首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 349 毫秒
1.
Methanogenesis represents an important electron sink reaction in the hindgut of soil-feeding termites. This is the first comprehensive analysis of the archaeal community structure within the highly compartmentalized intestinal tract of a humivorous insect, combining clonal analysis and terminal restriction fragment (T-RF) length polymorphism (T-RFLP) fingerprinting of the archaeal communities in the different gut compartments of Cubitermes orthognathus. We found that the morphological and physicochemical heterogeneity of the gut is reflected in a large phylogenetic diversity and pronounced axial differences in the composition of the archaeal gut microbiota, notably among those clones or ribotypes that could be assigned to methanogenic taxa. Comparative analysis of the relative frequencies of different archaeal lineages among the small-subunit rRNA gene (SSU rDNA) clones and their corresponding T-RF indicated that the archaeal community in the anterior, extremely alkaline hindgut compartment (P1) consists mainly of members of the Methanosarcinaceae, whereas Methanobacteriaceae and Methanomicrobiales predominate in the subsequent, more posterior compartments (P3/4a and P4b). The relative abundance of Thermoplasmales increased towards the rectum (P5). SSU rDNA sequences representing Crenarchaeota, which have not yet been reported to occur in the intestinal tracts of arthropods, were detected in all gut sections. We discuss how the spatial distribution of methanogenic populations may be linked to axial heterogeneity in the physicochemical gut conditions and to functional adaptations to their respective ecological niches.  相似文献   

2.
Diversity of symbiotic archaeal communities in marine sponges from Korea   总被引:2,自引:0,他引:2  
A molecular analysis of archaeal communities in eight sponges collected along the coast of Cheju Island, Korea was conducted using terminal-restriction fragment length polymorphism (T-RFLP) in conjunction with sequencing analysis of 16S rDNA clones. The terminal-restriction fragment (T-RF) profiles showed that each sponge had a simple archaeal community represented by a single major peak of the same size except for one unidentified sponge (01CJ20). In order to identify the components of the community, 170 archaeal 16S rDNA clones were recovered from sponges and analyzed by RFLP typing. Sequences of 19 representative clones for all RFLP types found in each sponge were determined and phylogenetic analysis was carried out. Seventeen of these archaeal 16S rDNA clones showed a high similarity to marine group I, belonging to the crenarchaeotes. In the phylogenetic tree, 15 archaeal clones were grouped into five sponge-associated archaeal clusters. In the unidentified sponge sample (01CJ20), one major T-RF peak was represented by a single RFLP type (40 clones), which implied a specific relationship between the sponge and its symbiotic archaeal components.  相似文献   

3.
The highly compartmentalized gut of soil-feeding termites is characterized by pronounced axial dynamics in physicochemical conditions and microbial processes. In a companion paper (D. Schmitt-Wagner, M. W. Friedrich, B. Wagner, and A. Brune, Appl. Environ. Microbiol. 69:6007-6017, 2003), we demonstrated that the variety of physicochemical conditions in the different gut compartments of Cubitermes spp. is reflected in the diversity of the respective intestinal microbial communities. Here, we used molecular fingerprints of 16S rRNA genes of the bacterial community, obtained by terminal restriction fragment length polymorphism (T-RFLP) analysis, to describe the axial dynamics of the bacterial community structure in the different gut sections. Comparison of the T-RFLP profiles with the predicted terminal restriction fragments of the clones in clone libraries of the gut segments in Cubitermes orthognathus confirmed that all hindgut sections harbored distinct bacterial communities. Morisita indices of community similarity, calculated by comparing the different patterns, revealed large differences between the bacterial communities of soil, gut, and nest material and also among the individual gut sections. By contrast, comparison of the homologous gut segments of different Cubitermes species indicated that the three termite species investigated possessed a similar, gut-specific microbiota that remained comparatively stable even during several months of maintenance in the laboratory.  相似文献   

