首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The prokaryotic V-type ATPase/synthases (prokaryotic V-ATPases) have simpler subunit compositions than eukaryotic V-ATPases, and thus are useful subjects for studying chemical, physical and structural properties of V-ATPase. In this review, we focus on the results of recent studies on the structure/function relationships in the V-ATPase from the eubacterium Thermus thermophilus. First, we describe single-molecule analyses of T. thermophilus V-ATPase. Using the single-molecule technique, it was established that the V-ATPase is a rotary motor. Second, we discuss arrangement of subunits in V-ATPase. Third, the crystal structure of the C-subunit (homolog of eukaryotic d-subunit) is described. This funnel-shape subunit appears to cap the proteolipid ring in the V0 domain in order to accommodate the V1 central stalk. This structure seems essential for the regulatory reversible association/dissociation of the V1 and the V0 domains. Last, we discuss classification of the V-ATPase family. We propose that the term prokaryotic V-ATPases should be used rather than the term archaeal-type ATPase (A-ATPase).  相似文献   

2.
Drory O  Frolow F  Nelson N 《EMBO reports》2004,5(12):1148-1152
Vacuolar H(+)-ATPase (V-ATPase) has a crucial role in the vacuolar system of eukaryotic cells. It provides most of the energy required for transport systems that utilize the proton-motive force that is generated by ATP hydrolysis. Some, but not all, of the V-ATPase subunits are homologous to those of F-ATPase and the nonhomologous subunits determine the unique features of V-ATPase. We determined the crystal structure of V-ATPase subunit C (Vma5p), which does not show any homology with F-ATPase subunits, at 1.75 A resolution. The structural features suggest that subunit C functions as a flexible stator that holds together the catalytic and membrane sectors of the enzyme. A second crystal form that was solved at 2.9 A resolution supports the flexible nature of subunit C. These structures provide a framework for exploring the unique mechanistic features of V-ATPases.  相似文献   

3.
Enterococcus hirae V-ATPase, in contrast to most V-type ATPases, is resistant to N-ethylmaleimide (NEM). Alignment of the amino acid sequences of NtpA suggests that the NEM-sensitive Cys of V-type ATPases is replaced by Ala in E. hirae V-ATPase. Consistent with this prediction, the V-ATPase became sensitive upon substitution of the Ala with Cys. The three-dimensional structure of the NtpB subunit of V-ATPase was modeled based on the structure of the corresponding subunit (alpha subunit) of bovine F(1)-ATPase by homology modeling. Overall, the 3D structure of the subunit resembled that of alpha subunit of bovine F(1)-ATPase. The NtpB subunit, which lacks the P-loop consensus sequence for nucleotide binding, was predicted to bind a nucleotide at the modeled nucleotide-binding site. Experimental data supported the prediction that the E. hirae V-ATPase had about six nucleotide-binding sites.  相似文献   

4.
The structure of the proton-pumping vacuolar ATPase (V-ATPase) from bovine brain clathrin coated vesicles was analyzed by electron microscopy and single molecule image analysis. A three-dimensional structural model of the complex was calculated by the angular reconstitution method at a resolution of 27 A. Overall, the appearance of the V(0) and V(1) domains in the three-dimensional model of the intact bovine V-ATPase resembles the models of the isolated bovine V(0) and yeast V(1) domains determined previously. To determine the binding position of subunit H in the V-ATPase, electron microscopy and cysteine-mediated photochemical cross-linking were used. Difference maps calculated from projection images of intact bovine V-ATPase and a V-ATPase preparation in which the two H subunit isoforms were removed by treatment with cystine revealed less protein density at the bottom of the V(1) in the subunit H-depleted enzyme, suggesting that subunit H isoforms bind at the interface of the V(1) and V(0) domains. A comparison of three-dimensional models calculated for intact and subunit H-depleted enzyme indicated that at least one of the subunit H isoforms, although poorly resolved in the three-dimensional electron density, binds near the putative N-terminal domain of the a subunit of the V(0). For photochemical cross-linking, unique cysteine residues were introduced into the yeast V-ATPase B subunit at sites that were localized based on molecular modeling using the crystal structure of the mitochondrial F(1) domain. Cross-linking was performed using the photoactivatable sulfhydryl reagent 4-(N-maleimido)benzophenone. Cross-linking to subunit H was observed from two sites on subunit B (E494 and T501) predicted to be located on the outer surface of the subunit closest to the membrane. Results from both electron microscopy and cross-linking analysis thus place subunit H near the interface of the V(1) and V(0) domains and suggest a close structural similarity between the V-ATPases of yeast and mammals.  相似文献   

