem cells, and prolonged survival of mice with CML induced by BCR-ABL-T315I. Here we discuss further the mechanisms and effectiveness of Hsp90 inhibition in suppression of survival and proliferation of leukemic progenitor and stem cells in CML mice, and the potential of this anti-Hsp90 strategy in treating CML patients, including those who have developed resistance to TKIs.  相似文献   

8.
Full-term cord blood (TCB) hematopoietic stem/progenitor cells (HSC/HPCs) are used for stem cell transplantation and are well characterized. However, the properties of preterm cord blood (PCB) HSC/HPCs remain unclear. In the present study, we compared HSC/HPCs from TCB and PCB with respect to their expression of surface markers, homing capacity and ability to repopulate HSCs in the NOD/Shi-scid mice bone marrow. The proportion of CD34+CD38− cells was significantly higher in PCB. On the other hand, the engraftment rate of TCB CD34+ cells into NOD/Shi-scid mice was significantly higher than PCB CD34+ cells. The expression of VLA4 was stronger among TCB CD34+ cells than PCB CD34+ cells. Moreover, there was a positive correlation between the proportion of CD34+CXCR4+ cells and gestational age. These data suggest that the homing ability of HSCs increases during gestation, so that TCB may be a better source of HSCs for transplantation than PCB.  相似文献   

9.
Hematopoietic stem cells (HSCs) are used in transplantation therapy to reconstitute the hematopoietic system. Human cord blood (hCB) transplantation has emerged as an attractive alternative treatment option when traditional HSC sources are unavailable; however, the absolute number of hCB HSCs transplanted is significantly lower than bone marrow or mobilized peripheral blood stem cells (MPBSCs). We previously demonstrated that dimethyl-prostaglandin E2 (dmPGE2) increased HSCs in vertebrate models. Here, we describe preclinical analyses of the therapeutic potential of dmPGE2 treatment by using human and nonhuman primate HSCs. dmPGE2 significantly increased total human hematopoietic colony formation in?vitro and enhanced engraftment of unfractionated and CD34(+) hCB after xenotransplantation. In nonhuman primate autologous transplantation, dmPGE2-treated CD34(+) MPBSCs showed stable multilineage engraftment over 1 year postinfusion. Together, our analyses indicated that dmPGE2 mediates conserved responses in HSCs from human and nonhuman primates and provided sufficient preclinical information to support proceeding to an FDA-approved phase 1 clinical trial.  相似文献   

10.
Chronic myeloid leukemia disease (CML) found effective therapy by treating patients with tyrosine kinase inhibitors (TKI), which suppress the BCR-ABL1 oncogene activity. However, the majority of patients achieving remission with TKI still have molecular evidences of disease persistence. Various mechanisms have been proposed to explain the disease persistence and recurrence. One of the hypotheses is that the primitive leukemic stem cells (LSCs) can survive in the presence of TKI. Understanding the mechanisms leading to TKI resistance of the LSCs in CML is a critical issue but is limited by availability of cells from patients. We generated induced pluripotent stem cells (iPSCs) derived from CD34+ blood cells isolated from CML patients (CML-iPSCs) as a model for studying LSCs survival in the presence of TKI and the mechanisms supporting TKI resistance. Interestingly, CML-iPSCs resisted to TKI treatment and their survival did not depend on BCR-ABL1, as for primitive LSCs. Induction of hematopoietic differentiation of CML-iPSC clones was reduced compared to normal clones. Hematopoietic progenitors obtained from iPSCs partially recovered TKI sensitivity. Notably, different CML-iPSCs obtained from the same CML patients were heterogeneous, in terms of BCR-ABL1 level and proliferation. Thus, several clones of CML-iPSCs are a powerful model to decipher all the mechanisms leading to LSC survival following TKI therapy and are a promising tool for testing new therapeutic agents.  相似文献   