4.
The highly compartmentalized gut of soil-feeding termites is characterized by pronounced axial dynamics in physicochemical conditions and microbial processes. In a companion paper (D. Schmitt-Wagner, M. W. Friedrich, B. Wagner, and A. Brune, Appl. Environ. Microbiol. 69:6007-6017, 2003), we demonstrated that the variety of physicochemical conditions in the different gut compartments of Cubitermes spp. is reflected in the diversity of the respective intestinal microbial communities. Here, we used molecular fingerprints of 16S rRNA genes of the bacterial community, obtained by terminal restriction fragment length polymorphism (T-RFLP) analysis, to describe the axial dynamics of the bacterial community structure in the different gut sections. Comparison of the T-RFLP profiles with the predicted terminal restriction fragments of the clones in clone libraries of the gut segments in Cubitermes orthognathus confirmed that all hindgut sections harbored distinct bacterial communities. Morisita indices of community similarity, calculated by comparing the different patterns, revealed large differences between the bacterial communities of soil, gut, and nest material and also among the individual gut sections. By contrast, comparison of the homologous gut segments of different Cubitermes species indicated that the three termite species investigated possessed a similar, gut-specific microbiota that remained comparatively stable even during several months of maintenance in the laboratory.  相似文献   

5.
Soil temperatures in Italian rice fields typically range between about 15 and 30 degrees C. A change in the incubation temperature of anoxic methanogenic soil slurry from 30 degrees C to 15 degrees C typically resulted in a decrease in the CH4 production rate, a decrease in the steady-state H2 partial pressure, and a transient accumulation of acetate. Previous experiments have shown that these changes were due to an alteration of the carbon and electron flow in the methanogenic degradation pathway of organic matter caused by the temperature shift (K. J. Chin and R. Conrad, FEMS Microbiol. Ecol. 18:85-102, 1995). To investigate how temperature affects the structure of the methanogenic archaeal community, total DNA was extracted from soil slurries incubated at 30 and 15 degrees C. The archaeal small-subunit (SSU) rRNA-encoding genes (rDNA) of these environmental DNA samples were amplified by PCR with an archaeal-specific primer system and used for the generation of clone libraries. Representative rDNA clones (n = 90) were characterized by terminal restriction fragment length polymorphism (T-RFLP) and sequence analysis. T-RFLP analysis produced for the clones terminally labeled fragments with a characteristic length of mostly 185, 284, or 392 bp. Sequence analysis allowed determination of the phylogenetic affiliation of the individual clones with their characteristic T-RFLP fragment lengths and showed that the archaeal community of the anoxic rice soil slurry was dominated by members of the families Methanosarcinaceae (185 bp) and Methanosaetaceae (284 bp), the kingdom Crenarchaeota (185 or 284 bp), and a novel, deeply branching lineage of the (probably methanogenic) kingdom Euryarchaeota (392 bp) that has recently been detected on rice roots (R. Grosskopf, S. Stubner, and W. Liesack, Appl. Environ. Microbiol. 64:4983-4989, 1998). The structure of the archaeal community changed when the temperature was shifted from 30 degrees C to 15 degrees C. Before the temperature shift, the clones (n = 30) retrieved from the community were dominated by Crenarchaeota (70%), "novel Euryarchaeota" (23%), and Methanosarcinacaeae (7%). Further incubation at 30 degrees C (n = 30 clones) resulted in a relative increase in members of the Methanosarcinaceae (77%), whereas further incubation at 15 degrees C (n = 30 clones) resulted in a much more diverse community consisting of 33% Methanosarcinaceae, 23% Crenarchaeota, 20% Methanosaetaceae, and 17% novel Euryarchaeota. The appearance of Methanosaetaceae at 15 degrees C was conspicuous. These results demonstrate that the structure of the archaeal community in anoxic rice field soil changed with time and incubation temperature.  相似文献   

