首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Adult mammary tissue has been considered "resting" with minimal morphological change. Here, we reveal the dynamic nature of the nulliparous murine mammary gland. We demonstrate specific changes at the morphological and cellular levels, and uncover their relationship with the murine estrous cycle and physiological levels of steroid hormones. Differences in the numbers of higher-order epithelial branches and alveolar development led to extensive mouse-to-mouse mammary variations. Morphology (assigned grades 0-3) ranged from a complete lack of alveoli to the presence of numerous alveoli emanating from branches. Morphological changes were driven by epithelial proliferation and apoptosis, which differed between ductal versus alveolar structures. Proliferation within alveolar epithelium increased as morphological grade increased. Extensive alveolar apoptosis was restricted to tissue exhibiting grade 3 morphology, and was approximately 14-fold higher than at all other grades. Epithelial proliferation and apoptosis exhibited a positive relationship with serum levels of progesterone, but not with 17beta-estradiol. Compared with other estrous stages, diestrus was unique in that the morphological grade, epithelial proliferation, apoptosis, and progesterone levels all peaked at this stage. The regulated tissue remodeling of the mammary gland was orchestrated with mRNA changes in specific matrix metalloproteinases (MMP-9 and MMP-13) and specific tissue inhibitors of metalloproteinases (TIMP-3 and TIMP-4). We propose that the cyclical turnover of epithelial cells within the adult mammary tissue is a sum of spatial and functional coordination of hormonal and matrix regulatory factors.  相似文献   

2.
The ovarian steroids estrogen and progesterone are important in directing the normal growth and development of the mouse mammary gland. Previously, we have demonstrated that the majority of proliferating mammary epithelial cells do not express estrogen receptor-alpha (ERalpha). In this study we examined the relationship between progesterone receptor (PR) expression and proliferation in mammary epithelial cells using simultaneous immunohistochemistry for progesterone receptor (PR) and tritiated thymidine [(3)H]-Tdr) autoradiography. Results showed that the majority (>80%) of mammary epithelial cells labeled with [(3)H]-Tdr were PR-positive in the terminal end buds (TEBs) of pubertal mice and the ducts of pubertal and adult mice. Whereas the majority of mammary epithelial cells were also PR-positive, the basal cell population, which comprises the minority of mammary epithelial cells in the mammary ducts, was predominantly PR-negative. Nevertheless, the PR-positive phenotype remained the major proliferating cell type in the basal population. These findings suggest that the progesterone signaling pathway is involved in the proliferation of basal cell populations, potentially directing formation of tertiary side branching during pubertal development and alveolar bud formation in adult glands. A proportion of the basal cells exhibited weak expression of ERbeta, suggesting that the role of ERbeta in mediating normal estrogen-induced responses should be further studied. (J Histochem Cytochem: 47:1323-1330, 1999)  相似文献   

3.
To further our understanding of progesterone (P) as an endocrine mammogen, a PR(lacz) knockin mouse was generated in which the endogenous progesterone receptor (PR) promoter directly regulated lacZ reporter expression. The PR(lacz) mouse revealed PR promoter activity was restricted to the epithelial compartment during the prenatal and postnatal stages of mammary gland development. At puberty, PR promoter activity was unexpectedly robust and restricted to the body cells within the terminal end buds and to the luminal epithelial cells in the subtending ducts. In the adult, the preferential localization of PR(lacz) positive cells to the distal regions of ductal side branches provided a cellular context to the recognized mandatory role of P in ductal side-branching, and segregation of these cells from cells that undergo proliferation supported an intraepithelial paracrine mode of action for P in branching morphogenesis. Toward the end of pregnancy, the PR(lacz) mouse disclosed a progressive attenuation in PR promoter activity, supporting the postulate that the preparturient removal of the proliferative signal of P is a prerequisite for the emergence of a functional lactating mammary gland. The data suggest that PR expression before pregnancy is to ensure the specification and spatial organization of ductal and alveolar progenitor cell lineages, whereas abrogation of PR expression before lactation is required to enable terminal differentiation of the mammary gland.  相似文献   

