首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ternatins are blue anthocyanins found in the petals of Clitoria ternata (butterfly pea). Among them, ternatin C5 (delphinidin 3-O-(6'-O-malonyl)-beta-glucoside-3',5'-di-O-beta-glucoside; 2) has the structure common to all the ternatins, which is characterized by its glucosylation pattern: a 3,3',5'-triglucosylated anthocyanidin. In the course of studying biosynthetic pathways of ternatins, the key enzymatic activities to produce ternatin C5 were discovered in a crude enzyme preparation from the petals of a blue petal line of C. ternatea. When this preparation was tested for activity against several delphinidin glycosides, delphinidin 3-O-(6'-O-malonyl)-beta-glucoside-3'-O-beta-glucoside (6), a postulated intermediate, was found in the reaction mixture, together with three known anthocyanins, which were spectroscopically structurally identified. As a result of structural identification, the following enzymatic activities were identified: UDP-glucose :delphinidin 3-O-(6'-O-malonyl)-beta-glucoside-3'-O-beta-glucoside 5'-O-glucosyltransferase (5'GT), UDP-glucose :delphinidin 3-O-(6'-O-malonyl)-beta-glucoside 3'-O-glucosyltransferase (3'GT), UDP-glucose :delphinidin 3-O-glucosyltransferase, and malonyl-CoA :delphinidin 3-O-beta-glucoside 6'-malonyltransferase. In a mauve petal line, which did not accumulate ternatins but delphinidin 3-O-(6'-O-malonyl)-beta-glucoside in its petal, there were neither 5'GT nor 3'GT activities. Thus, the early biosynthetic pathway of ternatins may be characterized by the stepwise transfer of two glucose residues to 3'- and 5'-position of delphinidin 3-O-(6'-O-malonyl)-beta-glucoside (1; Scheme) from UDP-glucose.  相似文献   

2.
Kazuma K  Noda N  Suzuki M 《Phytochemistry》2003,64(6):1133-1139
Flavonoids in the petals of several C. ternatea lines with different petal colors were investigated with LC/MS/MS. Delphinidin 3-O-(2"-O-alpha-rhamnosyl-6"-O-malonyl)-beta-glucoside was newly isolated from the petals of a mauve line (wm) together with three known anthocyanins. They were identified structurally using UV, MS, and NMR spectroscopy. Although ternatins, a group of 15 (poly)acylated delphinidin glucosides, were identified in all the blue petal lines (WB, BM-1, 'Double Blue' and 'Albiflora'), WM accumulated delphinidin 3-O-(6"-O-malonyl)-beta-glucoside instead. The white petal line (WW) did not contain anthocyanins. Quantitative data showed that the total anthocyanin contents in WB and 'Double Blue' were ca. 8- and 10-fold higher than that in BM-1, a bud mutant of 'Double Blue', respectively. The total anthocyanin content in 'Albiflora' was less than 2 x 10(-3) times those in WB or 'Double Blue'. While all the lines contained the same set of 15 flavonol glycosides in similar relative ratios, the relative ratio of myricetin glycosides in ww and 'Albiflora' was ca. 30-70 times greater than those in the other lines. The change in flower color from blue to mauve was not due to a change in the structure of an anthocyanidin from delphinidin, but to the lack of (polyacylated) glucosyl group substitutions at both the 3'- and 5'-positions of ternatins. This implies that glucosylation at the 3'- and 5'-positions of anthocyanin is a critical step in producing blue petals in C. ternatea.  相似文献   

3.
Three acylated flavonol diglucosides, kaempferol 3-O-β-(6″-O-E-p-coumaroylglucoside)-7-O-β-glucoside; quercetin 3-O-β-(6″-O-E-p-coumaroylglucoside)-7-O-β-glucoside; isorhamnetin 3-O-β-(6″-O-E-p-coumaroylglucoside)-7-O-β-glucoside were isolated from the whole plant aqueous alcohol extract of Lotus polyphyllos. The known 3,7-di-O-glucosides of the aglycones kaempferol, quercetin and isorhamnetin were also characterized. All structures were established on the basis of chemical and spectral evidence.  相似文献   