6.
Higher termites are characterized by a purely prokaryotic gut microbiota and an increased compartmentation of their intestinal tract. In soil-feeding species, each gut compartment has different physicochemical conditions and is colonized by a specific microbial community. Although considerable information has accumulated also for wood-feeding species of the genus Nasutitermes, including cellulase activities and metagenomic data, a comprehensive study linking physicochemical gut conditions with the structure of the microbial communities in the different gut compartments is lacking. In this study, we measured high-resolution profiles of H(2), O(2), pH, and redox potential in the gut of Nasutitermes corniger termites, determined the fermentation products accumulating in the individual gut compartments, and analyzed the bacterial communities in detail by pyrotag sequencing of the V3-V4 region of the 16S rRNA genes. The dilated hindgut paunch (P3 compartment) was the only anoxic gut region, showed the highest density of bacteria, and accumulated H(2) to high partial pressures (up to 12 kPa). Molecular hydrogen is apparently produced by a dense community of Spirochaetes and Fibrobacteres, which also dominate the gut of other Nasutitermes species. All other compartments, such as the alkaline P1 compartment (average pH, 10.0), showed high redox potentials and comprised small but distinct populations characteristic for each gut region. In the crop and the posterior hindgut compartments, the community was even more diverse than in the paunch. Similarities in the communities of the posterior hindgut and crop suggested that proctodeal trophallaxis or coprophagy also occurs in higher termites. The large sampling depths of pyrotag sequencing in combination with the determination of important physicochemical parameters allow cautious conclusions concerning the functions of particular bacterial lineages in the respective gut sections to be drawn.  相似文献   

7.
The hindgut of soil-feeding termites is highly compartmentalized and characterized by pronounced axial dynamics of the intestinal pH and microbial processes such as hydrogen production, methanogenesis, and reductive acetogenesis. Nothing is known about the bacterial diversity and the abundance or axial distribution of the major phylogenetic groups in the different gut compartments. In this study, we showed that the variety of physicochemical conditions is reflected in the diversity of the microbial communities in the different gut compartments of two Cubitermes species (TERMITIDAE: Termitinae). 16S rRNA gene clones from the highly alkaline first proctodeal segment (P1) of Cubitermes orthognathus represented almost exclusively gram-positive bacteria with low G+C content (LGC bacteria). In the posterior gut segments, their proportion decreased progressively, and the clone libraries comprised a variety of phyla, including the Cytophaga-Flexibacter-Bacteroides group, various subgroups of Proteobacteria, and the spirochetes. Phylogenetic analysis revealed that many of the clones clustered with sequences from the guts of other termites, and some even formed clusters containing only clones from C. orthognathus. The abundance and axial distribution of major phylogenetic groups in the gut of Cubitermes ugandensis were determined by fluorescence in situ hybridization with group-specific oligonucleotide probes. While the results were generally in good agreement with those of the clonal analysis, direct counts with probes specific for the Planctomycetales revealed a severe underestimation of representatives of this phylum in the clone libraries. Results obtained with newly designed FISH probes directed against two clusters of LGC clones from C. orthognathus indicated that the clones were restricted to specific gut regions. A molecular fingerprinting analysis published in a companion paper (D. Schmitt-Wagner, M. W. Friedrich, B. Wagner, and A. Brune, Appl. Environ. Microbiol. 69:6018-6024, 2003) corroborated the presence of compartment-specific bacterial communities in the gut of different Cubitermes species.  相似文献   