5.
The vacuolar (H+)-ATPases (V-ATPases) are multisubunit complexes responsible for ATP-dependent proton transport across both intracellular and plasma membranes. The V-ATPases are composed of a peripheral domain (V1) that hydrolyzes ATP and an integral domain (V0) that conducts protons. Dissociation of V1 and V0 is an important mechanism of controlling V-ATPase activity in vivo. The crystal structure of subunit C of the V-ATPase reveals two globular domains connected by a flexible linker (Drory, O., Frolow, F., and Nelson, N. (2004) EMBO Rep. 5, 1-5). Subunit C is unique in being released from both V1 and V0 upon in vivo dissociation. To localize subunit C within the V-ATPase complex, unique cysteine residues were introduced into 25 structurally defined sites within the yeast C subunit and used as sites of attachment of the photoactivated sulfhydryl reagent 4-(N-maleimido)benzophenone (MBP). Analysis of photocross-linked products by Western blot reveals that subunit E (part of V1) is in close proximity to both the head domain (residues 166-263) and foot domain (residues 1-151 and 287-392) of subunit C. By contrast, subunit G (also part of V1) shows cross-linking to only the head domain whereas subunit a (part of V0) shows cross-linking to only the foot domain. The localization of subunit C to the interface of the V1 and V0 domains is consistent with a role for this subunit in controlling assembly of the V-ATPase complex.  相似文献   

6.
Vacuolar H(+)-ATPases (V-ATPases) are highly conserved proton pumps that couple hydrolysis of cytosolic ATP to proton transport out of the cytosol. Although it is generally believed that V-ATPases transport protons by a rotary catalytic mechanism analogous to that used by F(1)F(0)-ATPases, the structure and subunit composition of the central or peripheral stalk of the multisubunit complex are not well understood. We searched for proteins that bind to the E subunit of V-ATPase using the yeast two-hybrid assay and identified the H subunit as an interacting partner. Physical association between the E and H subunits of V-ATPase was confirmed in vitro by precipitation assays. Deletion mapping analysis revealed that a 78-amino acid fragment at the amino terminus of the E subunit was sufficient for binding to the H subunit. Expression of the amino-terminal fragments of the E subunits from human and yeast as dominant-negative mutants resulted in dramatic decreases in bafilomycin A(1)-sensitive ATP hydrolysis and proton transport activities of V-ATPase. Our data demonstrate the physiological significance of the interaction between the E and H subunits of V-ATPase and extend previous studies on the arrangement of subunits on the peripheral stalk of V-ATPase.  相似文献   

7.
The vacuolar ATPase (V-ATPase) is a multisubunit complex that carries out ATP-driven proton transport. It is composed of a peripheral V1 domain that hydrolyzes ATP and an integral V0 domain that translocates protons. Subunit a is a 100-kDa integral membrane protein (part of V0) that possesses an N-terminal cytoplasmic domain and a C-terminal hydrophobic domain. Although the C-terminal domain functions in proton transport, the N-terminal domain is critical for intracellular targeting and regulation of V-ATPase assembly. Despite its importance, there is currently no high resolution structure for subunit a of the V-ATPase. Recently, the crystal structure of the N-terminal domain of the related subunit I from the archaebacterium Meiothermus ruber was reported. We have used homology modeling to construct a model of the N-terminal domain of Vph1p, one of two isoforms of subunit a expressed in yeast. To test this model, unique cysteine residues were introduced into a Cys-less form of Vph1p and their accessibility to modification by the sulfhydryl reagent 3-(N-maleimido-propionyl) biocytin (MPB) was determined. In addition, accessibility of introduced cysteine residues to MPB modification was compared in the V1V0 complex and the free V0 domain to identify residues protected from modification by the presence of V1. The results provide an experimental test of the proposed model and have identified regions of the N-terminal domain of subunit a that likely serve as interfacial contact sites with the peripheral V1 domain. The possible significance of these results for in vivo regulation of V-ATPase assembly is discussed.  相似文献   