4.
Blue and red sepals of Hydrangea macrophylla were quantitatively analyzed for aluminium, anthocyanin (delphinidin 3-glucoside) and copigments (caffeoyl- and p-coumaroylquinic acids). All the blue sepals examined contained both Al and copigments (especially 3-caffeoylquinic acid) in considerable amounts. In in vitro experiments using 3- and 5-caffeoylquinic acids, Al and delphinidin 3-glucoside, it was shown that 3-caffeoylquinic acid and Al formed a blue complex with the anthocyanin. Absorption spectra of the blue complex were practically identical with those of the blue solutions obtained from blue hydrangea sepals by extraction with 4 M NACl. In contrast, 5-caffeoylquinic acid (chlorogenic acid) which was also present in hydrangea sepals gave only a red-purple colour with Al and the anthocyanin. Neither 3-caffeoylquinic acid nor Al independently produced blue colour when mixed with the anthocyanin in the mole ratios of 1–30, this being the range that the compounds were found in blue sepals. These results suggest that blue colour of hydrangea sepals is due mainly to the blue complex of delphinidin 3-glucoside-aluminium-3-caffeoylquinic acid. The role of aluminium may be to stabilize an interaction between the quinic ester and the anthocyanin.  相似文献   

5.
Three new cycloartane glycosides, trigonoside I, II and III, and the known astragalosides I and II were isolated from the roots of Astragalus trigonus. The structures of the new glycosides were totally elucidated by high field (600 MHz) NMR analyses as cycloastragenol-6-O-β-xylopyranoside, cycloastragenol-3-O-[-l-arabinopyranosyl(1 → 2)-β-d-xylopyranosyl]-6-O-β- d-xylopyranoside and cycloastragenol-3-O-[-l-arabinopyranosyl(1 → 2)-β-d-(3-O-acetyl)-xylopyranosyl]-6-O-β-d-xylopyranoside.  相似文献   

6.
The reaction of benzyl 2,6,6′-tri-O-benzyl-3′,4′-O-isopropylidene-β-lactoside with 1,11-ditosyloxy-3,6,9-trioxaundecane gave benzyl 2,6,6′-tri-O-benzyl-3′,4′-O-isopropylidene-3,2′-O--(3,6,9-trioxaundecane-1,11-diyl)-β-lactoside (2, 47%). Acid hydrolysis of 2 and condensation of the product with 1,14-ditosyloxy-3,6,9,12-tetra-oxatetradecane afforded benzyl 2,6,6′-tri-O-benzyl-3′,4′-O-(3,6,9,12-tetraoxa-tetradecane-1,14-diyl)-3,2′-O-(3,6,9-trioxaundecane-1,11-diyl)-β-lactoside (29%). Similarly, the reaction of benzyl 2,6,2′,4′,6′-penta-O-benzyl-β-lactoside with Ts[OCH2CH2]4OTs gave benzyl 2,6,2′,4′,6′-penta-O-benzyl-3,3′-O-(3,6,9-trioxaundecane-1,11-diyl)-β-lactoside (78%). 1H-N.m.r. spectroscopy has been used to study the formation of host-guest complexes with some of these macrocyclic compounds and benzyl ammonium thiocyanate.  相似文献   

7.
Flavonoid 3′, 5′-hydoxylase (F3′5′H) is a key enzyme for biosynthesis of the blue anthocyanin pigment delphinidin. A number of F3′5′H genes from dicots have been tested for their effects on flower pigmentation; here F3′5′H from a monocot was tested for its effect on delphinidin accumulation in petals. To this end, F3′5′H (PhF3′5′H) from the orchid Phalaenopsis was expressed under the control of the chalcone synthase promoter in petunia flowers. Quantitative RT-PCR showed that PhF3′5′H was expressed mainly in the petal limb; this expression produced an increase in dihydromyricetin and delphinidin and a change in petal color from pink to deeper pink. To increase the accumulation of delphinidin, Hyacinth HyDFR, which encodes dihydroflavonol 4-reductase, and petunia DifF, which encodes a cytochrome b 5 that is required for full activity of F3′5′H were overexpressed. The HyDFR petunia transformants had a deeper color petal limb, increased dihydromyricetin and delphinidin contents and adaxial petals with a number of blue cells. The flowers of the DifF petunia transformants also showed a slight color change. We also tested PhF3′5′H in Lilium oriental Sorbonne, where transient PhF3′5′H expression by particle bombardment resulted in purple cells in the petals. Production of blue flowers by Phalaenopsis F3′5′H and hyacinth DFR potentially enables manipulation of flower color in ornamental plants, including production of blue flowers.  相似文献   