8.
The diversity and structure of the archaeal community in the effluent leachate from a full-scale recirculating landfill was characterized by direct 16S rRNA gene (16S rDNA) retrieval. Total-community DNA was extracted from the microbial assemblages in the landfill leachate, and archaeal 16S rDNAs were amplified with a universally conserved primer and an Archaea-specific primer. The amplification product was then used to construct a 16S rDNA clone library, and 70 randomly selected archaeal clones in the library were grouped by restriction fragment length polymorphism (RFLP) analysis. Sequencing and phylogenetic analysis of representatives from each unique RFLP type showed that the archaeal library was dominated by methanogen-like rDNAs. Represented in the kingdom of Euryarchaeota were phylotypes highly similar to the methanogenic genera Methanoculleus, Methanosarcina, Methanocorpusculum, Methanospirillum and Methanogenium, where the clone distribution was 48, 11, 3, 1 and 1, respectively. No sequences related to known Methanosaeta spp. were retrieved. Four rDNA clones were not affiliated with the known methanogenic Archaea, but instead, they were clustered with the uncultured archaeal sequences recently recovered from anaerobic habitats. Two chimeric sequences were identified among the clones analyzed.  相似文献   

9.
Physicochemical gut conditions and the composition and topology of the intestinal microbiota in the major gut compartments of the root-feeding larva of the European cockchafer (Melolontha melolontha) were studied. Axial and radial profiles of pH, O2, H2, and redox potential were measured with microsensors. Terminal restriction fragment length polymorphism (T-RFLP) analysis of bacterial 16S rRNA genes in midgut samples of individual larvae revealed a simple but variable and probably nonspecific community structure. In contrast, the T-RFLP profiles of the hindgut samples were more diverse but highly similar, especially in the wall fraction, indicating the presence of a gut-specific community involved in digestion. While high acetate concentrations in the midgut and hindgut (34 and 15 mM) corroborated the presence of microbial fermentation in both compartments, methanogenesis was confined to the hindgut. Methanobrevibacter spp. were the only methanogens detected and were restricted to this compartment. Bacterial 16S rRNA gene clone libraries of the hindgut were dominated by clones related to the Clostridiales. Clones related to the Actinobacteria, Bacillales, Lactobacillales, and gamma-Proteobacteria were restricted to the lumen, whereas clones related to the beta- and delta-Proteobacteria were found only on the hindgut wall. Results of PCR-based analyses and fluorescence in situ hybridization of whole cells with group-specific oligonucleotide probes documented that Desulfovibrio-related bacteria comprise 10 to 15% of the bacterial community at the hindgut wall. The restriction of the sulfate-reducer-specific adenosine-5'-phosphosulfate reductase gene apsA to DNA extracts of the hindgut wall in larvae from four other populations in Europe suggested that sulfate reducers generally colonize this habitat.  相似文献   

10.
The hindgut of soil-feeding termites is highly compartmentalized and characterized by pronounced axial dynamics of the intestinal pH and microbial processes such as hydrogen production, methanogenesis, and reductive acetogenesis. Nothing is known about the bacterial diversity and the abundance or axial distribution of the major phylogenetic groups in the different gut compartments. In this study, we showed that the variety of physicochemical conditions is reflected in the diversity of the microbial communities in the different gut compartments of two Cubitermes species (Termitidae: Termitinae). 16S rRNA gene clones from the highly alkaline first proctodeal segment (P1) of Cubitermes orthognathus represented almost exclusively gram-positive bacteria with low G+C content (LGC bacteria). In the posterior gut segments, their proportion decreased progressively, and the clone libraries comprised a variety of phyla, including the Cytophaga-Flexibacter-Bacteroides group, various subgroups of Proteobacteria, and the spirochetes. Phylogenetic analysis revealed that many of the clones clustered with sequences from the guts of other termites, and some even formed clusters containing only clones from C. orthognathus. The abundance and axial distribution of major phylogenetic groups in the gut of Cubitermes ugandensis were determined by fluorescence in situ hybridization with group-specific oligonucleotide probes. While the results were generally in good agreement with those of the clonal analysis, direct counts with probes specific for the Planctomycetales revealed a severe underestimation of representatives of this phylum in the clone libraries. Results obtained with newly designed FISH probes directed against two clusters of LGC clones from C. orthognathus indicated that the clones were restricted to specific gut regions. A molecular fingerprinting analysis published in a companion paper (D. Schmitt-Wagner, M. W. Friedrich, B. Wagner, and A. Brune, Appl. Environ. Microbiol. 69:6018-6024, 2003) corroborated the presence of compartment-specific bacterial communities in the gut of different Cubitermes species.  相似文献   