11.
Yu S  Jing X  Colgan JD  Zhao DM  Xue HH 《Cell Stem Cell》2012,11(2):207-219
Hematopoietic stem cells (HSCs) and leukemic stem cells (LSCs) are both capable of self-renewal, with HSCs sustaining multiple blood lineage differentiation and LSCs indefinitely propagating leukemia. The GABP complex, consisting of DNA binding GABPα subunit and transactivation GABPβ subunit, critically regulates HSC multipotency and self-renewal via controlling an essential gene regulatory module. Two GABPβ isoforms, GABPβ1L and GABPβ2, contribute to assembly of GABPα(2)β(2) tetramer. We demonstrate that GABPβ1L/β2 deficiency specifically impairs HSC quiescence and survival, with little impact on cell cycle or apoptosis in differentiated blood cells. The HSC-specific effect is mechanistically ascribed to perturbed integrity of the GABP-controlled gene regulatory module in HSCs. Targeting GABPβ1L/β2 also impairs LSC self-renewal in p210(BCR-ABL)-induced chronic myelogenous leukemia (CML) and exhibits synergistic effects with tyrosine kinase inhibitor imatinib therapy in inhibiting CML propagation. These findings identify the tetramer-forming GABPβ isoforms as specific HSC regulators and potential therapeutic targets in treating LSC-based hematological malignancy.  相似文献   

12.
13.
Evi-1 has been recognized as one of the dominant oncogenes associated with murine and human myeloid leukemia. Here, we show that hematopoietic stem cells (HSCs) in Evi-1-deficient embryos are severely reduced in number with defective proliferative and repopulating capacity. Selective ablation of Evi-1 in Tie2(+) cells mimics Evi-1 deficiency, suggesting that Evi-1 function is required in Tie2(+) hematopoietic stem/progenitors. Conditional deletion of Evi-1 in the adult hematopoietic system revealed that Evi-1-deficient bone marrow HSCs cannot maintain hematopoiesis and lose their repopulating ability. In contrast, Evi-1 is dispensable for blood cell lineage commitment. Evi-1(+/-) mice exhibit the intermediate phenotype for HSC activity, suggesting a gene dosage requirement for Evi-1. We further demonstrate that disruption of Evi-1 in transformed leukemic cells leads to significant loss of their proliferative activity both in vitro and in vivo. Thus, Evi-1 is a common and critical regulator essential for proliferation of embryonic/adult HSCs and transformed leukemic cells.  相似文献   

14.
15.
Kijima M  Gardiol N  Held W 《PloS one》2011,6(11):e27639

Background

Natural Killer (NK) cells are thought to protect from residual leukemic cells in patients receiving stem cell transplantation. However, multiple retrospective analyses of patient data have yielded conflicting conclusions regarding a putative role of NK cells and the essential NK cell recognition events mediating a protective effect against leukemia. Further, a NK cell mediated protective effect against primary leukemia in vivo has not been shown directly.

Methodology/Principal Findings

Here we addressed whether NK cells have the potential to control chronic myeloid leukemia (CML) arising based on the transplantation of BCR-ABL1 oncogene expressing primary bone marrow precursor cells into lethally irradiated recipient mice. These analyses identified missing-self recognition as the only NK cell-mediated recognition strategy, which is able to significantly protect from the development of CML disease in vivo.

Conclusion

Our data provide a proof of principle that NK cells can control primary leukemic cells in vivo. Since the presence of NK cells reduced the abundance of leukemia propagating cancer stem cells, the data raise the possibility that NK cell recognition has the potential to cure CML, which may be difficult using small molecule BCR-ABL1 inhibitors. Finally, our findings validate approaches to treat leukemia using antibody-based blockade of self-specific inhibitory MHC class I receptors.  相似文献   

16.
Gene therapy for chronic myelogenous leukemia.   总被引:10,自引:0,他引:10  
Chronic myelogenous leukemia (CML) is characterized by a balanced translocation that leads to the formation of the the BCR-ABL fusion gene. Although autografts can prolong the life of CML patients, patients relapse owing to malignant cells that persist in the graft and the host. This review discusses various experimental strategies that target the BCR-ABL gene or gene products that are downstream of it. Various strategies have been adopted to block BCR-ABL at the gene, mRNA and protein level. One promising strategy involves the cotransduction of a patient's hematopoietic stem cells (HSCs) with anti-BCR-ABL antisense sequences and a drug resistance gene. This might allow for the elimination of any residual disease in the graft or host by chemotherapy while rendering any drug-resistant, malignant CML HSCs functionally normal.  相似文献   