4.
Transforming growth factor beta1 (TGFB1) is a multi-functional cytokine that regulates cell proliferation, apoptosis and immune system responses. In the breast, the mammary epithelium is the primary source of TGFB1 and increased expression is associated with increased breast cancer risk. This study was conducted to investigate the roles of epithelial cell-derived TGFB1 in regulation of epithelial cell activity and macrophage phenotype in the mammary gland. Tgfb1 null mutant and wildtype mammary epithelium was transplanted into contra-lateral sides of the cleared mammary gland of TGFB1 replete scid mice. Transplanted tissue was analysed for markers of proliferation and apoptosis to determine the effect of Tgfb1 null mutation on epithelial cell turnover, and was analysed by immunohistochemistry to investigate the location, abundance and phenotype of macrophages. The number of proliferating and dying ductal epithelial cells, determined by BrdU and TUNEL, was increased by 35% and 3.3-fold respectively in mammary gland transplanted with Tgfb1 null epithelium compared to wildtype epithelium (p < 0.05). Abundance of F4/80+ macrophages in between Tgfb1 null epithelial cells compared to wildtype epithelial cells was increased by 50%. The number of iNOS+ and CCR7+ cells in the stroma surrounding Tgfb1 null alveolar epithelium was increased by 78% and 2-fold respectively, and dendriform MHC class II+ cells within ductal epithelium were decreased by 30%. We conclude that epithelial cell-derived TGFB1 in the mammary gland has two functions: (1) regulation of cellular turnover of epithelial cells, and (2) regulation of local macrophage phenotype. These findings shed new light on the diversity of roles of TGFB1 in the mammary gland which are likely to impact on breast cancer risk.  相似文献   

5.
A conditional null mutation of peroxisome proliferator-activated receptor-binding protein (PBP) gene was generated to understand its role in mammary gland development. PBP-deficient mammary glands exhibited retarded ductal elongation during puberty, and decreased alveolar density during pregnancy and lactation. PBP-deficient mammary glands could not produce milk to nurse pups during lactation. Both the mammary ductal elongation in response to estrogen treatment and the mammary lobuloalveolar proliferation stimulated by estrogen plus progesterone were attenuated in PBP-deficient mammary glands. The proliferation index was decreased in PBP-deficient mammary glands. PBP-deficient mammary epithelial cells expressed abundant beta-casein, whey acidic protein, and WDNM1 mRNA, indicating a relatively intact differentiated function. PBP-deficient epithelial cells were unable to form mammospheres, which were considered to be derived from mammary progenitor/stem cells. We conclude that PBP plays a pivotal role in the normal mammary gland development.  相似文献   

6.
Mammary gland development is dependent on macrophages, as demonstrated by their requirement during the expansion phases of puberty and pregnancy. Equally dramatic tissue restructuring occurs following lactation, when the gland regresses to a state that histologically resembles pre-pregnancy through massive programmed epithelial cell death and stromal repopulation. Postpartum involution is characterized by wound healing-like events, including an influx of macrophages with M2 characteristics. Macrophage levels peak after the initial wave of epithelial cell death, suggesting that initiation and execution of cell death are macrophage independent. To address the role of macrophages during weaning-induced mammary gland involution, conditional systemic deletion of macrophages expressing colony stimulating factor 1 receptor (CSF1R) was initiated just prior to weaning in the Mafia mouse model. Depletion of CSF1R(+) macrophages resulted in delayed mammary involution as evidenced by loss of lysosomal-mediated and apoptotic epithelial cell death, lack of alveolar regression and absence of adipocyte repopulation 7 days post-weaning. Failure to execute involution occurred in the presence of milk stasis and STAT3 activation, indicating that neither is sufficient to initiate involution in the absence of CSF1R(+) macrophages. Injection of wild-type bone marrow-derived macrophages (BMDMs) or M2-differentiated macrophages into macrophage-depleted mammary glands was sufficient to rescue involution, including apoptosis, alveolar regression and adipocyte repopulation. BMDMs exposed to the postpartum mammary involution environment upregulated the M2 markers arginase 1 and mannose receptor. These data demonstrate the necessity of macrophages, and implicate M2-polarized macrophages, for epithelial cell death during normal postpartum mammary gland involution.  相似文献   