8.
Vacuolar H(+)-ATPases (V-ATPases) are multi-subunit membrane proteins that couple ATP hydrolysis to the extrusion of protons from the cytoplasm. Although they share a common macromolecular architecture and rotational mechanism with the F(1)F(0)-ATPases, the organization of many of the specialized V-ATPase subunits within this rotary molecular motor remains uncertain. In this study, we have identified sequence segments involved in linking putative stator subunits in the Saccharomyces V-ATPase. Precipitation assays revealed that subunits Vma5p (subunit C) and Vma10p (subunit G), expressed as glutathione-S-transferase fusion proteins in E. coli, are both able to interact strongly with Vma4p (subunit E) expressed in a cell-free system. GST-Vma10p also associated with Vma2p and Vma1p, the core subunits of the ATP-hydrolyzing domain, and was able to self-associate to form a dimer. Mutations within the first 19-residue region of Vma4p, which disrupted interaction with Vma5p in vitro, also prevented the Vma4p polypeptide from restoring V-ATPase function in a complementation assay in vivo. These mutations did not prevent assembly of Vma5p (subunit C) and Vma2p (subunit B) into an inactive complex at the vacuolar membrane, indicating that Vma5p must make multiple interactions involving other V-ATPase subunits. A second, highly conserved region of Vma4p between residues 19 and 38 is involved in binding Vma10p. This region is highly enriched in charged residues, suggesting a role for electrostatic effects in Vma4p-Vma10p interaction. These protein interaction studies show that the N-terminal region of Vma4p is a key factor not only in the stator structure of the V-ATPase rotary molecular motor, but also in mediating interactions with putative regulatory subunits.  相似文献   

9.
The model plant tobacco (Nicotiana tabacum L.) was chosen for a survey of the subunit composition of the V-ATPase at the protein level. V-ATPase was purified from tobacco leaf cell tonoplasts by solubilization with the nonionic detergent Triton X-100 and immunoprecipitation. In the purified fraction 12 proteins were present. By matrix-assisted laser-desorption ionization mass spectrometry (MALDI-MS) and amino acid sequencing 11 of these polypeptides could be identified as subunits A, B, C, D, F, G, c, d and three different isoforms of subunit E. The polypeptide which could not be identified by MALDI analysis might represent subunit H. The data presented here, for the first time, enable an unequivocal identification of V-ATPase subunits after gel electrophoresis and open the possibility to assign changes in polypeptide composition to variations in respective V-ATPase subunits occurring as a response to environmental conditions or during plant development.  相似文献   

10.
The overall structure of V-ATPase complexes resembles that of F-type ATPases, but the stalk region is different and more complex. Database searches followed by sequence analysis of the five water-soluble stalk region subunits C–G revealed that (i) to date V-ATPases are found in 16 bacterial species, (ii) bacterial V-ATPases are closer to archaeal A-ATPases than to eukaryotic V-ATPases, and (iii) different groups of bacterial V-ATPases exist. Inconsistencies in the nomenclature of types and subunits are addressed. Attempts to assign subunit positions in V-ATPases based on biochemical experiments, chemical cross-linking, and electron microscopy are discussed. A structural model for prokaryotic and eukaryotic V-ATPases is proposed. The prokaryotic V-ATPase is considered to have a central stalk between headpiece and membrane flanked by two peripheral stalks. The eukaryotic V-ATPases have one additional peripheral stalk.  相似文献   

11.
以玉米 (Zea mays L.) 根的高纯度液泡膜为材料进行的磷酸化反应表明,液泡膜蛋白的磷酸化可明显提高V型H -ATPase (V-ATPase) 的ATP水解活性和H 转运活性。进一步研究表明,纯化的液泡膜蛋白能被硫代磷酸化,用V-ATPase的A亚基抗体将一条约69 kD的条带鉴定为A亚基。为了测定V-ATPase的A亚基的磷酸化位点,从硫代磷酸化的凝胶中切下A亚基条带并用胰蛋白酶彻底消化。用RP-HPLC分离纯化酶解片断,收集纯化的硫代磷酸化肽段进行质谱分析所测定的分子量为573.83 Da。A亚基胰蛋白酶彻底消化后能产生61个肽段,只有F56肽段的分子量573.66 Da与573.83 Da最接近,而且F56肽段上只有第525位的丝氨酸可以被磷酸化。因此可以确定,玉米根V-AT-Pase A亚基的潜在磷酸化位点为Ser525。就我们所知,这是首次确定植物V-ATPase A亚基的磷酸化位点。  相似文献   

12.
The yeast V-ATPase belongs to a family of V-type ATPases present in all eucaryotic organisms. In Saccharomyces cerevisiae the V-ATPase is localized to the membrane of the vacuole as well as the Golgi complex and endosomes. The V-ATPase brings about the acidification of these organelles by the transport of protons coupled to the hydrolysis of ATP. In yeast, the V-ATPase is composed of 13 subunits consisting of a catalytic V1 domain of peripherally associated proteins and a proton-translocating V0 domain of integral membrane proteins. The regulatory subunit, Vma13p, was the first V-ATPase subunit to have its crystal structure determined. In addition to proteins forming the functional V-ATPase complex, three ER-localized proteins facilitate the assembly of the V0 subunits following their translation and insertion into the membrane of the ER. Homologues of the Vma21p assembly factor have been identified in many higher eukaryotes supporting a ubiquitous assembly pathway for this important enzyme complex.  相似文献   