17.
18.
Tyrosine kinase inhibitor (TKI) treatment has dramatically improved the survival of chronic myeloid leukemia (CML) patients, but measurable residual disease typically persists. To more effectively eradicate leukemia cells, simultaneous targeting of BCR-ABL1 and additional CML-related survival proteins has been proposed. Notably, several highly specific myeloid cell leukemia 1 (MCL1) inhibitors have recently entered clinical trials for various hematologic malignancies, although not for CML, reflecting the insensitivity of CML cell lines to single MCL1 inhibition. Here, we show that combining TKI (imatinib, nilotinib, dasatinib, or asciminib) treatment with the small-molecule MCL1 inhibitor S63845 exerted strong synergistic antiviability and proapoptotic effects on CML lines and CD34+ stem/progenitor cells isolated from untreated CML patients in chronic phase. Using wild-type BCR-ABL1-harboring CML lines and their T315I-mutated sublines (generated by CRISPR/Cas9-mediated homologous recombination), we prove that the synergistic proapoptotic effect of the drug combination depended on TKI-mediated BCR-ABL1 inhibition, but not on TKI-related off-target mechanisms. Moreover, we demonstrate that colony formation of CML but not normal hematopoietic stem/progenitor cells became markedly reduced upon combination treatment compared to imatinib monotherapy. Our results suggest that dual targeting of MCL1 and BCR-ABL1 activity may efficiently eradicate residual CML cells without affecting normal hematopoietic stem/progenitors.Subject terms: Cancer stem cells, Targeted therapies, Preclinical research  相似文献   

19.
The lack of understanding of the interplay between hematopoietic stem cells (HSCs) and the immune system has severely hampered the stem cell research and practice of transplantation. Major problems for allogeneic transplantation include low levels of donor engraftment and high risks of graft-versus-host disease (GVHD). Transplantation of purified allogeneic HSCs diminishes the risk of GVHD but results in decreased engraftment. Here we show that ex?vivo expanded mouse HSCs efficiently overcame the major histocompatibility complex barrier and repopulated allogeneic-recipient mice. An 8-day expansion culture led to a 40-fold increase of the allograft ability of HSCs. Both increased numbers of HSCs and culture-induced elevation of expression of the immune inhibitor CD274 (B7-H1 or PD-L1) on the surface of HSCs contributed to the enhancement. Our study indicates the great potential of utilizing ex?vivo expanded HSCs for allogeneic transplantation and suggests that the immune privilege of HSCs can be modulated.  相似文献   

20.
The molecular events that regulate engraftment and mobilization of hematopoietic stem cells and progenitors (HSC/Ps) are still incompletely defined. We have examined the role of the Rho GTPases Rac1 and Rac2 in HSC engraftment and mobilization. Rac1, but not the hematopoietic-specific Rac2, is required for the engraftment phase of hematopoietic reconstitution, because Rac1(-/-) HSCs did not rescue in vivo hematopoiesis after transplantation, but deletion of Rac1 after engraftment did not impair steady-state hematopoiesis. Rac1(-/-) HSC/Ps showed impaired spatial localization to the endosteum but near-normal homing to the medullary cavity in vivo. Interaction with the bone marrow microenvironment in vitro was markedly altered. Whereas post-engraftment deletion of Rac1 alone did not impair hematopoiesis, deficiency of both Rac1 and Rac2 led to massive mobilization of HSCs from the marrow associated with ineffective hematopoiesis and intense selection for Rac-expressing HSCs. This mobilization was reversible by re-expression of Rac1. In addition, a rationally designed, reversible small-molecule inhibitor of Rac activation led to transient mobilization of engraftable HSC/Ps. Rac proteins thus differentially regulate engraftment and mobilization phenotypes, suggesting that these biological processes and steady-state hematopoiesis are biochemically separable and that Rac proteins may be important molecular targets for stem cell modification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号