8.
β-Glycosides of 2-acetamido-2-deoxy- -glucopyranose were synthesized, using either 7-methoxycarbonyl-3,6-dioxa-1-heptanol or 8-azido-3,6-dioxa-1-octanol. Selective β-lactosylation of 7-methoxycarbonyl-3,6-dioxaheptyl 2-acetamido-3-O-benzyl-2-deoxy-β- -glucopyranoside with hepta-O-acetyl-lactosyl-trichloroacetimidate, followed by β-galactosylation of the secondary hydroxyl group with O-(2,3,4,6-tetra-O-acetyl-- -galactopyranosyl)trichloroacetimidate, catalytic hydrogenolysis, and O-deacetylation, gave 7-methoxycarbonyl-3,6-dioxaheptyl 2-acetamido-2-deoxy-4-O-β- -galactopyranosyl-6-O-(4-O-β- -galactopyranosyl-β- -glucopyranosyl)β- -glucopyranoside. Selective β-lactosylation of 8-azido-3,6-dioxaocytl 2-acetamido-3-O-benzyl-2-deoxy-β- -glucopyranoside with hepta-O-acetyl-lactosyl bromide in the presence of silver triflate, followed by condensation with 2,3,4,6-tetra-O-acetyl-- -galactopyranosyl bromide in the presence of silver triflate, catalytic hdyrogenolysis, and O-deacetylation, gave 8-azido-3,6-dioxaoctyl 2-acetamido-2-deoxy-4-O-β- -galactopyranosyl-6-O-(4-O-β- -galactopyranosyl-β- -glucopyranosyl)-β- glucopyranoside.  相似文献   

9.
Panax ginseng root and cell cultures were shown to biotransform paeonol (1) into its 2-O-β-d-glucopyranoside (2). P. ginseng root cultures were also able to biotransform paeonol (1) into its 2-O-β-d-xylopyranoside (3), 2-O-β-d-glucopyranosyl(1 → 6)-β-d-glucopyranoside (4) and 2-O-β-d-xylopyranosyl(1 → 6)-β-d-glucopyranoside (5), and its demethylated derivate, 2′,4′-dihydroxyacetophenone (6). Compounds 3 and 4 are new glycosides. It is the first example that the administrated compound was converted into its xylopyranoside by plant biotransformation.  相似文献   

10.
Flower color is mainly determined by anthocyanins. Rosa hybrida lacks violet to blue flower varieties due to the absence of delphinidin-based anthocyanins, usually the major constituents of violet and blue flowers, because roses do not possess flavonoid 3',5'-hydoxylase (F3'5'H), a key enzyme for delphinidin biosynthesis. Other factors such as the presence of co-pigments and the vacuolar pH also affect flower color. We analyzed the flavonoid composition of hundreds of rose cultivars and measured the pH of their petal juice in order to select hosts of genetic transformation that would be suitable for the exclusive accumulation of delphinidin and the resulting color change toward blue. Expression of the viola F3'5'H gene in some of the selected cultivars resulted in the accumulation of a high percentage of delphinidin (up to 95%) and a novel bluish flower color. For more exclusive and dominant accumulation of delphinidin irrespective of the hosts, we down-regulated the endogenous dihydroflavonol 4-reductase (DFR) gene and overexpressed the Irisxhollandica DFR gene in addition to the viola F3'5'H gene in a rose cultivar. The resultant roses exclusively accumulated delphinidin in the petals, and the flowers had blue hues not achieved by hybridization breeding. Moreover, the ability for exclusive accumulation of delphinidin was inherited by the next generations.  相似文献   