11.
Contamination with plastid small subunit (SSU) rDNA is a major drawback when analyzing the bacterial communities of plant roots using culture-independent methods. In this study, a polymerase chain reaction (PCR) primer, 783r, was designed and tested to specifically amplify the SSU rDNA of various bacterial species without amplifying the SSU rDNA of plant plastids. To confirm how useful the community analysis of rhizobacteria is using 783r, the terminal restriction fragment length polymorphism (T-RFLP) method was performed with wheat (Triticum aestivum) and spinach (Spinacea oleracea) root samples. Using the standard T-RFLP method, a large T-RF peak of plant plastid SSU rDNA interfered with the bacterial community analysis. In contrast, the T-RFLP method using the 783r primer was able to detect the bacterial DNA while directly eliminating the influence of the plant-derived DNA extracted from the plant roots. Primer 783r might, therefore, be a useful PCR primer for the culture-independent analysis of bacterial communities in plant roots using SSU rDNA.  相似文献   

12.
Methanogenic bioreactor communities were used as model ecosystems to evaluate the relationship between functional stability and community structure. Replicated methanogenic bioreactor communities with two different community structures were established. The effect of a substrate loading shock on population dynamics in each microbial community was examined by using morphological analysis, small-subunit (SSU) rRNA oligonucleotide probes, amplified ribosomal DNA (rDNA) restriction analysis (ARDRA), and partial sequencing of SSU rDNA clones. One set of replicated communities, designated the high-spirochete (HS) set, was characterized by good replicability, a high proportion of spiral and short thin rod morphotypes, a dominance of spirochete-related SSU rDNA genes, and a high percentage of Methanosarcina-related SSU rRNA. The second set of communities, designated the low-spirochete (LS) set, was characterized by incomplete replicability, higher morphotype diversity dominated by cocci, a predominance of Streptococcus-related and deeply branching Spirochaetales-related SSU rDNA genes, and a high percentage of Methanosaeta-related SSU rRNA. In the HS communities, glucose perturbation caused a dramatic shift in the relative abundance of fermentative bacteria, with temporary displacement of spirochete-related ribotypes by Eubacterium-related ribotypes, followed by a return to the preperturbation community structure. The LS communities were less perturbed, with Streptococcus-related organisms remaining prevalent after the glucose shock, although changes in the relative abundance of minor members were detected by morphotype analysis. A companion paper demonstrates that the more stable LS communities were less functionally stable than the HS communities (S. A. Hashsham, A. S. Fernandez, S. L. Dollhopf, F. B. Dazzo, R. F. Hickey, J. M. Tiedje, and C. S. Criddle, Appl. Environ. Microbiol. 66:4050-4057, 2000).  相似文献   

13.
Methanogenic bioreactor communities were used as model ecosystems to evaluate the relationship between functional stability and community structure. Replicated methanogenic bioreactor communities with two different community structures were established. The effect of a substrate loading shock on population dynamics in each microbial community was examined by using morphological analysis, small-subunit (SSU) rRNA oligonucleotide probes, amplified ribosomal DNA (rDNA) restriction analysis (ARDRA), and partial sequencing of SSU rDNA clones. One set of replicated communities, designated the high-spirochete (HS) set, was characterized by good replicability, a high proportion of spiral and short thin rod morphotypes, a dominance of spirochete-related SSU rDNA genes, and a high percentage of Methanosarcina-related SSU rRNA. The second set of communities, designated the low-spirochete (LS) set, was characterized by incomplete replicability, higher morphotype diversity dominated by cocci, a predominance of Streptococcus-related and deeply branching Spirochaetales-related SSU rDNA genes, and a high percentage of Methanosaeta-related SSU rRNA. In the HS communities, glucose perturbation caused a dramatic shift in the relative abundance of fermentative bacteria, with temporary displacement of spirochete-related ribotypes by Eubacterium-related ribotypes, followed by a return to the preperturbation community structure. The LS communities were less perturbed, with Streptococcus-related organisms remaining prevalent after the glucose shock, although changes in the relative abundance of minor members were detected by morphotype analysis. A companion paper demonstrates that the more stable LS communities were less functionally stable than the HS communities (S. A. Hashsham, A. S. Fernandez, S. L. Dollhopf, F. B. Dazzo, R. F. Hickey, J. M. Tiedje, and C. S. Criddle, Appl. Environ. Microbiol. 66:4050–4057, 2000).  相似文献   