7.
The cytokine-transforming growth factor beta1 (TGFB1) is implicated in development of the mammary gland through regulation of epithelial cell proliferation and differentiation during puberty and pregnancy. We compared mammary gland morphogenesis in virgin Tgfb1(+/+), Tgfb1(+/-), and Tgfb1(-/-) mice and transplanted Tgfb1(+/+) and Tgfb1(-/-) epithelium to determine the impact of TGFB1 deficiency on development. When mammary gland tissue was evaluated relative to the timing of puberty, invasion through the mammary fat pad of the ductal epithelium progressed similarly, irrespective of genotype, albeit fewer terminal end buds were observed in mammary glands from Tgfb1(-/-) mice. The terminal end buds appeared to be normal morphologically, and a comparable amount of epithelial proliferation was evident. When transplanted into wild-type recipients, however, Tgfb1(-/-) epithelium showed accelerated invasion compared with Tgfb1(+/+) epithelium. This suggests that the normal rate of ductal extension in Tgfb1(-/-) null mutant mice is the net result of impaired endocrine or paracrine support acting to limit the consequences of unrestrained epithelial growth. By adulthood, mammary glands in cycling virgin Tgfb1(-/-) mice were morphologically similar to those in Tgfb1(+/+) and Tgfb1(+/-) animals, with a normal branching pattern, and the tissue differentiated into early alveolar structures in the diestrous phase of the ovarian cycle. Transplanted mammary gland epithelium showed a similar extent of ductal branching and evidence of secretory differentiation of luminal cells in pregnancy. These results reveal two opposing actions of TGFB1 during pubertal mammary gland morphogenesis: autocrine inhibition of epithelial ductal growth, and endocrine or paracrine stimulation of epithelial ductal growth.  相似文献   

8.
9.
Cadmium mimics the in vivo effects of estrogen in the uterus and mammary gland   总被引:16,自引:0,他引:16  
It has been suggested that environmental contaminants that mimic the effects of estrogen contribute to disruption of the reproductive systems of animals in the wild, and to the high incidence of hormone-related cancers and diseases in Western populations. Previous studies have shown that functionally, cadmium acts like steroidal estrogens in breast cancer cells as a result of its ability to form a high-affinity complex with the hormone binding domain of the estrogen receptor. The results of the present study show that cadmium also has potent estrogen-like activity in vivo. Exposure to cadmium increased uterine wet weight, promoted growth and development of the mammary glands and induced hormone-regulated genes in ovariectomized animals. In the uterus, the increase in wet weight was accompanied by proliferation of the endometrium and induction of progesterone receptor (PgR) and complement component C3. In the mammary gland, cadmium promoted an increase in the formation of side branches and alveolar buds and the induction of casein, whey acidic protein, PgR and C3. In utero exposure to the metal also mimicked the effects of estrogens. Female offspring experienced an earlier onset of puberty and an increase in the epithelial area and the number of terminal end buds in the mammary gland.  相似文献   

10.
The mammary gland is a dynamic organ that undergoes cyclic developmental and regressive changes during the lifetime of a female mammal. Mammogenesis begins during embryonic life with the development of the first mammary gland rudiments and ductal system. After birth, during the pre-pubertal period, the ductal growth of the mammary parenchyma occurs through the fat pad. In most of the ruminant species allometric mammary parenchyma development begins with the onset of cyclic ovarian secretions activity. The two main hormones secreted during an ovarian cycle are estradiol and progesterone. These steroid hormones are derived from cholesterol and are synthesized by theca and granulosa cells in ovaries. During puberty, the mammary parenchyma develops in a compact, highly arborescent parenchymal mass surrounded by a dense connective matrix. Ductal elongation and lobulo-alveolar development are accomplished during growth and pregnancy to prepare for future milk production. At the end of lactation, the mammary gland undergoes involution, which corresponds to a regression of the secretory tissue, a reduction in the alveolar size and a loss of mammary epithelial cells (MECs). Ovarian steroids (estradiol and progesterone) appear to be key regulators of the different stages of mammogenesis and mammary function. Through this review, the role and the importance of ovarian steroids on mammary gland and on MECs is described.  相似文献   

11.
Elf5 is an epithelial-specific ETS factor. Embryos with a null mutation in the Elf5 gene died before embryonic day 7.5, indicating that Elf5 is essential during mouse embryogenesis. Elf5 is also required for proliferation and differentiation of mouse mammary alveolar epithelial cells during pregnancy and lactation. The loss of one functional allele led to complete developmental arrest of the mammary gland in pregnant Elf5 heterozygous mice. A quantitative mRNA expression study and Western blot analysis revealed that decreased expression of Elf5 correlated with the downregulation of milk proteins in Elf5(+/-) mammary glands. Mammary gland transplants into Rag(-/-) mice demonstrated that Elf5(+/-) mammary alveolar buds failed to develop in an Elf5(+/+) mammary fat pad during pregnancy, demonstrating an epithelial cell autonomous defect. Elf5 expression was reduced in Prolactin receptor (Prlr) heterozygous mammary glands, which phenocopy Elf5(+/-) glands, suggesting that Elf5 and Prlr are in the same pathway. Our data demonstrate that Elf5 is essential for developmental processes in the embryo and in the mammary gland during pregnancy.  相似文献   