13.
Subunit A is the catalytic nucleotide binding subunit of the vacuolar proton-translocating ATPase (or V-ATPase) and is homologous to subunit beta of the F(1)F(0) ATP synthase (or F-ATPase). Amino acid sequence alignment of these subunits reveals a 90-amino acid insert in subunit A (termed the non-homologous region) that is absent from subunit beta. To investigate the functional role of this region, site-directed mutagenesis has been performed on the VMA1 gene that encodes subunit A in yeast. Substitutions were performed on 13 amino acid residues within this region that are conserved in all available A subunit sequences. Most of the 18 mutations introduced showed normal assembly of the V-ATPase. Of these, one (R219K) greatly reduced both proton transport and ATPase activity. By contrast, the P217V mutant showed significantly reduced ATPase activity but higher than normal levels of proton transport, suggesting an increase in coupling efficiency. Two other mutations in the same region (P223V and P233V) showed decreased coupling efficiency, suggesting that changes in the non-homologous region can alter coupling of proton transport and ATP hydrolysis. It was previously shown that the V-ATPase must possess at least 5-10% activity relative to wild type to undergo in vivo dissociation in response to glucose withdrawal. However, four of the mutations studied (G150A, D157E, P177V, and P223V) were partially or completely blocked in dissociation despite having greater than 30% of wild type levels of activity. These results suggest that changes in the non-homologous region can also alter in vivo dissociation of the V-ATPase independent of effects on activity.  相似文献   

14.
The vacuolar (H+)-ATPase (V-ATPase) is an important proton pump, and multiple critical cell-biological processes depend on the proton gradient provided by the pump. Yet, the mechanism underlying the control of the V-ATPase is still elusive but has been hypothesized to involve an accessory subunit of the pump. Here we studied as a candidate V-ATPase regulator the neuroendocrine V-ATPase accessory subunit Ac45. We transgenically manipulated the expression levels of the Ac45 protein specifically in Xenopus intermediate pituitary melanotrope cells and analyzed in detail the functioning of the transgenic cells. We found in the transgenic melanotrope cells the following: i) significantly increased granular acidification; ii) reduced sensitivity for a V-ATPase-specific inhibitor; iii) enhanced early processing of proopiomelanocortin (POMC) by prohormone convertase PC1; iv) reduced, neutral pH–dependent cleavage of the PC2 chaperone 7B2; v) reduced 7B2-proPC2 dissociation and consequently reduced proPC2 maturation; vi) decreased levels of mature PC2 and consequently reduced late POMC processing. Together, our results show that the V-ATPase accessory subunit Ac45 represents the first regulator of the proton pump and controls V-ATPase-mediated granular acidification that is necessary for efficient prohormone processing.  相似文献   

15.
In the absence of a high-resolution structure for the vacuolar H+-ATPase, a number of approaches can yield valuable information about structure/function relationships in the enzyme. Electron microscopy can provide not only a representation of the overall architecture of the complex, but also a low-resolution map onto which structures solved for individually expressed subunits can be fitted. Here we review the possibilities for electron microscopy of the Saccharomyces V-ATPase and examine the suitability of V-ATPase subunits for expression in high yield prokaryotic systems, a key step towards high-resolution structural studies. We also review the role of experimentally-derived structural models in understanding structure/function relationships in the V-ATPase, with particular reference to the complex of proton-translocating 16 kDa proteolipids in the membrane domain of the V-ATPase. This model in turn makes testable predictions about the sites of binding of bafilomycins and the functional interactions between the proteolipid and the single-copy membrane subunit Vph1p, with implications for the constitution of the proton translocation pathway.  相似文献   

16.
The ability of a vacuolar H(+)-ATPase (V-ATPase) subunit homolog (subunit A) from plants to rescue the vma mutant phenotype of yeast was investigated as a first step towards investigating the structure and function of plant subunits in molecular detail. Heterologous expression of cotton cDNAs encoding near-identical isoforms of subunit A in mutant vma1 delta yeast cells successfully rescued the mutant vma phenotype, indicating that subunit A of plants and yeast have retained elements essential to V-ATPases during the course of evolution. Although vacuoles become acidified, the plant-yeast hybrid holoenzyme only partially restored V-ATPase activity (approximately 60%) in mutant yeast cells. Domain substitution of divergent N- or C-termini only slightly enhanced V-ATPase activity, whereas swapping both domains acted synergistically, increasing coupled ATP hydrolysis and proton translocation by approximately 22% relative to the native plant subunit. Immunoblot analysis indicated that similar amounts of yeast, plant or plant-yeast chimeric subunits are membrane-bound. These results suggest that subunit A terminal domains contain structural information that impact V-ATPase structure and function.  相似文献   