14.
Soil temperatures in Italian rice fields typically range between about 15 and 30°C. A change in the incubation temperature of anoxic methanogenic soil slurry from 30°C to 15°C typically resulted in a decrease in the CH4 production rate, a decrease in the steady-state H2 partial pressure, and a transient accumulation of acetate. Previous experiments have shown that these changes were due to an alteration of the carbon and electron flow in the methanogenic degradation pathway of organic matter caused by the temperature shift (K. J. Chin and R. Conrad, FEMS Microbiol. Ecol. 18:85–102, 1995). To investigate how temperature affects the structure of the methanogenic archaeal community, total DNA was extracted from soil slurries incubated at 30 and 15°C. The archaeal small-subunit (SSU) rRNA-encoding genes (rDNA) of these environmental DNA samples were amplified by PCR with an archaeal-specific primer system and used for the generation of clone libraries. Representative rDNA clones (n = 90) were characterized by terminal restriction fragment length polymorphism (T-RFLP) and sequence analysis. T-RFLP analysis produced for the clones terminally labeled fragments with a characteristic length of mostly 185, 284, or 392 bp. Sequence analysis allowed determination of the phylogenetic affiliation of the individual clones with their characteristic T-RFLP fragment lengths and showed that the archaeal community of the anoxic rice soil slurry was dominated by members of the families Methanosarcinaceae (185 bp) and Methanosaetaceae (284 bp), the kingdom Crenarchaeota (185 or 284 bp), and a novel, deeply branching lineage of the (probably methanogenic) kingdom Euryarchaeota (392 bp) that has recently been detected on rice roots (R. Großkopf, S. Stubner, and W. Liesack, Appl. Environ. Microbiol. 64:4983–4989, 1998). The structure of the archaeal community changed when the temperature was shifted from 30°C to 15°C. Before the temperature shift, the clones (n = 30) retrieved from the community were dominated by Crenarchaeota (70%), “novel Euryarchaeota” (23%), and Methanosarcinacaeae (7%). Further incubation at 30°C (n = 30 clones) resulted in a relative increase in members of the Methanosarcinaceae (77%), whereas further incubation at 15°C (n = 30 clones) resulted in a much more diverse community consisting of 33% Methanosarcinaceae, 23% Crenarchaeota, 20% Methanosaetaceae, and 17% novel Euryarchaeota. The appearance of Methanosaetaceae at 15°C was conspicuous. These results demonstrate that the structure of the archaeal community in anoxic rice field soil changed with time and incubation temperature.  相似文献   

15.
A denaturing gradient gel electrophoresis (DGGE) method for analyzing 16S rDNA of methanogenic archaeal community in paddy field soil is presented. Five specific primers for 16S rDNA of methanogenic archaea, which were modified from the primers for archaea, were first evaluated by polymerase chain reaction and DGGE using genomic DNAs of 13 pure culture strains of methanogenic archaea. The DGGE analysis was possible with two primer pairs (0348aF-GC and 0691R; 0357F-GC and 0691R) of the five pairs tested although 16S rDNA of some non-methanogenic archaea was amplified with 0348aF-GC and 0691R. These two primer pairs were further evaluated for use in analysis of methanogenic archaeal community in Japanese paddy field soil. Good separation and quality of patterns were obtained in DGGE analysis with both primer pairs. A total of 41 DNA fragments were excised from the DGGE gels and their sequences were determined. All fragments belonged to methanogenic archaea. These results indicate that the procedure of DGGE analysis with the primer pair 0357F-GC and 0691R is suitable for investigating methanogenic archaeal community in paddy field soil.  相似文献   