11.
Li JZ  Liu HY  Lin YJ  Hao XJ  Ni W  Chen CX 《Steroids》2008,73(6):594-600
Six new C21 steroidal glycosides, named curassavosides A–F (3–8), were obtained from the aerial parts of Asclepias curassavica (Asclepiadaceae), along with two known oxypregnanes, 12-O-benzoyldeacylmetaplexigenin (1) and 12-O-benzoylsarcostin (2). By spectroscopic methods, the structures of the six new compounds were determined as 12-O-benzoyldeacylmetaplexigenin 3-O-β-d-oleandropyranosyl-(1 → 4)-β-d-digitoxopyranoside (3), 12-O-benzoylsarcostin 3-O-β-d-oleandropyranosyl-(1 → 4)-β-d-digitoxopyranoside (4), sarcostin 3-O-β-d-oleandropyranosyl-(1 → 4)-β-d-canaropyranosyl-(1 → 4)-β-d-oleandropyranosyl-(1 → 4)-β-d-digitoxopyranoside (5), sarcostin 3-O-β-d-oleandropyranosyl-(1 → 4)-β-d-canaropyranosyl-(1 → 4)-β-d-canaropyranosyl-(1 → 4)-β-d-digitoxopyranoside (6), 12-O-benzoyldeacylmetaplexigenin 3-O-β-d-glucopyranosyl-(1 → 4)-β-d-oleandropyranosyl-(1 → 4)-β-d-canaropyranosyl-(1 → 4)-β-d-oleandropyranosyl-(1 → 4)-β-d-digitoxopyranoside (7), and 12-O-benzoylsarcostin 3-O-β-d-glucopyranosyl-(1 → 4)-β-d-oleandropyranosyl-(1 → 4)-β-d-canaropyranosyl-(1 → 4)-β-d-oleandropyranosyl-(1 → 4)-β-d-digitoxopyranoside (8), respectively. All compounds (1–8) were tested for in vitro cytotoxicity; only compound 3 showed weak inhibitory activity against Raji and AGZY cell lines.  相似文献   

12.
Three main saponins were isolated from the seeds of Albizzia lucida. Their structures were established by spectral analyses and chemical and enzymatic transformations as 3-O-[β- -xylopyranosyl(1→2)-- -arabinopyranosyl (1→6)] [β- -glucopyranosyl (1→2)] β- -glucopyranosyl echinocystic acid; 3-O-[- -arabinopyranosyl (1→6)][β- -glucopyranosyl (1→2)]-β- -glucopyranosyl echinocystic acid and 3-O-[β- -xylopyranosyl (1→2)-β- -fucopyranosyl (1→6)-2-acetamido-2-deoxy-β- -glucopyranosyl echinocystic acid, characterized as its methyl ester.  相似文献   

13.
Two novel anthocyanins have been isolated from the stem of Allium victorialis. By means of chemical degradation and spectroscopy, especially homo- and hetero-nuclear two-dimensional NMR techniques, the structures were determined to be cyanidin 3-O-(3″,6″-O-dimalonyl-β-glucopyranoside) (76.6%) and cyanidin 3-O-(3″,O-malonyl-β-glucopyranoside) (13.8%). This is the first report of acylation of the 3-position in the sugar moiety of any anthocyanin. The stability of malonyl substitution in the 3″-position on glucose is higher than the corresponding 6″-malonylation.  相似文献   

14.
Addition of iodine and methanol to N6,N6-dibenzoyl-9(2,3-O-carbonyl-5-deoxy-β-d-erythro-pent-4-enofuranosyl)adenine (4) selectively gives N6,N6-dibenzoyl-2′,3′-O-carbonyl-5′-deoxy-5′-iodo-4′-methoxyadenosine (5). Compound 5 can be converted into 4′-methoxyadenosine via hydrolysis of the carbonate followed by benzoylation, displacement of the 5′-iodo function by benzoate ion, and hydrolysis with ammonia. Configurational assignments are based upon comparisons of 1H- and 13C-n.m.r. spectra with those of previously characterised analogues in the uracil series and by borate electrophoresis. Intermediates in the above scheme have also been converted into 5′-amino-5′-deoxy-4′-methoxyadenosine, 4′-methoxy-5′-O-sulfamoyladenosine, and ethyl 4′-methoxyadenosine-5′-carboxylate, each of which is a 4′-methoxy analogue of biologically active derivatives of adenosine.  相似文献   

15.
Chalconoid and stilbenoid glycosides from Guibourtia tessmanii   总被引:2,自引:0,他引:2  
Phytochemical studies on the stem bark of Guibourtia tessmanii yielded a dihydrochalcone glucoside, 2′,4-dihydroxy-4′-methoxy-6′-O-β-glucopyranoside dihydrochalcone and a new stilbene glycoside, 3,5-dimethoxy-4′-O-(β-rhamnopyranosyl-(1→6)-β- glucopyranoside) stilbene besides the known pterostilbene. Their structures were established on the basis of one and two dimensional NMR spectroscopic techniques, FABMS and chemical evidence.  相似文献   