17.
The vacuolar (H(+))-ATPases (or V-ATPases) are structurally related to the F(1)F(0) ATP synthases of mitochondria, chloroplasts and bacteria, being composed of a peripheral (V(1)) and an integral (V(0)) domain. To further investigate the arrangement of subunits in the V-ATPase complex, covalent cross-linking has been carried out on the V-ATPase from clathrin-coated vesicles using three different cross-linking reagents. Cross-linked products were identified by molecular weight and by Western blot analysis using polyclonal antibodies raised against individual V-ATPase subunits. In the intact V(1)V(0) complex, evidence for cross-linking of subunits C and E, D and F, as well as E and G by disuccinimidyl glutarate was obtained, while in the free V(1) domain, cross-linking of subunits H and E was also observed. Subunits C and E as well as D and E could be cross-linked by 1-ethyl-3-(dimethylaminopropyl)carbodiimide, while subunits a and E could be cross-linked by 4-(N-maleimido)benzophenone. It was further demonstrated that it is possible to treat the V-ATPase with potassium iodide and MgATP in such a way that while subunits A, B, and H are nearly quantitatively removed, significant amounts of subunits C, D, E, and F remain attached to the membrane, suggesting that one or more of these latter subunits are in contact with the V(0) domain. In addition, treatment of the V-ATPase with cystine, which modifies Cys-254 of the catalytic A subunit, results in dissociation of subunit H, suggesting communication between the catalytic nucleotide binding site and subunit H. Finally, the stoichiometry of subunits F, G, and H were determined by quantitative amino acid analysis. Based on these and previous observations, a new structural model of the V-ATPase from clathrin-coated vesicles is proposed.  相似文献   

18.
19.
Vacuolar (H+)-ATPases (V-ATPases) are ubiquitous, ATP-driven proton pumps that acidify organelles or the extracellular space. A rapid and effective mechanism for regulating V-ATPase activity involves reversible dissociation of the two functional domains of the pump, V1 and V0. This process is best characterized in yeast, where V-ATPases are reversibly disassembled in response to glucose depletion. To identify regulators that control this process in vivo, a genetic screen was performed in yeast to search for mutants that cannot disassemble their V-ATPases when grown in the absence of glucose. This screen identified IRA1 (inhibitory regulator of the Ras/cAMP pathway 1) and IRA2 as essential genes for regulating V-ATPase dissociation in vivo. IRA1 and IRA2 encode GTPase-activating proteins that negatively regulate Ras in nutrient-poor conditions. Down-regulation of Ras lowers cAMP levels by reducing adenylate cyclase activity. Decreased cAMP levels in turn lead to reduced activity of protein kinase A (PKA). Our results show that targeted deletion of IRA2 results in defective disassembly of the V-ATPase in response to glucose depletion, and reexpression of the gene rescues this phenotype. Glucose-dependent dissociation is also blocked in strains expressing the dominant active RAS2val19 allele or in strains deficient for the regulatory subunit of PKA, both of which lead to constitutively active PKA. These results reveal a role for PKA in controlling glucose-dependent V-ATPase assembly in yeast.  相似文献   

20.
以玉米(Zea mays L)根的高纯度液泡膜为材料进行的磷酸化反应表明,液泡膜蛋白的磷酸化可明显提高v型H -ATPase(V-ATPase)的ATP水解活性和H 转运活性.进一步研究表明,纯化的液泡膜蛋白能被硫代磷酸化,用V-ATPase的A亚基抗体将一条约69 kD的条带鉴定为A亚基.为了测定V-ATPase的A亚基的磷酸化位点,从硫代磷酸化的凝胶中切下A亚基条带并用胰蛋白酶彻底消化.用RP-HPLC分离纯化酶解片断,收集纯化的硫代磷酸化肽段进行质谱分析所测定的分子量为573.83 Da.A亚基胰蛋白酶彻底消化后能产生61个肽段,只有F56肽段的分子量573.66 Da与573.83 Da最接近,而且F56肽段上只有第525位的丝氨酸可以被磷酸化.因此可以确定,玉米根V-AT-Pase A亚基的潜在磷酸化位点为Ser525.就我们所知,这是首次确定植物V-ATPase A亚基的磷酸化位点.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号