12.
13.
In the developing rat mammary gland, terminal end buds (TEBs), lateral buds and alveolar buds represent the major sites of morphogenetic activity and cellular differentiation. The morphology and cellular composition of these buds from 20-to 22-day-old rats and cycling rats have been studied by immunocytochemical and electron microscopic techniques. The mammary buds are composed of a heterogeneous collection of cells including epithelial and myoepithelial cells, irregular loosely adherent cells, and occasional large clear cells. The irregular, loosely packed cells or cap cells are mainly situated around the periphery of the TEBs and lateral buds. "Chains" of irregularly shaped cells also extend from the peripheral cap cell layer to the center of the TEB; and, where they converge on lumina, they display microvilli and junctional complexes. At the tips of the end buds, the cap cells are of undifferentiated appearance; however, similar cells situated toward the subtending mammary ducts show a gradation in ultrastructure to that of myoepithelial cells. This change is accompanied by an increase in the amounts of immunoreactive myosin and keratin seen within the cells and a 200-fold increase in the thickness of the basement membrane. In contrast, the peripheral cells of the alveolar buds are more closely packed, contain a greater number of myofilaments, and show increased staining with antisera to myosin. We suggest that the undifferentiated cap cells do not represent a discrete cell type, since they show transitional forms to myoepithelial cells within the subtending mammary ducts, and that the tendency toward the myoepithelial phenotype is predominant in the more differentiated structures, the alveolar buds.  相似文献   

14.
Bone morphogenetic proteins (BMPs) have been implicated in the control of proliferation, tissue formation, and differentiation. BMPs regulate the biology of stem and progenitor cells and can promote cellular differentiation, depending on the cell type and context. Although the BMP pathway is known to be involved in early embryonic development of the mammary gland via mesenchymal cells, its role in later epithelial cellular differentiation has not been examined. The majority of the mammary gland development occurs post-natal, and its final functional differentiation is characterized by the emergence of alveolar cells that produce milk proteins. Here, we tested the hypothesis that bone morphogenetic protein receptor 1A (BMPR1A) function was required for mammary epithelial cell differentiation. We found that the BMPR1A-SMAD1/5/8 pathway was predominantly active in undifferentiated mammary epithelial cells, compared with differentiated cells. Reduction of BMPR1A mRNA and protein, using short hairpin RNA, resulted in a reduction of SMAD1/5/8 phosphorylation in undifferentiated cells, indicating an impact on this pathway. When the expression of the BMPR1A gene knocked down in undifferentiated cells, this also prevented beta-casein production during differentiation of the mammary epithelial cells by lactogenic hormone stimulation. Addition of Noggin, a BMP antagonist, also prevented beta-casein expression. Together, this demonstrated that BMP-BMPR1A-SMAD1/5/8 signal transduction is required for beta-casein production, a marker of alveolar cell differentiation. This evidence functionally identifies BMPR1A as a potential new regulator of mammary epithelial alveolar cell differentiation.  相似文献   

15.
The mechanisms of action of, and resistance to, the steroidal regulators of normal mammary epithelial and breast cancer cell development are only partially understood. A major obstacle to research progress has been the difficulty in supporting physiologically relevant development of normal mammary epithelial cells (MEC) under defined serum-free conditions. A primary culture system was developed in our laboratory that permits nonfunctional rat MEC to undergo extensive proliferation, functional differentiation, as well as multilobular and lobuloductal branching alveolar morphogenesis. In the studies reported here, the contributions of hydrocortisone and progesterone during the coordinate induction of cellular proliferation, organoid morphogenesis, and functional capacity were assessed. Hydrocortisone (0.1–10 μg/ml) induced alveolar and multilobular branching morphogenesis, suppressed lobuloductal branching morphogenesis, and enhanced casein accumulation. Hydrocortisone also played a role in maintaining alveolar as well as multilobular branching morphogenesis and casein levels. Progesterone (0.01–1 μg/ml) induced cellular proliferation as well as multilobular and lobuloductal branching morphogenesis, and suppressed casein accumulation. At a supraphysiological concentration (10 μg/ml), progesterone inhibited cell growth, alveolar branching morphogenesis, and casein accumulation. MEC cultured without progesterone for up to 1 week retained the ability to respond when subsequently exposed to this steroid. Reversibility studies suggested that progesterone was required for the induction, but not the maintenance of the mitogenic, morphogenic, and lactogenic effects. This physiologically relevant primary culture system can be used to study the factors that regulate steroid responsiveness as well as the cross-talk between steroid and growth factor receptor signaling pathways in normal MEC and breast cancer cells. © 1995 Wiley-Liss, Inc.  相似文献   