16.
铜绿山铜矿是世界开采时间最长的矿井之一,在开采过程中有许多矿井被废弃,许多废弃的矿井内产生了大量的对环境有害的酸性矿坑水.酸性矿坑水取自铜绿山铜矿某废弃矿井,利用限制性酶切片断多样性分析(RFLP分析)对酸性矿坑水中的微生物生态多样性进行了研究.研究表明,酸性矿坑水呈酸性,相对于其他极端与非极端生态环境,酸性矿坑水中的细菌与古菌的群落多样性较低.RFLP分析与系统发育分析表明,酸性矿坑水中细菌主要由A.fcrrooxidans(属于gamma-Proteobacteria)和L.ferrooxidans(属于Nitospira)成;古菌主要由Thermoplasma相关古菌组成.在这种封闭环境的酸性矿坑水中首次发现了类似于产甲烷古菌的克隆片断,其占古菌种群的四分之一左右.本研究将促进对酸性矿坑水中细菌及古菌群落组成及其对酸性矿坑水产生的作用的研究.  相似文献   

17.
The guts of soil-feeding macroinvertebrates contain a complex microbial community that is involved in the transformation of ingested soil organic matter. In a companion paper (T. Lemke, U. Stingl, M. Egert, M. W. Friedrich, and A. Brune, Appl. Environ. Microbiol. 69:6650-6658, 2003), we show that the gut of our model organism, the humivorous larva of the cetoniid beetle Pachnoda ephippiata, is characterized by strong midgut alkalinity, high concentrations of microbial fermentation products, and the presence of a diverse, yet unstudied microbial community. Here, we report on the community structure of bacteria and archaea in the midgut, hindgut, and food soil of P. ephippiata larvae, determined with cultivation-independent techniques. Clone libraries and terminal restriction fragment length polymorphism analysis of 16S rRNA genes revealed that the intestines of P. ephippiata larvae contain a complex gut microbiota that differs markedly between midgut and hindgut and that is clearly distinct from the microbiota in the food soil. The bacterial community is dominated by phylogenetic groups with a fermentative metabolism (Lactobacillales, Clostridiales, Bacillales, and Cytophaga-Flavobacterium-Bacteroides [CFB] phylum), which is corroborated by high lactate and acetate concentrations in the midgut and hindgut and by the large numbers of lactogenic and acetogenic bacteria in both gut compartments reported in the companion paper. Based on 16S rRNA gene frequencies, Actinobacteria dominate the alkaline midgut, while the hindgut is dominated by members of the CFB phylum. The archaeal community, however, is less diverse. 16S rRNA genes affiliated with mesophilic Crenarchaeota, probably stemming from the ingested soil, were most frequent in the midgut, whereas Methanobacteriaceae-related 16S rRNA genes were most frequent in the hindgut. These findings agree with the reported restriction of methanogenesis to the hindgut of Pachnoda larvae.  相似文献   