16.
The petals of a number of flowers are shown to contain similar intensely coloured intravacuolar bodies referred to herein as anthocyanic vacuolar inclusions (AVIs). The AVIs in a blue-grey carnation and in purple lisianthus have been studied in detail. AVIs occur predominantly in the adaxial epidermal cells and their presence is shown to have a major influence on flower colour by enhancing both intensity and blueness. The latter effect is especially dramatic in the carnation where the normally pink pelargonidin pigments produce a blue-grey colouration. In lisianthus, the presence of large AVIs produces marked colour intensification in the inner zone of the petal by concentrating anthocyanins above levels that would be possible in vacuolar solution. Electron microscopy studies on lisianthus epidermal tissue failed to detect a membrane boundary in AVI bodies. AVIs isolated from lisianthus cells are shown to have a protein matrix. Bound to this matrix are four cyanidin and delphinidin acylated 3,5-diglycosides (three, new to lisianthus), which are relatively minor anthocyanins in whole petal extracts where acylated delphinidin triglycosides predominate. Flavonol glycosides were not bound. A high level of anthocyanin structural specificity in this association is thus implied. The specificity and effectiveness of this anthocyanin "trapping" is confirmed by the presence in the surrounding vacuolar solution of only delphinidin triglycosides, accompanied by the full range of flavonol glycosides. "Trapped" anthocyanins are shown to differ from solution anthocyanins only in that they lack a terminal rhamnose on the 3-linked galactose. The results of this study define for the first time the substantial effect AVIs have on flower colour, and provide insights into their nature and their specificity as vacuolar anthocyanin traps.  相似文献   

17.
18.
Two iridoid glucosides, 8-epi-grandifloric acid and 3′-O-β-glucopyranosyl-stilbericoside, were isolated from the aerial part of Thunbergia laurifolia along with seven known compounds, benzyl β-glucopyranoside, benzyl β-(2′-O-β-glucopyranosyl) glucopyranoside, grandifloric acid, (E)-2-hexenyl β-glucopyranoside, hexanol β-glucopyranoside, 6-C-glucopyranosylapigenin and 6,8-di-C-glucopyranosylapigenin. Strucural elucidation was based on the analyses of spectroscopic data.  相似文献   

19.
This study investigates the pro-oxidant activity of 3′- and 4′-O-methylquercetin, two relevant phase II metabolites of quercetin without a functional catechol moiety, which is generally thought to be important for the pro-oxidant activity of quercetin. Oxidation of 3′- and 4′-O-methylquercetin with horseradish peroxidase in the presence of glutathione yielded two major metabolites for each compound, identified as the 6- and 8-glutathionyl conjugates of 3′- and 4′-O-methylquercetin. Thus, catechol-O-methylation of quercetin does not eliminate its pro-oxidant chemistry. Furthermore, the formation of these A-ring glutathione conjugates of 3′- and 4′-O-methylquercetin indicates that quercetin o-quinone may not be an intermediate in the formation of covalent quercetin adducts with glutathione, protein and/or DNA. In additional studies, it was demonstrated that covalent DNA adduct formation by a mixture of [4-14C]-3′- and 4′-O-methylquercetin in HepG2 cells amounted to only 42% of the level of covalent adducts formed by a similar amount of [4-14C]-quercetin. Altogether, these results reveal the effect of methylation of the catechol moiety of quercetin on its pro-oxidant behavior. Methylation of quercetin does not eliminate but considerably attenuates the cellular implications of the pro-oxidant activity of quercetin, which might add to the mechanisms underlying the apparent lack of in vivo carcinogenicity of this genotoxic compound. The paper also presents a new mechanism for the pro-oxidant chemistry of quercetin, eliminating the requirement for formation of an o-quinone, and explaining why methylation of the catechol moiety does not fully abolish formation of reactive DNA binding metabolites.  相似文献   

20.
Guignardia citricarpa is a phytopathogenic fungus and the causal agent of citrus black spot. Incubation in a semi-defined media resulted in formation of exopolysaccharides [EPS(s)]. A medium containing glucose gave rise to a (1→6)-linked β-glucan (200 kD), pustulan, which was characterized by NMR and methylation analysis. A sucrose-containing medium provided a homogalactan (376 kD) and methylation analysis showed nonreducing end- (20%), 6-O- (53%) and 5,6-di-O-substituted Galf units (27%). An HMQC spectrum of the homogalactan showed C-1/H-1 signals at δ 108.2/4.820, 108.3/4.820 and 107.1/5.079, corresponding to three types of β- -Galf units. A DEPT analysis showed inverted signals (CH2) at δ 67.8 and 67.2, corresponding to 6-O-substituted β- -Galf units, whereas a C-5 signal at δ 77.0 suggests 5-O-substitution, confirming a novel structure for a β-galactofuranan.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号