16.
Tritium-labelled thymidine was injected 45 min before sacrifice into virgin female C3H/HeJ mice 7–23 weeks of age, as well as into 10-week-old mice which had been ovariectomized and treated daily with 1 μg of oestradiol-17β and/or 1 mg of progesterone. Autoradiographs were made of squash preparations of the mammary glands, stained by Feulgen's method. The following results were obtained: (1) During normal development of the gland, cells synthesizing DNA are abundant in terminal buds and virtually absent in duct epithelium. Hence ductal growth takes place by the addition of cells produced in the terminal end structures. (2) At 5–6 months, when mammary growth has ceased, a considerable number of cells synthesizing DNA can still be found in alveoli, though not in duct epithelium. Hence the alveolar cells constitute a renewal population in the adult virgin. Because they maintain the potentiality to divide, duct cells are a G0 population. (3) Ovariectomy results in arrest of DNA synthesis within 3–5 days. Both oestradiol and progesterone restore DNA synthesis in alveoli but only progesterone is able to induce DNA synthesis in duct epithelium, and the differentiation of terminal buds into alveoli. This finding provides an explanation for the resumed proliferation of duct cells in pregnancy. (4) The number of cells engaged in DNA synthesis varies considerably among identical structures within the same gland. This may be due either to synchrony of cell replication and/or to fluctuations of proliferative activity in the gland.  相似文献   

17.
The steroid hormones 17 beta-estradiol and progesterone play a central role in the pathogenesis of breast cancer and regulate key phases of mammary gland development. This suggests that developmental regulatory molecules whose activity is influenced by ovarian hormones may also contribute to mammary carcinogenesis. In a screen designed to identify protein kinases expressed in the mammary gland, we previously identified a novel SNF1-related serine/threonine kinase, Hunk (hormonally upregulated Neu-associated kinase). During postnatal mammary development, Hunk mRNA expression is restricted to a subset of mammary epithelial cells and is temporally regulated with highest levels of expression occurring during early pregnancy. In addition, treatment of mice with 17 beta-estradiol and progesterone results in the rapid and synergistic upregulation of Hunk expression in a subset of mammary epithelial cells, suggesting that the expression of this kinase may be regulated by ovarian hormones. Consistent with the tightly regulated pattern of Hunk expression during pregnancy, mammary glands from transgenic mice engineered to misexpress Hunk in the mammary epithelium manifest temporally distinct defects in epithelial proliferation and differentiation during pregnancy, and fail to undergo normal lobuloalveolar development. Together, these observations suggest that Hunk may contribute to changes in the mammary gland that occur during pregnancy in response to ovarian hormones.  相似文献   

18.
Eosinophils are prevalent in the female reproductive tract, where they may contribute to regulation of development and maintenance of epithelial integrity. The present study examined the effects of constitutive interleukin-5 (IL-5) expression and overabundance of eosinophils on the development and function of the mammary gland, uterus, and ovary in mice. Eosinophils were up to 13-fold and 4-fold more abundant in the uterus and mammary gland, respectively, in female IL-5 transgenic (IL-5Tg) mice than in wild-type (Wt) animals. Eosinophils were present in large numbers in regressing corpora lutea in IL-5Tg mice but not in ovaries from Wt mice. Postpubertal mammary gland development was retarded in IL-5Tg mice, with impaired terminal end bud formation and an altered pattern of epithelial cell proliferation across the mammary fat pad coincident with disrupted ductal branching and extension. By 10 wk of age, the ductal tree was complete in both genotypes. Onset of first estrus was also delayed in IL-5Tg mice, but once IL-5Tg mice reached puberty, serum estrogen content across the cycle and estrous cycle duration were normal. The histology of uterine tissue and epithelial cell turnover were unchanged. Capacity to mate and achieve pregnancy was not affected by maternal IL-5 transgene expression, although at Day 18 of gestation, a modest decrease in the fetal:placental weight ratio was observed. Furthermore, parturition and ability to lactate and nurture postnatal pup development were not compromised. These data demonstrate an effect of IL-5 overexpression on ductal morphogenesis during postpubertal mammary gland development that is consistent with a direct regulatory role for eosinophils in these events, but these data also show that eosinophil excess does not have long-term consequences for adult reproductive function.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号