18.
Terminal restriction fragment length polymorphism (T-RFLP) analysis is commonly used for profiling microbial communities in various environments. However, it may suffer from biases during the analytic process. This study addressed the potential of T-RFLP profiles (1) to reflect real community structures and diversities, as well as (2) to reliably detect changing components of microbial community structures. For this purpose, defined artificial communities of 30 SSU rRNA gene clones, derived from nine bacterial phyla, were used. PCR amplification efficiency was one primary bias with a maximum variability factor of 3.5 among clones. PCR downstream analyses such as enzymatic restriction and capillary electrophoresis introduced a maximum bias factor of 4 to terminal restriction fragment (T-RF) signal intensities, resulting in a total maximum bias factor of 14 in the final T-RFLP profiles. In addition, the quotient between amplification efficiency and T-RF size allowed predicting T-RF abundances in the profiles with high accuracy. Although these biases impaired detection of real community structures, the relative changes in structures and diversities were reliably reflected in the T-RFLP profiles. These data support the suitability of T-RFLP profiling for monitoring effects on microbial communities.  相似文献   

19.
Temperate rice field soil from Vercelli (Italy) contains moderately thermophilic methanogens of the yet uncultivated rice cluster I (RC-I), which become prevalent upon incubation at temperatures of 45-50 degrees C. We studied whether such thermophilic methanogens were ubiquitously present in anoxic soils. Incubation of different rice field soils (from Italy, China and the Philippines) and flooded riparian soils (from the Netherlands) at 45 degrees C resulted in vigorous CH(4) production after a lag phase of about 10 days. The archaeal community structure in the soils was analysed by terminal restriction fragment length polymorphism (T-RFLP) targeting the SSU rRNA genes retrieved from the soil, and by cloning and sequencing. Clones of RC-I methanogens mostly exhibited T-RF of 393 bp, but also terminal restriction fragment (T-RF) of 158 and 258 bp length, indicating a larger diversity than previously assumed. No RC-I methanogens were initially found in flooded riparian soils. However, these archaea became abundant upon incubation of the soil at 45 degrees C. Thermophilic RC-I methanogens were also found in the rice field soils from Pavia, Pila and Gapan. However, the archaeal communities in these soils also contained other methanogenic archaea at high temperature. Rice field soil from Buggalon, on the other hand, only contained thermophilic Methanomicrobiales rather than RC-I methanogens, and rice field soil from Jurong mostly Methanomicrobiales and only a few RC-I methanogens. The archaeal community of rice field soil from Zhenjiang almost exclusively consisted of Methanosarcinaceae when incubated at high temperature. Our results show that moderately thermophilic methanogens are common in temperate soils. However, RC-I methanogens are not always dominating or ubiquitous.  相似文献   

20.
Physicochemical gut conditions and the composition and topology of the intestinal microbiota in the major gut compartments of the root-feeding larva of the European cockchafer (Melolontha melolontha) were studied. Axial and radial profiles of pH, O2, H2, and redox potential were measured with microsensors. Terminal restriction fragment length polymorphism (T-RFLP) analysis of bacterial 16S rRNA genes in midgut samples of individual larvae revealed a simple but variable and probably nonspecific community structure. In contrast, the T-RFLP profiles of the hindgut samples were more diverse but highly similar, especially in the wall fraction, indicating the presence of a gut-specific community involved in digestion. While high acetate concentrations in the midgut and hindgut (34 and 15 mM) corroborated the presence of microbial fermentation in both compartments, methanogenesis was confined to the hindgut. Methanobrevibacter spp. were the only methanogens detected and were restricted to this compartment. Bacterial 16S rRNA gene clone libraries of the hindgut were dominated by clones related to the Clostridiales. Clones related to the Actinobacteria, Bacillales, Lactobacillales, and γ-Proteobacteria were restricted to the lumen, whereas clones related to the β- and δ-Proteobacteria were found only on the hindgut wall. Results of PCR-based analyses and fluorescence in situ hybridization of whole cells with group-specific oligonucleotide probes documented that Desulfovibrio-related bacteria comprise 10 to 15% of the bacterial community at the hindgut wall. The restriction of the sulfate-reducer-specific adenosine-5′-phosphosulfate reductase gene apsA to DNA extracts of the hindgut wall in larvae from four other populations in Europe suggested that sulfate reducers generally colonize this habitat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号